
CrowdER: Crowdsourcing Entity Resolution

Jiannan Wang †# Tim Kraska † Michael J. Franklin † Jianhua Feng#

†AMPLab, UC Berkeley #Department of Computer Science, Tsinghua University

wjn08@mails.tsinghua.edu.cn; {kraska, franklin}@cs.berkeley.edu; fengjh@tsinghua.edu.cn

ABSTRACT

Entity resolution is central to data integration and data
cleaning. Algorithmic approaches have been improving in
quality, but remain far from perfect. Crowdsourcing plat-
forms offer a more accurate but expensive (and slow) way
to bring human insight into the process. Previous work
has proposed batching verification tasks for presentation to
human workers but even with batching, a human-only ap-
proach is infeasible for data sets of even moderate size, due
to the large numbers of matches to be tested. Instead, we
propose a hybrid human-machine approach in which ma-
chines are used to do an initial, coarse pass over all the data,
and people are used to verify only the most likely matching
pairs. We show that for such a hybrid system, generating the
minimum number of verification tasks of a given size is NP-
Hard, but we develop a novel two-tiered heuristic approach
for creating batched tasks. We describe this method, and
present the results of extensive experiments on real data sets
using a popular crowdsourcing platform. The experiments
show that our hybrid approach achieves both good efficiency
and high accuracy compared to machine-only or human-only
alternatives.

1. INTRODUCTION
Entity resolution (also known as entity reconciliation,

duplicate detection, record linkage and merge/purge) in
database systems is the task of finding different records that
refer to the same entity. Entity resolution is particularly im-
portant when cleaning data or when integrating data from
multiple sources. In such scenarios, it is not uncommon for
records that are not exactly identical to refer to the same
real-world entity. For example, consider the table of product
data shown in Table 1. Records r1 and r2 in the table have
different text in the Product Name field, but refer to the
same product. Our goal is to find all such duplicate records.

There has been significant work in developing automated
algorithms for entity resolution (see [11] for a recent survey).
A basic machine-based technique is to compute a pre-defined

Table 1: A table of products.

ID Product Name Price

r1 iPad Two 16GB WiFi White $490

r2 iPad 2nd generation 16GB WiFi White $469

r3 iPhone 4th generation White 16GB $545

r4 Apple iPhone 4 16GB White $520

r5 Apple iPhone 3rd generation Black 16GB $375

r6 iPhone 4 32GB White $599

r7 Apple iPad2 16GB WiFi White $499

r8 Apple iPod shuffle 2GB Blue $49

r9 Apple iPod shuffle USB Cable $19

similarity metric, such as Jaccard similarity, for each pair of
records [2,5,26]. Records whose similarity values are above
a specified threshold are considered to refer to the same en-
tity. More sophisticated techniques use machine learning.
For example, some approaches model entity resolution as a
classification problem, training a classifier to distinguish be-
tween “duplicate” or “non-duplicate” pairs [4,6]. Despite all
of this progress, machine-based techniques remain far from
perfect. For example, a recent study [18] describes the diffi-
culty that state-of-the-art techniques have in many domains
such as identifying duplicate products based on their textual
descriptions.

The limitations of machine-based approaches combined
with the availability of easily-accessible crowdsourcing plat-
forms have caused many to turn to human-based approaches.
Indeed, de-duplication (of addresses, names, product de-
scriptions, etc.) is an important use case for popular crowd-
sourcing platforms such as Amazon Mechanical Turk (AMT)
and Crowdflower. Such platforms support crowdsourced ex-
ecution of “microtasks” or Human Intelligence Tasks (HITs),
where people do simple jobs requiring little or no domain
expertise, and get paid on a per-job basis. Entity resolu-
tion is easily expressed as a query in a crowd-enabled query
processing system such as CrowdDB [13] or Qurk [20]. For
example, in CrowdDB’s CrowdSQL language, the following
self-join query identifies duplicate product records.

SELECT p.id, q.id FROM product p, product q

WHERE p.product_name ~= q.product_name;

Note that ~= is an operator that can ask the crowd to decide
whether or not p.product_name and q.product_name refer
to the same product.

A naive way to process such a query is to create a HIT for
each pair of records, and for each HIT, to ask people in the
crowd to decide whether or not the two records both refer
to the same entity. For a table with n records, the naive

1483

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 11
Copyright 2012 VLDB Endowment 2150-8097/12/07... $ 10.00.

execution method will lead to O(n2) HITs. In a recently
published paper [19], Marcus et al. proposed two batch-
ing strategies to reduce the number of HITs for matching
operations (they focused on join operations). The first is
to simply place multiple record pairs into a single HIT. To
perform such a pair-based HIT, a worker must check each
pair in the HIT individually. Suppose a pair-based HIT
consists of k pairs of records. The number of HITs will be
reduced to O(n2/k). Their second batching approach also
placed multiple pairs of records in a single HIT but they
asked workers to find all matches among all of the records.
In this latter approach, if a HIT consists of k records the
number of HITs will be reduced to O(n2/k2). Their results
indicated that batching could provide significant benefits in
cost with only minimal negative impact on accuracy. How-
ever, their approach suffers from a scalability problem. Even
with a modest database size of 10,000 records, assuming a
reasonable HIT size k = 20, their approaches would require
5,000,000 and 250,000 HITs respectively. At even $0.01 per
HIT, this query would cost $50,000 or $2,500 to execute, if
in fact, it could even be successfully executed on existing
platforms.

While the insight that batching can reduce the number
of HITs is a correct one, clearly batching on its own is not
sufficient to enable Entity Resolution to be done at scale.
Instead, what is needed is a hybrid human-machine ap-
proach, that uses machine-based techniques to weed out ob-
vious non-duplicates, while using precious human resources
to examine just those cases where human insight is needed.
Similar hybrid approaches have been shown to be effective
for problems such as image search [27] and language trans-
lation [23]. Following this line of research, we propose a
hybrid human-machine Entity Resolution approach called
CrowdER. CrowdER first uses machine-based techniques to
discard those pairs of records that look very dissimilar, and
only asks the crowd to verify the remaining pairs.

Having machine-based similarity estimates raises a further
opportunity. Namely, the similarity estimates can be used to
further optimize the grouping of specific records into HITs.
Similar to Marcus et al., we consider batching of records into
HITs as groups of individual pairs (“pair-based HIT gener-
ation”) or in a format that requires workers to find matches
among all the records (“cluster-based HIT generation”) but
with the major difference that we use machine-generated
similarity estimates to drive the creation of the HITs. We
formulate the HIT generation problem and show that gen-
erating the minimum number of cluster-based HITs is NP-
Hard. Thus, we develop a heuristic-based algorithm for gen-
erating cluster-based HITs and evaluate the algorithm an-
alytically and through an extensive experimental analysis
using real data sets and a popular crowdsourcing platform.

The main contributions are the following:

• We propose a hybrid human-machine system for entity
resolution by combining human-based techniques and
machine-based techniques.

• We formulate the cluster-based HIT generation prob-
lem, prove that it is an NP-Hard problem and develop
a two-tiered heuristics-based solution for it.

• We compare pair-based HIT generation and cluster-
based HIT generation analytically and experimentally.

• We have implemented our approaches and compared
them with the state-of-the-art techniques on real

datasets using the AMT platform. Experimental re-
sults show that our approach reduces cost while pro-
viding good answer quality. In particular, our hybrid
human-machine approach makes it practical to bring
humans into the Entity Resolution process.

The remainder of this paper is organized as follows. We
propose a hybrid human-machine approach for entity reso-
lution in Section 2. Section 3 introduces the HIT generation
problem and proves that it is NP-Hard. We present an ap-
proximation algorithm in Section 4 and devise a more prac-
tical, two-tiered approach in Section 5. Section 6 compares
pair-based HIT and cluster-based HIT generation analyti-
cally. We describe the results of our experimental studies
in Section 7. Related work is reviewed in Section 8 and we
present conclusions and future work in Section 9.

2. ENTITY RESOLUTION TECHNIQUES
In this section, we first review existing machine-based

techniques for entity resolution and then describe a hybrid
workflow combining people and machines.

2.1 Machine-based Techniques
Machine-based Entity Resolution techniques can be

broadly divided into two categories, similarity-based and
learning-based.

