
ALAE: Accelerating Local Alignment with Affine Gap
Exactly in Biosequence Databases

Xiaochun Yang
College of Information Science

and Engineering
Northeastern University
Liaoning 110819 China

yangxc@mail.neu.edu.cn

Honglei Liu
College of Information Science

and Engineering
Northeastern University
Liaoning 110819 China

liuhonglei@gmail.com

Bin Wang
College of Information Science

and Engineering
Northeastern University
Liaoning 110819 China

binwang@mail.neu.edu.cn

ABSTRACT

We study the problem of local alignment, which is finding pairs of

similar subsequences with gaps. The problem exists in biosequence

databases. BLAST is a typical software for finding local align-

ment based on heuristic, but could miss results. Using the Smith-

Waterman algorithm, we can find all local alignments in O(mn)
time, where m and n are lengths of a query and a text, respec-

tively. A recent exact approach BWT-SW improves the complexity

of the Smith-Waterman algorithm under constraints, but still much

slower than BLAST. This paper takes on the challenge of designing

an accurate and efficient algorithm for evaluating local-alignment

searches, especially for long queries. In this paper, we propose an

efficient software called ALAE to speed up BWT-SW using a com-

pressed suffix array. ALAE utilizes a family of filtering techniques

to prune meaningless calculations and an algorithm for reusing

score calculations. We also give a mathematical analysis and show

that the upper bound of the total number of calculated entries using

ALAE could vary from 4.50mn0.520 to 9.05mn0.896 for random

DNA sequences and vary from 8.28mn0.364 to 7.49mn0.723 for

random protein sequences. We demonstrate the significant perfor-

mance improvement of ALAE on BWT-SW using a thorough ex-

perimental study on real biosequences. ALAE guarantees correct-

ness and accelerates BLAST for most of parameters.

1. INTRODUCTION
Similar to web applications, another area that has recently wit-

nessed a rapid surge in the amount of data being produced is the

biosequence search. In this area, scientists often want to compare

a biosequence against a collection of known sequences. General-

ly, two biologically related sequences appearing dissimilar in their

entirety may contain subsequences that are highly similar.

Local alignment is a common technique for finding a pair of

highly similar substrings from two given sequences, respectively.

In querying biological sequences, search tools often distinguish

between short queries and long queries [9]. For example, short

queries (read) are used to find the same structural or functional

subunits (motifs) from very different protein families or genomes;

large genomes or chromosomes, however, need to be compared in

comparative genomics, such as aligning mouse genomes against

human genomes [7, 12]. Generally, each biosequence can have the

scale ranging from a few hundred million characters to a few billion

characters and the length of a long query could be from a few thou-

sand characters to ten million characters [7, 8]. Efficiently aligning

long queries against biosequences poses a competitive challenge to

the development of alignment tools.

A variety of computational algorithms have been developed for

finding local alignments, among which BLAST (Basic Local Align-

ment Search Tool) [1, 2] and the Smith-Waterman algorithm [13]

are typical ones.

BLAST [1] is a popular tool for identifying the local alignments

between sequences. It decomposes an input query into a set of

grams and identifies matches against the database using grams of

the query. A local alignment is created by examining the left and

right subsequences from these matches. Although this heuristic

approach suggests a time-optimized model, it does not guarantee

to find all alignment results that meet the specified score criterion.

The Smith-Waterman algorithm [13] is a well-known dynam-

ic programming algorithm that could accurately identify the best

local alignments between a query sequence and sequences in the

database. It compares fragments of arbitrary lengths between two

sequences and supports a flexible scoring scheme by allowing dif-

ferent scores for different types of operations, including substitu-

tion, insertion, and deletion. The score of an alignment is a sum-

mation of the score of each operation involved in the alignment,

which makes the algorithm sensitive and ensures an optimal align-

ment of the sequences. However, this also has the effect that the

method is very slow and CPU intensive. A recent approach called

BWT-SW [8] is an exact method that improves the complexity of

the Smith-Waterman algorithm under limited scoring scheme con-

straints, but still much slower than the very efficient approximate

method BLAST.

This paper takes on the challenge of designing an efficient algo-

rithm for evaluating local-alignment searches exactly. We improve

the general dynamic programming algorithm by exploiting a fami-

ly of filtering techniques and reusable calculations. The challenges

and our contributions are as follows.