2.1.1 Similarity-based

Similarity-based techniques require a similarity function
and a threshold. The similarity function takes a pair of
records as input, and outputs a similarity value. The more
similar the two records, the higher the output value. The
basic approach is to compute the similarity of all pairs of
records. If a pair of records has a similarity value no smaller
than the specified threshold, then they are considered to
refer to the same entity.

For example, in Table 1, suppose that the similarity of
two records is specified as Jaccard similarity between their
Product Names, and the specified threshold is 0.5. Jaccard
similarity over two sets is defined as the size of the set in-
tersection divided by the size of the set union. For example,
the Jaccard similarity between the Product Names of r1 and
r2 is

J(r1, r2) =
|{iPad, 16GB, WiFi, White}|

|{iPad, 16GB, WiFi, White, Two, 2nd, generation}|
= 0.57.

The similarity-based technique will consider 〈r1, r2〉 as re-
ferring to the same entity since their Jaccard similarity is
no smaller than the threshold, i.e., J(r1, r2) ≥ 0.5. Simi-
larly, 〈r1, r3〉 will not be considered a match since J(r1, r3) =
0.25 < 0.5.

Since it is expensive to compute the similarity for every
pair of records, research on similarity-based techniques [2,
5,26] mainly focuses on how to reduce the number of pairs
evaluated.

2.1.2 Learning-based

Learning-based techniques model entity resolution as a
classification problem [4,6]. They represent a pair of records
as a feature vector in which each dimension is a similar-
ity value of the records on some attribute. If we choose n
similarity functions on m attributes, then the feature vec-
tor will be a nm-dimensional feature vector. For example,
for the records in Table 1, suppose we only choose Jaccard

1484

���������	�
���
�

�������������

���������

���
��	�
���
�

�����������������

������	������
�����

�������������������

��������

���
�����	������

���
��	�
���
������

�	�
�����������������!

����"���
�����

Figure 1: Hybrid human-machine workflow.

similarity on Product Name. Then each pair of records will
be represented as a feature vector that contains only a sin-
gle dimension. Learning-based techniques require a training
set to train the classifier. The training set consists of posi-
tive feature vectors and negative feature vectors indicating
matching pairs and non-matching pairs respectively. The
trained classifier can then be applied to label new record
pairs as matching or non-matching.

2.2 Hybrid Human-Machine Workflow
As described in the introduction, people are often better

than algorithms at detecting when different terms actually
refer to the same entity. However, compared to algorithmic
techniques people are much slower and more expensive. A
hybrid human-machine approach has the potential to com-
bine the efficiency of machine-based approaches with the
answer quality that can be obtained from people. The intu-

itive idea is that among n·(n−1)
2

pairs of records that can be
generated from a set of n records, a large number of pairs
are very dissimilar. Such pairs can be easily pruned using a
machine-based technique. People can then be brought in to
examine the remaining pairs.

Based on this idea, we propose a human-machine workflow
as shown in Figure 1. The workflow first uses machine-based
techniques to compute for each pair the likelihood that they
refer to the same entity.1 For example, the likelihood could
be the similarity value given by a similarity-based technique.
Then, only those pairs whose likelihood exceeds a specified
threshold are sent to the crowd. In the experimental sec-
tion, we show that by specifying a relatively low threshold
we can dramatically reduce the number of pairs that need
to be verified with only a minor loss of quality. Given the
set of pairs to be sent to the crowd, the next step is to gen-
erate HITs so that people can check them for matches. HIT
Generation is a key component of our workflow. Finally,
generated HITs are sent to the crowd for processing and the
answers are collected.

Example 1. Consider the nine records in Table 1. In-
stead of asking people to check 9∗8

2
= 36 pairs, our workflow

first employs a machine-based technique to compute the like-
lihood of each pair of records. Here we use the Jaccard sim-
ilarity between Product Names of a pair of records as their
likelihood. Then the workflow prunes the pairs whose like-
lihood is smaller than the specified threshold. Suppose the
threshold is 0.3. Figure 2(a) shows the remaining ten pairs

1
In practice, we can adopt some indexing techniques such as blocking

and Q-gram based indexing [7] to avoid all-pairs comparison.

�������������	

�������������	
�����������
�	

�����������
�	

�����������
�	

�����������
�	

�������������	
�������������	

������	������	

������	������	

������������	

������������	
���

(a) Remove the pairs whose

likelihood < 0.3

���

(b) Generate HITs to verify

the pairs of records

��� ���������	
��� ���������	

��� ���������	
��� ���������	

��� ���������	
��� ���������	

��� ���������	
��� ���������	

��� ��������		
��� ��������		

�������	

�������	

�������	
�������	

(c) Output matching

pairs

Figure 2: An example of using the hybrid human-
machine workflow to find duplicate pairs in Table 1.

of records. That is, the workflow only needs to generate HITs
to verify the ten pairs (rather than 36). In this example, we
batch two pairs into each HIT, and generate five HITs as
shown in Figure 2(b). As an example, in the first HIT, the
crowd selects “YES” for (r1, r2) and “NO” for (r4, r6) which
indicates that r1 and r2 are the same entity while r4 and
r6 are not. After the crowd finishes all the HITs, the four
matching pairs (as determined by the crowd) are returned
(Figure 2(c)).

3. HIT GENERATION
Recall that a key step in the human-machine workflow

is HIT Generation. That is, given a set of pairs of records,
they must be combined into HITs for crowdsourcing. In this
section we discuss the generation problem for two types of
HITs, pair-based HITs and cluster-based HITs.

3.1 Pair-based HIT Generation
A pair-based HIT consists of multiple pairs of records to

be compared batched in to a single HIT. For each pair of
records, the crowd needs to verify whether they refer to the
same entity or not. Figure 3 shows an example of the user
interface we generate for a pair-based HIT on AMT. At the
top, there is a brief description of the HIT. More detailed in-
structions can be displayed by clicking “Show Instructions”.
The HIT shown consists of two pairs of records. For each
pair, the worker needs to choose either “They are the same
product” or “They are different products”. The HIT can be
submitted only if a selection has been made for all pairs of
records in the HIT. Note that in Figure 3, the second pair
of records has not been verified, so the submit button is dis-
abled, and its caption shows “1 left”. We also recommend
(but do not require) that workers provide reasons for their
choices.

Generating pair-based HITs is straightforward. Suppose
a pair-based HIT can contain at most k pairs. Given a set

of pairs, P , we need to generate ⌈ |P|
k
⌉ pair-based HITs. For

example, for the ten pairs of records with above-threshold
likelihood in Figure 2(a), if k = 2, we would need to generate
five pair-based HITs.

3.2 Cluster-based HIT Generation
A cluster-based HIT consists of a group of individual

records rather than pairs. Workers are asked to find all
duplicate records in the group. Figure 4 shows the user in-
terface we generate for a cluster-based HIT on AMT. As
with pair-based HITs, there is a brief description at the top,

1485

Figure 3: A pair-based HIT with two record pairs.

and more detailed instructions are available. The example
HIT contains four records. A drop-down list at the front
of each record allows a worker to assign each record a la-
bel. Initially, all records are unlabeled. When a label is
selected for a record, the background color of the record is
changed to the corresponding color for that label. Workers
indicate duplicate records by assigning them the same label
(and thus, the same color).

To make the labeling process more efficient, our interface
supports two additional features, (1) sorting records by col-
umn values by clicking a column header; (2) moving a record
by dragging and dropping it. The first feature can be used
for example, to sort the records based on a specific attribute
such as product price. The second feature can be used, for
example, to place the records that share a common word,
e.g. “ipad” near each other for easier comparison.

Next we study how to generate cluster-based HITs. A
cluster-based HIT allows a pair of records to be matched iff
both records are in the HIT. In a crowdsourced system like
AMT, payment is made for each successfully completed HIT.
Thus, there is a financial incentive to minimize the number
of HITs. However, placing too many records in a cluster-
based HIT makes it difficult for workers to complete, re-
sulting in higher-latencies and lower quality answers. Thus,
we bound the number of records placed in a cluster-based
HIT. We can then formulate the HIT generation problem as
follows:

Definition 1 (Cluster-based HIT Generation).
Given a set of pairs of records, P, and a cluster-size
threshold, k, the cluster-based HIT generation problem is
to generate the minimum number of cluster-based HITs,
H1, H2, · · · ,Hh, that satisfy two requirements: (1) |Hℓ| ≤ k
for any ℓ ∈ [1, h], where |Hℓ| denotes the number of records
in Hℓ; (2) for any (ri, rj) ∈ P, there exists Hℓ (ℓ ∈ [1, h])
s.t. ri ∈ Hℓ and rj ∈ Hℓ.

For example, consider the ten pairs of records in Fig-
ure 2(a). Given the cluster-size threshold k = 4, suppose

Figure 4: A cluster-based HIT with four records.

we generate three cluster-based HITs, H1 = {r1, r2, r3, r7},
H2 = {r3, r4, r5, r6} and H3 = {r4, r7, r8, r9}. As their sizes
are no larger than k = 4, the first requirement of Definition 1
holds. For any of the ten pairs, at least one of the three
cluster-based HITs contain them, thus the second require-
ment of Definition 1 holds. Furthermore, it is impossible to
find fewer cluster-based HITs that satisfy the two require-
ments. Therefore, based on Definition 1, H1, H2 and H3 are
the solution to the cluster-based HIT generation problem.

Unfortunately, the cluster-based HIT generation problem
is NP-Hard. In the next section, we present an approxima-
tion algorithm for this problem.

Theorem 1. The cluster-based HIT generation problem
is NP-Hard.

Proof. We prove it by reduction from the k-clique cover-
ing problem [15]. A k-clique is defined as a complete graph
that contains k vertices. We say that a k-clique covers an
edge of a graph if the two vertices of the edge are both in the
clique. Given a graph, the k-clique covering problem is to
find the minimum number of k-cliques to cover all the edges
of the graph. To reduce this problem to the cluster-based
HIT generation problem, we take each vertex of the graph
as a record, and construct a set of record pairs, P , that con-
sists of all edges of the graph. Let H1,H2, · · · ,Hh be the
solution to the reduced cluster-based HIT generation prob-
lem. Next we show that based on H1,H2, · · · ,Hh, we can
obtain the solution to the original k-clique covering problem
in polynomial time.

For each Hℓ (ℓ ∈ [1, h]), we generate a clique, Cℓ that con-
sists of the vertices corresponding to the records in Hℓ. Ob-
viously, C1, C2, · · · , Ch are the minimum number of cliques
that can cover all the edges of the graph. Since |Hℓ| ≤ k, Cℓ

contains no larger than k vertices. For each Cℓ (ℓ ∈ [1, h]),
we can simply construct a k-clique, C′

ℓ, by adding k − |Hℓ|
vertices into Cℓ, and finally obtain the solution to the k-
clique covering problem, i.e. C′

1, C
′
2, · · · , C

′
h. Therefore, the

k-clique covering problem can be reduced to the cluster-
based HIT generation problem in polynomial time.

4. APPROXIMATION ALGORITHM
In this section, we first reduce our problem to the k-clique

edge covering problem, and then apply its approximation
algorithm to cluster-based HIT generation.

1486

��������

��������

��������
��������

��������

��������

��������

��������

������	�

������	�

�� ��

��

�� ��

��

�� ��

�	

Figure 5: Build a graph based on the ten pairs of
records to be verified in Figure 2(a).

In order to reduce our HIT generation problem to the k-
clique covering problem, we build a graph based on the set
of pairs that need to be verified. In the graph, each vertex
represents a record, and each edge denotes a pair of records.
A cluster-based HIT can be seen as a clique in the graph. We
say the cluster-based HIT is able to check a pair if and only
if the clique is able to cover the corresponding edge. (For
simplicity, a cluster-based HIT is mentioned interchangeably
with its corresponding clique in later text.) Therefore, the
cluster-based HIT generation problem is reduced to finding
the minimum number of cliques, whose sizes are no larger
than k, to cover all edges of the graph. Note that we only
need to consider the cliques whose sizes are equal to k (i.e.
k-cliques) since a larger clique can cover more edges than a
smaller one. Therefore, the reduced problem is the same as
the k-clique covering problem.

To solve the k-clique covering problem, we can model it
as the set covering problem, and apply the corresponding
approximation algorithm [8]. However, that algorithm is
very expensive since it needs to generate

(

n

k

)

covering cliques
where n is the number of the vertices in the graph. To
address this problem, Goldschmidt ed al. [15] proposed an
efficient (k

2
+ k

k−1
)-approximation algorithm. The algorithm

consists of two phrases.

Phase 1: The algorithm creates a sequence consisting of
all the vertices and edges in the graph, denoted by SEQ =
{e1, e2, · · · , en}. Initially, SEQ is empty. Then the algo-
rithm iteratively selects a vertex, and adds the vertex and
the edges that contain the vertex into SEQ, and removes
them from the graph. The algorithm iterates until the graph
has no vertices or edges.
Phase 2: Next, SEQ is used to generate k-cliques to cover
the edges of the graph. SEQ has the useful property that
for any subsequence with k − 1 consecutive elements, i.e.,
{ei, ei+1, · · · , ei+k−1}, the edges in the subsequence contain
at most k different vertices [15]. Therefore, these edges can
be covered by a k-clique. Based on this property, the algo-

rithm divides SEQ into ⌈ |SEQ|
k−1

⌉ subsequences, where each
subsequence has k − 1 elements, and then finds a k-clique
for each subsequence. Since all the edges of the graph are

in SEQ, the algorithm can find ⌈ |SEQ|
k−1

⌉ k-cliques to cover
all the edges.

Example 2 shows how to use the above approximation al-
gorithm to solve the cluster-based HIT generation problem.

Example 2. Consider the ten pairs in Figure 2(a). To
generate cluster-based HITs for them, we first build a graph
as shown in Figure 5. The graph contains ten edges, which

represent the ten pairs. Next we create a sequence SEQ
which consists of all vertices and edges in the graph. Since
the graph contains ten edges and nine vertices, there will be
nineteen elements in SEQ. Suppose the cluster-size thresh-

old is k = 4. We divide SEQ into ⌈ |SEQ|
k−1

⌉ = 7 subse-

quences, where each subsequence (except the last one) con-
tains k − 1 = 3 elements. We generate a cluster-based HIT
to cover the edges in each subsequence. Therefore, the ap-
proximation algorithm generates seven cluster-based HITs to
verify the ten pairs in Figure 2(a).

Note, however, that as described in Section 3.2 the op-
timal solution requires only three cluster-based HITs. In
fact, as we show in our experimental evaluation (Section 7),
this approximation algorithm generates many more cluster-
based HITs than even a naive algorithm on the data sets
we tested. Thus, in the following section, we propose a new
cluster-based HIT generation algorithm.

5. A TWO-TIERED APPROACH
In this section, we propose a two-tiered approach to ad-

dress the cluster-based HIT generation problem. We first
present an overview of our approach in Section 5.1, and then
discuss the top tier and the bottom tier of our approach in
Sections 5.2 and 5.3, respectively.

5.1 Approach Overview
Similar to the approximation algorithm in Section 4, our

approach first builds a graph on a set of pairs. Since our hy-
brid human-machine workflow typically only needs to check
a small fraction of all possible pairs, the graph is very sparse,
and may consist of many connected components. We clas-
sify these connected components into two types according
to the cluster-size threshold k. Large connected components
(LCCs) have more than k vertices while small connected
component (SCCs) have k vertices or fewer.

LCCs have more vertices than can fit into a cluster-based
HIT; they must be partitioned into SCCs. When partition-
ing, we would like to create SCCs that are highly connected
since doing so increases the number of edges covered by the
component, enabling more comparisons to be done in a given
cluster-based HIT. The number of HITs required can also
be reduced by batching multiple SCCs into a single cluster-
based HIT. Different packing methods can lead to different
numbers of required HITs. It is important to note that the
approximation algorithm in Section 4 does not consider ei-
ther of these issues that impact the number of HITs, rather
it simply adds a random vertex and its corresponding edges
into SEQ.

For example, consider the graph in Figure 5. It con-
sists of two connected components. Suppose k = 4.
The top one is an LCC and the bottom one is an SCC.
Consider the top component containing seven vertices
{r1, r2, r3, r4, r5, r6, r7}. Since it is an LCC, it must be
partitioned. Assume it is partitioned into three SCCs
{r1, r2, r3, r7}, {r3, r4, r5, r6}, {r4, r7}, which can cover all
of its edges. Then the graph becomes {r1, r2, r3, r7},
{r3, r4, r5, r6}, {r4, r7}, {r8, r9}.