(1) How to avoid calculating most of entries in dynamic pro-

gramming matrixes without impairing the accuracy of the align-

ment results? Calculating entries in matrixes is time consuming,

especially when the text and query are long. We analyze the prop-

erty of entries in the matrixes and propose a family of filtering tech-

niques to avoid meaningless calculations in Section 3. Finding that

there are many duplicate calculations in each matrix, we propose

an algorithm for reusing those duplicates in Section 4.

1507

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 11
Copyright 2012 VLDB Endowment 2150-8097/12/07... $ 10.00.

(2) How to satisfy the space requirement of large biosequences

for both the text and the query? We consider an in-memory algo-

rithm and use the recent results on compressed suffix array to make

our approach (called ALAE) doable in memory. The idea is similar

to BWT-SW, but we adapt it to fit for our filtering techniques and

reusing approaches (see Section 5).

(3) What is the upper bound of the number of calculated en-

tries? We give a mathematical analysis and prove that ALAE could

provide a time efficiency guarantee across representative ranges

of user specified schemes in Section 6. The upper bound of the

total number of calculated entries using ALAE could vary from

4.50mn0.520 to 9.05mn0.896 for random DNA sequences and vary

from 8.28mn0.364 to 7.49mn0.723 for random proteins sequences.

In addition, in Section 7 we show experimental results on real

biosequence databases including DNAs and proteins to demonstrate

the space and time efficiency of our ALAE approach. We show that

ALAE makes a significant improvement of performance on BWT-

SW for all scoring schemes and thresholds. ALAE also accelerates

BLAST for most of scoring schemes and guarantees correctness.

2. PRELIMINARY
Let Σ be the alphabet of characters in biosequences. For a se-

quence S of the characters in Σ, we use |S| to denote its length,

S[i] to denote its i-th character (starting from 1), and S[i, j] to de-

note the subsequence from its i-th character to its j-th character.

The typical length of a genomic sequence is from millions to a few

billion. In this section, we give the definition of local alignment.

2.1 Local Alignment with Affine Gap Penalty
Before formally defining local alignment, we present the wide-

ly used scoring scheme for biosequences. In this scoring scheme,

each identical mapping has a positive score sa, whereas a substitu-

tion of one character has a negative score sb, and a gap (insertion

of r characters or deletion of r characters) has an affine gap penal-

ty represented as a negative score sg + r × ss, where sg is a gap

opening penalty represented as a negative score and ss is a gap

extension penalty represented by another negative score for each

insertion or deletion. We use 〈sa, sb, sg, ss〉 to represent a scor-

ing scheme and use the default scoring scheme 〈1,−3,−5,−2〉 in

both BLAST and BWT-SW to show examples in this paper, which

means sa = 1, sb = −3, sg = −5, and ss = −2.

The similarity between two sequences S1 and S2 is defined as

the value of the alignment of S1 and S2 that maximizes total align-

ment score, denoted sim(S1, S2). For example, let S1 = AAACG

and S2 = AACCG, then the optimal alignment of S1 and S2 is to

replace the third character A of S1 with the third character C of S2,

i.e. sim(S1, S2) = 1× 4 + (−3) = 1.

Local alignment problem. Let T be a text sequence of n char-

acters and P be a query sequence of m characters. For any 1 ≤
πt ≤ n and 1 ≤ πp ≤ m, compute the largest similarity between

T [x, πt] and P [y, πp] (1 ≤ x ≤ πt, 1 ≤ y ≤ πp), i.e. the maxi-

mum alignment score of any substring of T ending at position πt

and any substring of P ending at position πp. For biological ap-

plications, we are only interested in those substring pairs if their

alignment scores attain a threshold H1.

One naive approach to find all of their local alignments is to ex-

amine all substrings of T and align them one by one with P . Obvi-

ously, we want to avoid aligning P with the same substring at dif-

ferent positions of the text T . A natural solution is to build a suffix

trie T of the text T as reported in [8]. Then, distinct substrings of T

1
H could be determined indirectly using user specified expectation value

E-value. We discuss it in Section 7.

are represented by different paths from the root to different nodes

in the suffix trie. Let pu be a path from the root to a node u in the

suffix trie T . We align each substring represented by pu against the

query pattern P .