Next, we need to pack these SCCs into cluster-based
HITs. One way is to create a cluster-based HIT for each
of {r3, r4, r5, r6} and {r1, r2, r3, r7}, and then to combine
{r4, r7} and {r8, r9} into a third cluster-based HIT. This
way, we generate only three cluster-based HITs.

1487

Algorithm 1: Two-Tiered(P , k)

Input: P : a set of pairs of records
k : a cluster-size threshold

Output: H1,H2, · · · ,Hh: cluster-based HITs
begin1

Let CC denote the connected components of the graph2

that is built based on P;
SCC = {cc ∈ CC | |cc| ≤ k}; //Small Connected Components3

LCC = {cc ∈ CC | |cc| > k}; //Large Connected Components4

SCC ∪ = Partitioning(LCC, k); //Top Tier5

H1,H2, · · · , Hh = Packing(SCC, k); //Bottom Tier6

end7

Figure 6: An overview of two-tiered approach.

Figure 6 shows the pseudo-code for this approach. In
the initial step, we build a graph based on the given set of
pairs, and divide the connected components of the graph
into LCCs and SCCs (Lines 2-4). We then partition each
of the LCCs into small ones so that we have a collection of
SCCs (Line 5). Finally, we pack all the SCCs into cluster-
based HITs (Line 6).

5.2 LCC Partitioning (Top Tier)
We now study the top tier of our approach, that is, given

an LCC, how to partition it into SCCs such that its edges
can be covered by these SCCs. As discussed in Section 5.1,
we aim to create SCCs that are highly connected. Based
on this idea, we devise a greedy algorithm. To partition an
LCC, the algorithm iteratively generates an SCC with the
highest connectivity, and iterates until the generated SCCs
cover all edges in the large one.

In each iteration step, the algorithm first initializes a small
connected component scc with the vertex having the max-
imum degree in the LCC. Then the algorithm repeats to
add a new vertex into scc that maximizes the connectivity
of scc. More specifically, for each vertex r (/∈ scc), the al-
gorithm computes the indegree and the outdegree of r w.r.t
scc, where the indegree is defined as the number of edges
between r and the vertices in scc, and the outdegree is de-
fined as the number of edges between r and the vertices not
in scc.

We select the vertex with the maximum indegree as that
adds the most edges to scc. If there is a tie, that is, more
than one vertex has the same maximum indegree, the algo-
rithm selects the vertex with the minimum outdegree from
these vertices since vertices with a larger outdegree have
more connectivity with the vertices outside scc. The algo-
rithm adds the selected vertex into scc, and updates the
indegree and the outdegree of each vertex w.r.t the new scc,
and repeats the above process to select another vertex. The
algorithm stops adding vertices to scc when the size of scc is
equal to the cluster-size threshold k, or when no remaining
vertex connects with scc.

Figure 7 shows the pseudo-code for the top tier. Each
large connected component, lcc, is partitioned into SCCs
as follows. First, it creates a small connected component,
scc, with the vertex that has the maximum degree in lcc
(Line 5). Let conn denote a set of vertices that connect
with scc (Line 6). Next, the algorithm repeatedly picks up
a vertex from conn and adds it into scc until either the size
of scc is k or conn is empty (Lines 7-12). When picking up a
vertex, it aims to maximize the connectivity of scc (Line 8).
After adding a new vertex into scc (Line 9), the algorithm

Algorithm 2: Partitioning(LCC, k)

Input: LCC : a set of large connected components
k : a cluster-size threshold

Output: SCC : a set of small connected components
obtained by partitioning each large connected
component in LCC

begin1

for each lcc ∈ LCC do2

while lcc has edges do3

Let rmax be the vertex of lcc with the maximum4

degree;
scc = {rmax};5

conn = {r | for each edge (rmax, r) of lcc};6

while |scc| < k and |conn| > 0 do7

Pick up a vertex rnew from conn with the8

maximum indegree w.r.t scc. (If there is a
tie, pick up the one with the minimum
outdegree w.r.t scc);
Move rnew from conn to scc;9

for each edge (rnew , r) of lcc do10

if r /∈ scc and r /∈ conn then11

Add r into conn;12

Add scc into SCC;13

Remove the edges of lcc that are covered by scc;14

end15

Figure 7: The top tier of our approach.

needs to update conn (Lines 10-12). Finally, the algorithm
outputs scc and removes the edges of lcc that are covered
by scc (Lines 13-14). If lcc still has edges, the algorithm
returns to the first step and continues to generate more SSCs
(Line 3).

�� ��

��

��

�� ��

�� �� ��

��

��

�� ��

��

4 1

2

3

2 3 3

(1,2) (1,0)

(1,1)(1,2)

�� ��

��

��

�� ��

��

(1,2)

(1,1)(1,2)

�� ��

��

��

�� ��

��

(1,2)

(2,1)

�� ��

��

��

��

���� ��

��

��

��

��

�� ��

��

�����������	�
��������
��������������������������

Add �� into �����

���������������������

Add �� into ����

������������������

Add �� into �����
����Output � ����Output other �

Figure 8: An example of using the top tier of our
approach to partition a large connected component
in Figure 5 (k = 4).

Example 3. For example, consider the LCC in Figure 5.
To partition it into SCCs, in Figure 8(a) we first initial-
ize scc = {r4} including a vertex with the maximum de-
gree. Then we repeat to add a new vertex into scc until
its size reaches the cluster-size threshold (i.e., |scc| = k) or
no more vertices are available (i.e., |conn| = 0). In Fig-
ure 8(b), there are four vertices connecting with scc, thus
conn = {r3, r5, r6, r7}. For each vertex, we compute its in-
degree and outdegree w.r.t scc, denoted by (indegree, outde-
gree). Since r3, r5, r6 and r7 have the same indegree while
r6 has the minimum outdegree, we add r6 into scc. Simi-
larly, in Figure 8(c) and (d), we respectively add r5 and r3
into scc.

1488

At this point, if we add more vertices, |scc| will be larger
than k, thus in Figure 8(e), we output scc and remove its
edges from the LCC. We use the similar method to partition
the remainder of the large connected component, and obtain
two other SCCs in Figure 8(f). Thus, the LCC is ultimately
partitioned into three SCCs: {r3, r4, r5, r6}, {r1, r2, r3, r7}
and {r4, r7}.

5.3 SCC Packing (Bottom Tier)
We now describe the bottom tier of our approach, that is,

given a set of SCCs, how to pack them into the minimum
number of cluster-based HITs such that the size of each
cluster-based HIT is no larger than k. This is a NP-Hard
problem which is a variant of the one-dimensional cutting-
stock problem [14]. We formulate it as an integer linear
program.

Let p = [a1, a2, · · · , ak] denote a pattern of a cluster-based
HIT, where aj (j ∈ [1, k]) is the number of SCCs in the
HIT that contain j vertices. Since a cluster-based HIT can
contain at most k vertices, we say that p is a feasible pattern
only if

∑k

j=1 j · aj ≤ k holds. For example, suppose k = 4.

p1 = [0, 0, 0, 1] is a feasible pattern since 1 · 0 + 2 · 0 + 3 ·
0 + 4 · 1 = 4 ≤ k holds. We collect all feasible patterns into
a set A = {p1, p2, · · · , pm}, where pi = [ai1, ai2, · · · , aik]
(i ∈ [1, m]).

When packing a set of SCCs into cluster-based HITs,
each HIT must correspond to a pattern in A. Let xi de-
note the number of cluster-based HITs whose pattern is pi
(i ∈ [1, m]). Then the problem becomes how to minimize
the total number of patterns, i.e.,

∑m

i=1 xi. Based on this
idea, we can formulate our packing problem as the following
integer linear program:

min
m
∑

i=1

xi

s.t.

m
∑

i=1

aijxi ≥ cj , ∀j ∈ [1, k]

xi ≥ 0, integer

where cj is the total number of the small connected compo-
nents that contain j vertices.

For example, given a set of SCCs, {r3, r4, r5, r6},
{r1, r2, r3, r7}, {r4, r7} and {r8, r9}, we have c1 = 0, c2 = 2,
c3 = 0 and c4 = 2. To pack them into cluster-based
HITs (k = 4), we first generate all feasible patterns, i.e.
A = {p1 = [0, 0, 0, 1], p2 = [0, 2, 0, 0], p3 = [0, 1, 0, 0]}. (Note
that since c1 = 0 and c3 = 0, we omit the feasible patterns in
A whose first or third dimension contains non-zero values.)

Next we need to decide the number of cluster-based HITs
corresponding to each feasible pattern, i.e. x1, x2 and x3.
One possible solution is x1 = 2, x2 = 0 and x3 = 2, which
needs

∑3
i=1 xi = 4 cluster-based HITs. We can easily ver-

ify that the solution satisfies the constraint condition, i.e.
∑3

i=1 aijxi ≥ cj (∀j ∈ [1, 4]). For example, when j = 2, we

have
∑3

i=1 ai2xi = 0 · 2 + 2 · 0 + 1 · 2 ≥ c2 = 2. However,
this solution is not optimal since there is another solution
x1 = 2, x2 = 1 and x3 = 0 that also satisfies the constraint
condition but needs only

∑3
i=1 xi = 3 cluster-based HITs.

The above integer linear program can be solved by using
column generation and branch-and-bound [25]. The tech-
nique is very efficient as it does not need to generate all
feasible patterns at the beginning. Instead, it starts with

a few patterns and generates more patterns as needed. At
each iteration, a branch-and-bound tree is built to search
for the optimal integer solution.

6. BACK OF THE ENVELOPE ANALYSIS
In this section, we compare pair-based HITs with cluster-

based HITs analytically in terms of the number of compar-
isons they require workers to perform. For a pair-based HIT
the number of comparisons required is simply the number of
pairs that have been batched into the HIT. This is because
each pair in the HIT is treated separately. For cluster-based
HITs the story is more involved.

Consider a cluster-based HIT with n records. One may

be tempted to think that n·(n−1)
2

comparisons would be re-
quired. However, in reality, the number of comparisons also
depends on the way that a person does the HIT and the
number of distinct entities represented in the HIT. Suppose
the cluster-based HIT contains m distinct entities, denoted
by e1, e2, · · · , em, where ei (i ∈ [1,m]) represents the set of
records in the HIT that refer to the i-th entity. Obviously,
∑m

i=1 |ei| = n.
Assume a person does the cluster-based HIT as follows.

First, she picks up a record from an entity, e.g. e1. Then
she compares the record with the other n− 1 records. After
n − 1 comparisons, she can identify all the records in the
cluster-based HIT that refer to e1. Next she selects a record
from another entity, e.g. e2. Note that she does not need
to compare it with the records in e1 since those records
correspond to the first entity and cannot refer to the second
(different) entity. She can then identify all the records that
refer to e2 with n− 1− |e1| comparisons. Iteratively, when
selecting a record from ei, she only needs to compare with
n− 1−

∑i−1
j=1 |ej | other records. By summing the number of

comparisons in each iteration step, we can obtain the total
number of comparisons required to complete the cluster-
based HIT, i.e.,

m∑

i=1

(

n− 1−

i−1∑

j=1

|ej |
)

. (1)

Based on this equation, we have the following two obser-
vations.

First, the value of Equation 1 decreases as |ej | (j ∈ [1, m])
increases. That is, a cluster-based HIT requires fewer com-
parisons when it contains more matches (i.e., duplicates).
To illustrate this observation, consider two extreme cases.
One is no duplicate record exists in a cluster-based HIT.
For this case, there are n entities in the cluster-based HIT
and each entity contains only one record, thus the number of

comparisons becomes n·(n−1)
2

. The other case is all records
in a cluster-based HIT are duplicate. For this case, there
is only one entity in the cluster-based HIT and the entity
contains n records and the number of comparisons required
is n− 1.

The second observation is that the value of Equation 1
differs in the sequence of the identified entities. For ease of
presentation, we modify Equation 1 to the following equiv-
alent equation.

(n− 1) ·m −

m−1∑

i=1

(m − i) · |ei|. (2)

The first part of the equation, i.e. (n− 1) ·m, is a constant
value w.r.t the sequence of the entities, while the second

1489

�� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

���������������� �������� ���	���
��������
��������
�������� ���	���

Figure 9: An illustration of computing the number
of comparisons for a cluster-based HIT.

part, i.e.
∑m−1

i=1 (m − i) · |ei|, is a weighted sum of |ei| (i ∈
[1, m − 1]). Since the weight, i.e., (m − i), decreases with
increasing i, the best way to identify entities is in increasing
order of |ei|, which can result in the minimum number of
comparisons. On the other hand, the worst way to identify
entities is in decreasing order of |ei|.

Example 4 shows how to use the above method to compute
the number of comparisons for a cluster-based HIT.

Example 4. In Figure 9, consider a cluster-based HIT
with n = 4 records, {r1, r2, r3, r7}. From Table 1, we can see
that r1, r2, r7 refer to the same entity, thus e1 = {r1, r2, r7}
and e2 = {r3}. Figure 9 shows the way a human worker
does the HIT. First, the human initializes an entity e1 by
selecting a record r1. Then she compares r1 with the other
n − 1 = 3 records. Since r2 and r7 refer to the same en-
tity as r1, she adds them into e1 by painting them the same
color as r1. We can see that after three comparisons, all
of the records that refer to e1 have been identified. Next,
the human worker initializes another entity e2 by selecting
record r3. Since no record is left in the cluster-based HIT,
i.e. n−1−|e1| = 0, there is no need to compare r3 with any
record. Therefore, the cluster-based HIT requires only three
comparisons in total. One interesting observation is the hu-
man worker actually checks four pairs of records (r1, r2),
(r1, r7), (r2, r3) and (r2, r7) using only three comparisons. A
pair-based HIT would require four comparisons. This shows
that cluster-based HITs can require fewer comparisons than
pair-based HITs.

7. EXPERIMENTAL RESULTS
We conducted extensive experiments to evaluate our ap-

proaches. We address three issues here. First, we examine
the effectiveness of our two-tiered HIT generation approach
in reducing the number of HITs required for Entity Res-
olution on real data sets. Second, we compare the qual-
ity of the results produced by our hybrid human-machine
approach with that produced by two machine-based ap-
proaches. Finally, we compare pair-based and cluster-based
HITs in terms of both answer quality and latency.

7.1 Experimental Setup
Datasets: We used two real datasets to evaluate our method.

Restaurant2 is a data set consisting of 858 (non-identical)

restaurant records. It has 858·(858−1)
2

= 367, 653 pairs of
records in total, among which 106 pairs refer to the same
entity. Each restaurant record has four attributes, [name,
address, city, type]. An example record is: [“oceana”, “55 e.
54th st.”, “new york”, “seafood”].

2
http://www.cs.utexas.edu/users/ml/riddle/data/restaurant.tar.gz

Table 2: Likelihood-threshold selection.

(a) Restaurant Dataset

Threshold Total #Pair Matches Recall

0.5 161 83 78.3%
0.4 755 99 93.4%
0.3 4,788 105 99.1%
0.2 23,944 106 100%
0.1 83,117 106 100%
0 367,653 106 100%

(b) Product Dataset

Threshold Total #Pair Matches Recall

0.5 637 335 30.5%
0.4 1,427 571 52.1%
0.3 3,154 805 73.4%
0.2 8,315 1,011 92.2%
0.1 37,641 1,090 99.4%
0 1,180,452 1,097 100%

Product3 is a product data set integrated from two dif-
ferent sources. There are 1081 records coming from the
abt website and 1092 records coming from the buy website.
The data set has 1081 ∗ 1092 = 1, 180, 452 pairs of records,
among which 1,097 pairs refer to the same entity. Each
product record has two attributes, [name, price]. An exam-
ple record is: [“Apple 8GB Black 2nd Generation iPod Touch
- MB528LLA”, “$229.00”].

The two datasets were preprocessed by replacing non-
alphanumeric characters with white spaces, and letters with
their lowercases.

Machine-based Technique: Our hybrid human-machine
workflow needs a machine-based technique to compute a
likelihood for each pair of records. In our experiment, a sim-
ple similarity-based technique, called simjoin, was adopted
to achieve this goal. We first generated a token set for each
record, which consisted of the tokens from all attribute val-
ues. Then for each pair of records, we took the Jaccard
similarity between their corresponding token sets as their
likelihood. Since our workflow only crowdsources the pairs
whose likelihood is above a threshold, Table 2 shows the ef-
fect of different selections of thresholds on the two datasets.
For example, for the Restaurant dataset,a threshold of 0.5
retains 161 pairs. In reality 83 of these pairs refer to the
same entity. The recall is 83

106
= 78.3%, which means that

78.3% matching pairs out of the total 106 matching pairs
in the data set pass the threshold. From Table 2, we can
conclude that a hybrid human-machine workflow can utilize
machine-based techniques to significantly reduce the num-
ber of the pairs with a little loss of recall. For instance,
on the Product dataset, when the threshold is 0.2, we can
achieve up to 92.2% recall by having people examine only
8,315 pairs of records, which is over two orders of magnitude
fewer than the total number of pairs (1,180,452).

AMT: We use Amazon Mechanical Turk (AMT) to evalu-
ate our hybrid human-machine workflow. AMT is a widely
used crowdsourcing marketplace. We paid workers $0.02 for
completing each HIT and paid AMT $0.005 for publishing
each HIT. We ran over 8000 HITs and spent about $600 on
AMT to evaluate our methods. All the HITs were published
between 1800 and 2400 PST. We ran each experiment three

3
http://dbs.uni-leipzig.de/file/Abt-Buy.zip

1490

times at the same time of day during the course of three
days, and report the average performance. In addition, we
used two ways to improve the result quality. (1) Assign-
ment : AMT allows us to replicate one HIT into multiple
assignments, and guarantees that each assignment can be
done by a different worker. In our experiment, each HIT
was replicated into 3 assignments. That is, we obtained the
results of a HIT from three different workers and made our fi-
nal decision based on a combination of the three results (see
Section 7.3). (2) Qualification Test : We found that some
workers may do our HITs maliciously. In order to prevent
this, AMT supports qualification tests for workers, and only
those who successfully pass the test can do our HITs. In our
experiment, the qualification test consists of three pairs of
records. For each one, a worker needs to decide whether or
not they match. Workers must get all three pairs correct to
pass the qualification test.

7.2 Cluster-based HIT Generation
In this section, we evaluate the two-tiered approach for

cluster-based HIT generation. We compare with the follow-
ing baseline algorithms:

Random: The algorithm generates cluster-based HITs by
randomly selecting records from a set of pairs of records, P .
To generate a cluster-based HIT, H , it repeatedly selects a
pair of records from P and merges the two records into H .
When |H | = k, it outputs H , and removes the pairs from
P . If P still has pairs, the algorithm will repeat the above
process to generate new cluster-based HITs; otherwise, the
algorithm terminates.
BFS-based: The algorithm first builds a graph on a given
set of pairs of records, and then generates cluster-based HITs
according to the breadth-first-search (BFS) of the graph. To
generate a cluster-based HIT, H , the algorithm traverses the
graph using BFS, and adds the vertices (i.e. records) into
H in the traversal order. When |H | = k, it outputs H ,
and removes the edges that can be covered by H from the
graph. If the graph still has edges, the algorithm will re-
peat the above process to generate new cluster-based HITs;
otherwise, the algorithm terminates.
DFS-based: Similar to BFS-based but traverses the graph
using depth-first-search (DFS).
Approximation: The k-clique approximation algorithm
described in Section 4.

We first compare the two-tiered approach with the base-
line algorithms for various likelihood thresholds. We varied
the likelihood threshold from 0.5 to 0.1 on the Restaurant
and Product datasets, and used the different approaches to
generate cluster-based HITs. Figure 10 shows the number
of generated cluster-based HITs (k = 10) as the threshold is
varied. We can see that the two-tiered approach generated
the fewest cluster-based HITs, with the differences being
greater for smaller thresholds. Note that in order to achieve
a high recall, we need to select a smaller threshold (Table 2).

In terms of the baseline algorithms, we have the following
observations. First, the BFS-based algorithm was the best
baseline algorithm. This is because the BFS traversal of
the graph can generate cluster-based HITs with highly con-
nected vertices. Second, the approximation algorithm did
not perform well on the real datasets. For example, on the
Restaurant dataset, when the threshold is 0.1, it performed
worst. Third, the naive random algorithm generated many

0

2

4

6

8

10

0.5 0.4 0.3 0.2 0.1

N
u

m
b

er
 o

f
H

IT
s

(*
1

0
3
)

Likelihood Threshold

Random
DFS-based
BFS-based

Approximation
Two-tiered

0

1

2

3

4

5

6

7

0.5 0.4 0.3 0.2 0.1

N
u

m
b

er
 o

f
H

IT
s

(*
1

0
3
)

Likelihood Threshold

Random
DFS-based
BFS-based

Approximation
Two-tiered

(a) Restaurant (b) Product
Figure 10: Comparison of the number of cluster-
based HITs for various likelihood thresholds
(cluster-size=10).

more cluster-based HITs than the two-tiered approach. For
example, on the Product dataset, the random algorithm gen-
erated 6422 HITs with threshold 0.1, while the two-tiered
approach generated only 2033 HITs.

Next we compare two-tiered approach with the baseline
algorithms for various cluster-size thresholds. We varied
the threshold from 5 to 20 on the Restaurant and Product
datasets, and compared the number of cluster-based HITs
generated by different approaches. Figure 11 shows the re-
sults with likelihood threshold = 0.1. We can see that for
all cluster-size thresholds tested, our two-tiered approach
generated the minimum number of cluster-based HITs. For
example, on the Restaurant dataset the two-tiered approach
generated 1.9 to 2.3 times fewer cluster-based HITs than the
best baseline algorithm.

0

10

20

30

40

5 10 15 20

N
u

m
b

er
 o

f
H

IT
s

(*
1

0
3
)

Cluster-size Threshold

Random
DFS-based
BFS-based

Approximation
Two-tiered

0

5

10

15

20

5 10 15 20

N
u

m
b

er
 o

f
H

IT
s

(*
1

0
3
)

Cluster-size Threshold

Random
DFS-based
BFS-based

Approximation
Two-tiered

(a) Restaurant (b) Product

Figure 11: Comparison of the number of cluster-
based HITs for various cluster-size thresholds (like-
lihood threshold=0.1).

7.3 Entity-Resolution Techniques
In this section, we compare the hybrid human-machine

workflow with existing entity resolution techniques. We use
two metrics to evaluate the result quality: (1) precision is
the percentage of correctly identified matching pairs out of
all pairs identified as matches; (2) recall is the percentage
of correctly identified matching pairs out of all matching
pairs in the dataset. As more matches are identified, recall
increases while precision potentially decreases.

We show our results as precision-recall curves [4], gener-
ated as follows. We assume the result of an entity-resolution
technique is a ranked list of pairs of records, where the list is
sorted based on the decreasing order of the likelihood that a
pair of records match. In the list, the first n pairs are iden-
tified as matching pairs. To plot the precision-recall curve,
we vary n and plot the precision vs. the recall.

We implemented the following entity-resolution techniques.

simjoin: This is the machine-based technique used by our
hybrid human-machine workflow (see Section 7.1).

1491

0

10
20

30
40

50

60
70

80
90

100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n
 (

%
)

Recall (%)

simjoin
SVM

hybrid
hybrid(QT)

0

10
20

30
40

50

60
70

80
90

100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n
 (

%
)

Recall (%)

simjoin
SVM

hybrid
hybrid(QT)

(a) Restaurant (b) Product

Figure 12: Comparing hybrid human-machine work-
flow with existing machine-based techniques.

SVM: This is a state-of-the-art learning-based technique.
First, we computed a feature vector for each pair of records.
For the Restaurant dataset, we chose two similarity func-
tions, edit distance and cosine similarity, adopted by [18],
and computed their values on four attributes to obtain a
8-dimensional feature vector; For the Product dataset, we
chose the same two similarity functions and computed their
values on the Name attribute to obtain a 2-dimensional fea-
ture vector. Next we trained a classifier on 500 pairs that
were randomly selected from the pairs whose Jaccard sim-
ilarities were above 0.1 (Note that the training pairs were
sampled 10 times, and we report the average performance
here). Finally, SVM returned a ranked list of the remaining
pairs sorted based on the likelihood given by the classifier [4].
hybrid: Our hybrid human-machine workflow first uses simjoin
to obtain a set of pairs based on a specified threshold, and
then verifies these pairs by using the cluster-based HITs
generated by the two-tiered approach with k = 10. For
the Restaurant dataset, simjoin returned 2004 pairs (102
matching pairs, 96.2% recall) based on the specified thresh-
old 0.35, and the two-tiered approach generated 112 cluster-
based HITs. On the Product dataset, simjoin returned 8315
pairs (1,011 duplicate pairs, 92.2% recall) based on the spec-
ified threshold 0.2, and the two-tiered approach generated
508 cluster-based HITs. We posted these HITs on AMT
and replicated each HIT into three assignments. Thus, we
spent 112 ∗ 3 ∗ 0.025 = $8.4 on the Restaurant dataset, and
508 ∗ 3 ∗ 0.025 = $38.1 on the Product dataset. Finally, the
hybrid human-machine workflow returned a ranked list of
the pairs sorted based on the results of the crowd.

One detail we need to mention is the way we combined the
answers from the three different assignments for each HIT.
A simple technique would be to average the three responses
for each HIT, but this approach is susceptible to spammers.
Instead we adopted the EM-based algorithm [9], which has
been shown to be effective in previous work [16,19].

We first compare hybrid with simjoin and SVM on the
Restaurant and Product datasets. Figure 12 shows the re-
sults. In the figure, hybrid and hybrid(QT) respectively de-
note the hybrid workflow with and without a qualification
test. For the Restaurant dataset, we can see that hybrid and
hybrid(QT) achieve the same quality as SVM. This indicates
that the hybrid human-machine workflow based on a simple
non-learning based technique (i.e. simjoin) can have a com-
parable performance to a sophisticated learning based tech-
nique (i.e. SVM). On the Product dataset, we can see that
hybrid and hybrid(QT) achieved significantly better quality
than simjoin and SVM. This indicates that for datasets for
which the machine-based techniques were unable to perform
well, a hybrid human-machine workflow still can achieve
very high quality.

Note that to further improve the recall of the hybrid work-
flow, we can specify a smaller likelihood threshold thereby
asking the crowd to perform more HITs. For example, in
Figure 12(b), hybrid and hybrid(QT) can achieve at most
92.2% recall. In contrast, as shown in Table 2(b), our hy-
brid workflow, if used with a likelihood threshold of 0.1,
could achieve up to 99.4% recall at the cost of crowdsourc-
ing 37, 641 pairs.

Next we compare hybrid with hybrid(QT). The results in
Figure 12 show that adding a qualification test can in fact
help to improve the result quality. There are mainly two
reasons for this. First, a qualification test can weed out
spammers since they are very likely to fail the test. Second,
is that a qualification test can force workers to read our in-
structions more carefully. However, while the qualification
test can improve quality, this improvement may come at a
steep cost in terms of latency. For the Restaurant dataset,
hybrid and hybrid(QT) required 1.3 hours and 1.6 hours re-
spectively to complete 112 HITs; on the Product dataset,
hybrid and hybrid(QT) required 4.5 hours and 19.9 hours re-
spectively to complete 508 HITs.

7.4 Pair-based vs. Cluster-based HITs
Having shown the benefits of hybrid Entity Resolution

compared to both machine-based and human-based meth-
ods, we now turn to examining the relative performance
of pair-based vs. cluster-based HITs. As described in Sec-
tion 6, the benefit of the cluster based approach in terms of
number of comparisons depends on the number of matching
pairs in the data set. Thus, in this comparison, in addi-
tion to the Product data set used previously, we also use an
additional dataset we created called Product+Dup that has
more matching pairs than the datasets used in the previous
experiences.

We created the Product+Dup by randomly selecting 100
records from the Product dataset, and then adding x match-
ing records for each base record, where x is an integer ran-
dom variable uniformly distributed on [0, 9]. Matches were
generated by randomly swapping two tokens in the base
record. Product+Dup has 157, 641 pairs of records, among
which 1713 pairs are matches.

We generated pair-based and cluster-based HITs using a
likelihood threshold of 0.2. We set the cluster size (k = 10),
which we denote by C10. In order to keep cost constant
across the two methods, we created pair-based HITs that
contained enough pairs so that the number of HITs gen-
erated for both methods was the same. For the Product
dataset, there were 8315 pairs that needed to be crowd-
sourced, resulting in 508 cluster-based HITs. In order to
generate the same number of pair-based HITs, we needed
to generate pair-based HITs containing 8315

508
= 16 pairs on

average, denoted by P16. Similarly, for the Product+Dup
dataset, there were 3401 pairs that needed to be crowd-
sourced, resulting in 120 cluster-based HITs, and 120 pair-
based HITs, containing (3401

120
= 28) pairs on average, de-

noted by P28.
We first compare the median completion time per assign-

ment between pair-based HITs and cluster-based HITs. Fig-
ure 13 shows the results. QT represents the experimental
results with a qualification test. We can see that the time
to complete a single HIT was lower for the cluster-based
HITs than for the pair-based HITs in these experiments.
For the Product dataset, Figure 13(a), a cluster-based HIT

1492

 0

 30

 60

 90

 120

P16 C10 P16 (QT) C10 (QT)

S
ec

o
n

d
s

 0

 30

 60

 90

 120

P28 C10 P28 (QT) C10 (QT)

S
ec

o
n

d
s

(a) Product (b) Product+Dup

Figure 13: Comparison of median completion time
per assignment between a pair-based HIT and a
cluster-based HIT.

 0

 300

 600

 900

 1200

 1500

P16 C10 P16 (QT) C10 (QT)

M
in

u
te

s

 0

 100

 200

 300

 400

P28 C10 P28 (QT) C10 (QT)

M
in

u
te

s

(a) Product (b) Product+Dup
Figure 14: Comparison of the time of completing all
pair-based HITs and all cluster-based HITs.

consumed about 15% less time than a pair-based HIT. The
difference was more dramatic for the Product+Dup dataset,
which contains more matching pairs.

However, the results are somewhat different when con-
sidering the total time taken to receive all of the results
(rather than a single HIT). These results are shown in Fig-
ure 14. Surprisingly, for the Product dataset, pairs-based
HITs were completed earlier. We find the pair-based HITs
attracted more workers. This may be due to the unfamiliar
interface of cluster-based HITs that makes workers feel that
it is harder to complete. Since we did these experiments
on AMT, we did not have specifically trained workers who
were familar with the cluster-based interface. For the Prod-
uct+Dup dataset, however, the efficiency of cluster-based
HITs in the presence of more matches led to advantages in
overall completion time as well. Recall that pair-based HITs
containing on average 28 pairs were required to produce the
same number of HITs as the cluster-based approach, com-
pared to only 16 for the Product dataset. Since we kept
the price per HIT constant, fewer workers were attracted to
perform the pair-based HITs in this case.

0

10
20

30
40

50

60
70

80
90

100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

 (
%

)

Recall (%)

P16
C10

P16 (QT)

C10 (QT)

80

85

90

95

100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

 (
%

)

Recall (%)

P28
C10

P28 (QT)

C10 (QT)

(a) Product (b) Product+Dup
Figure 15: Comparison of the quality of pair-based
HITs and cluster-based HITs.

Finally, Figure 15 shows that the result quality for pair-
based HITs and cluster-based HITs was similar in these ex-
periments.

8. RELATED WORK
Entity resolution is a critical task for data integration and

cleaning. It has been studied extensively for several decades
(see [11] for a survey). Some existing work has investigated
how to benefit from human interaction. Sarawagi et al. [24]
proposed an entity-resolution method using active learning,
which allows a user to label a training set interactively. They
have shown the method can significantly reduce the size of
the training set needed to achieve high accuracy. Arasu et
al. [1] proposed another active-learning approach which is
more scalable to large datasets and is able to give proba-
bilistic guarantees on the quality of the results. Jeffery et
al. [17] studied user feedback in pay-as-you-go data integra-
tion systems. In such systems, there exist some candidate
duplicate pairs of elements (e.g. attribute names or values)
that require user feedback for verification. They proposed a
decision-theoretic approach to determine the order in which
these pairs should be verified. McCann et al. [21] studied
schema matching in online communities. They generated
different types of questions to ask community members, and
derived schema-matching results from the answers of these
questions.

Recently, crowdsourcing has attracted significant atten-
tion in both the industrial and academic communities
(see [10] for a recent survey). Recent projects in the
database community aim to embed crowdsourcing into
database query processing. Franklin et al. [12,13] extended
relational database query language SQL to CrowdSQL by
enabling crowd-based operators, and built CrowdDB, a re-
lational query processing system based on CrowdSQL. Mar-
cus et al. [19] integrated SQL with crowd-based user defined
functions (UDFs), and proposed Qurk, a declarative work-
flow management system. Parameswaran et al. [22] pre-
sented Deco, a database system for declarative crowdsourc-
ing. In addition, there are many hybrid human-machine
systems being developed outside of the database commu-
nity. CrowdSearch [27] is an image searching system, that
combines automated image search with real-time human val-
idations of search results. Solyent [3] is a word proces-
sor that utilizes crowd workers to shorten, proofread, and
edit documents. Although there are many studies in crowd-
sourcing, to the best of our knowledge, no existing work
has explored how to improve entity resolution using hybrid
human-machine techniques combining a generic microtask
crowdsourcing platform with machine-based techniques.

There are also some studies on blocking which consider
partitioning of a table of records to maximize matching
record pairs co-occurring in given partitions [7]. Although
our cluster-based HIT generation problem is a form of block-
ing, it differs from the typical blocking problem. Firstly,
the fact that our block size is constrained by what people
can do is different than what determines block size typically
(which is that beyond a certain point, increasing the block
size does not reduce the complexity). Secondly, since the
financial cost of human comparisons is driven by the num-
ber of tasks (i.e., blocks), our goal is to minimize number of
blocks of the given size, which is a different objective than
that of previous work.

9. CONCLUSION AND FUTURE WORK
In this paper we have studied the problem of crowdsourc-

ing entity resolution. We described how machine-only ap-
proaches often fall short on quality, while brute force people-

1493

only approaches are too slow and expensive. Thus, we pro-
posed a hybrid human-machine workflow to address this
problem. In the context of this hybrid approach, we in-
vestigated pair-based and cluster-based HIT generation. In
particular, we formulated the cluster-based HIT generation
problem, and showed that it is NP-Hard. We then de-
vised a heuristic two-tiered approach to solve this prob-
lem. We described this method, and presented the results
of extensive experiments on real data sets using the AMT
platform. The experiments show that our hybrid approach
achieves both good efficiency and high accuracy compared
to machine-only or human-only alternatives. In particular,
the results indicated that (1) the two-tiered approach gener-
ated fewer cluster-based HITs than existing algorithms; (2)
hybrid human-machine workflow significantly reduced the
number of HITs compared to human-based techniques, and
achieved higher quality than the state-of-the-art machine-
based techniques; and (3) the cluster-based HITs can pro-
vide lower latency than a pair-based approach, particularly
in the presence of many matching records, but that the sim-
plicity of the pair-based interface seemed to be appealing to
AMT workers.

Our work represents an initial approach towards hybrid
human-machine entity resolution. There are many further
research directions to explore. First of all, we were surprised
that some AMT workers preferred to do the relatively large
pair-based tasks over the much smaller cluster-based tasks,
even though the price paid for them was identical. We be-
lieve that this could be due in part to worker’s lack of famil-
iarity with the cluster-based interface, which if true, raises
the possibility that different approaches could have very dif-
ferent performance when applied to experienced vs. novice
crowds. There are also many user interface improvements
that could be made to both the pair-based and cluster-based
interfaces, which could have dramatic effects on cost, quality
and latency.

Another issue to be addressed is that of scaling to much
larger datasets. Our approach utilizes machine-based tech-
niques to remove dissimilar pairs. However, for a data set
with millions of records, there will be a large number of re-
maining pairs need to be verified by the crowd. Therefore,
we need to explore how to make a better use of machine-
based techniques to further offload relatively expensive crowd
resources. A related issue is the development of a budget-
based approach to hybrid entity resolution. Users may wish
to trade off cost, quality and latency, and the development
of tools and algorithms to facilitate such tradeoffs is a deep
research challenge. Finally, we would like to extend these
techniques to take privacy into consideration. Sometimes,
the data to be integrated is confidential, so other techniques
will be required to allow crowds to process the data.

Acknowledgements. This research is supported in part by
NSF CISE Expeditions award CCF-1139158, gifts from Amazon
Web Services, Google, SAP, Blue Goji, Cisco, Cloudera, Eric-
sson, General Electric, Hewlett Packard, Huawei, Intel, Mark-
Logic, Microsoft, NetApp, Oracle, Quanta, Splunk, VMware and
by DARPA (contract #FA8650-11-C-7136).

Jianan Wang and Jianhua Feng were partly supported by
the National Natural Science Foundation of China under Grant
No. 61003004, the National Grand Fundamental Research 973
Program of China under Grant No. 2011CB302206, a project
of Tsinghua University under Grant No. 20111081073, and the
“NExT Research Center” funded by MDA, Singapore, under the
Grant No. WBS:R-252-300-001-490.

10. REFERENCES
[1] A. Arasu, M. Götz, and R. Kaushik. On active learning of

record matching packages. In SIGMOD Conference, pages
783–794, 2010.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In WWW, pages 131–140, 2007.

[3] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S.
Ackerman, D. R. Karger, D. Crowell, and K. Panovich. Soylent:
a word processor with a crowd inside. In UIST, pages 313–322,
2010.

[4] M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In KDD, pages
39–48, 2003.

[5] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator
for similarity joins in data cleaning. In ICDE, page 5, 2006.

[6] P. Christen. Febrl: a freely available record linkage system with
a graphical user interface. In HDKM, pages 17–25, 2008.

[7] P. Christen. A survey of indexing techniques for scalable record
linkage and deduplication. IEEE Trans. Knowl. Data Eng.,
99(PrePrints), 2011.

[8] V. Chvatal. A greedy heuristic for the set-covering problem.
Mathematics of Operations Research, 4(3):pp. 233–235, 1979.

[9] A. P. Dawid and A. M. Skene. Maximum likelihood estimation
of observer error-rates using the em algorithm. Applied
Statistics, 28(1):20–28, 1979.

[10] A. Doan, R. Ramakrishnan, and A. Y. Halevy. Crowdsourcing
systems on the world-wide web. Commun. ACM, 54(4):86–96,
2011.

[11] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans. Knowl.

Data Eng., 19(1):1–16, 2007.

[12] A. Feng, M. J. Franklin, D. Kossmann, T. Kraska, S. Madden,
S. Ramesh, A. Wang, and R. Xin. Crowddb: Query processing
with the vldb crowd. PVLDB, 4(12):1387–1390, 2011.

[13] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. Crowddb: answering queries with crowdsourcing. In
SIGMOD, pages 61–72, 2011.

[14] P. C. Gilmore and R. E. Gomory. A linear programming
approach to the cutting-stock problem. Operations Research,
9(6):849–859, 1961.

[15] O. Goldschmidt, D. S. Hochbaum, C. A. J. Hurkens, and
G. Yu. Approximation algorithms for the k-clique covering
problem. SIAM J. Discrete Math., 9(3):492–509, 1996.

[16] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management
on amazon mechanical turk. In Proceedings of the ACM
SIGKDD Workshop on Human Computation, pages 64–67,
2010.

[17] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy. Pay-as-you-go
user feedback for dataspace systems. In SIGMOD Conference,
pages 847–860, 2008.

[18] H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity
resolution approaches on real-world match problems. PVLDB,
3(1):484–493, 2010.

[19] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller.
Human-powered sorts and joins. PVLDB, 5(1):13–24, 2011.

[20] A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced
databases: Query processing with people. In CIDR, pages
211–214, 2011.

[21] R. McCann, W. Shen, and A. Doan. Matching schemas in
online communities: A web 2.0 approach. In ICDE, pages
110–119, 2008.

[22] A. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis, and
J. Widom. Deco: Declarative crowdsourcing. Technical report,
Stanford University. http://ilpubs.stanford.edu:8090/1015/.

[23] A. J. Quinn and B. B. Bederson. Human-machine hybrid
computation. In Position paper for CHI 2011 Workshop On
Crowdsourcing And Human Computation, 2011.

[24] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In KDD, pages 269–278, 2002.

[25] J. M. Valério and D. Carvalho. Exact solution of cutting stock
problems using column generation and branch-and-bound.
International Transactions in Operational Research,
5(1):35–44, 1998.

[26] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient
similarity joins for near-duplicate detection. ACM Trans.

Database Syst., 36(3):15, 2011.

[27] T. Yan, V. Kumar, and D. Ganesan. Crowdsearch: exploiting
crowds for accurate real-time image search on mobile phones.
In MobiSys, pages 77–90, 2010.

1494