Given a data sequence T , a query pattern P , and a threshold

H , Algorithm 1 shows the BASIC algorithm for answering local

alignment using the suffix trie T of T . According to the problem

definition, we use A(i, j) to represent the alignment of T [x, i] and

P [y, j] with largest alignment score (1 ≤ x ≤ i, 1 ≤ y ≤ j). The

algorithm first initializes the largest score A(i, j).score = 0 for

each alignment A(i, j), and the starting position A(i, j).pos = 0
(line 1). Let p be a suffix path from the root to a leaf node (line

2). For each substring X represented by p, the BASIC algorithm

searches prefix X[1, i] and finds all alignment pairs (X[1, i], P [y, j]
whose similarities are greater than H (lines 3 – 5). Each prefix

X[1, i] corresponds with substrings at different positions t1, . . . , tk,

which means that the alignment scores of A(t1 + i − 1, j), . . .,
A(tk + i− 1, j) have the same score as sim(X[1, i], P [y, j]). For

all alignments of X[1, i] and P [y, j] with the same end position

t+i in T and j in P (t1 ≤ t ≤ tk), we choose the largest alignment

score among them. Let t be the starting position of the alignment

with largest score. The algorithm sets A(t + i, j).pos = t (lines 6

– 10). It finally returns all alignments with positive scores that are

greater than or equal to the threshold H (line 11).

Algorithm 1: BASIC – Calculating local alignments.

Input: A suffix trie T of text T with n characters, a query pattern P
with m characters, and a score threshold H;

Output: End position pairs of local alignments;
1 Initialize each alignment A(i, j).score = 0 and A(i, j).pos = 0

(1≤i≤n, 1≤j≤m);
2 foreach suffix path p from the root to a leaf node in T do

3 let X be the same substring representing by p;
4 foreach prefix of X with i characters starting at positions

t1, . . . , tk do

5 align X[1, i] against P and find all alignment pairs such that
sim(X[1, i], P [y, j]) ≥ H (1≤y≤j≤m);

6 foreach above alignment pair (X[1, i], P [y, j]) do

7 foreach starting position th of X[1, i] (t1≤th≤tk) do

8 if sim(X[1, i], P [y, j]) > A(th+i, j).score then

9 A(th + i, j).score = sim(X[1, i], P [y, j]);
10 A(th + i, j).pos = th;

11 return alignments A(i, j) if A(i, j).score ≥ H (1≤i≤n, 1≤j≤m);

2.2 Dynamic Programming for Answering Lo
cal Alignment Exactly

Given a query pattern P , for each substring X represented by a

suffix path p from the root to a leaf node, we need to align each pre-

fix X[1, i] (1≤i≤|X|) against P . Let MX(i, j) be the best align-

ment score of X[1, i] and any substring of P ending at position j.

We allow that any substring P [y, j] (1≤y≤j) is a potential match.

We use an auxiliary score Ga(i, j) to store the best alignment score

under the restriction that X[i] is aligned with a gap, and use anoth-

er auxiliary score Gb(i, j) to store the best alignment score under

the restriction that P [j] is aligned with a gap.

Initial condition:
MX(0, j) = 0 for 0 ≤ j ≤ m.
MX(i, 0) = sg + i× ss for 1 ≤ i ≤ d.
Ga(0, j) = −∞ for 0 ≤ j ≤ m.
Gb(i, 0) = −∞ for 1 ≤ i ≤ d.

1508

Recurrences (for i > 1, j > 1)

MX(i, j) = max

MX(i−1, j−1) + δ(X[i], P [j]),
Ga(i, j),
Gb(i, j)

, where

δ(X[i], P [j]) =

{

sa if X[i] equals to P [j],
sb otherwise.

Ga(i, j) = max{Ga(i−1, j) + ss,MX(i−1, j) + (sg + ss)}.
Gb(i, j) = max{Gb(i, j−1) + ss,MX(i, j−1) + (sg + ss)}.

1 2 3 4 5

G C T A G

−∞ −∞ −∞ −∞ −∞ −∞

0 0 0 0 0 0

−7 −7 −7 −7 −7

1 G −∞ −7 −14 1 −6 −3 −8 −3 −10 −3 −10 1

−6 −9 −9 −9 −6

2 C −∞ −9 −16 −6 −13 2 −5 −5 −7 −6 −7 −6

−8 −5 −11 −11 −8

3 T −∞ −11 −18 −8 −15 −5 −12 3 −4 −4 −6 −6

−10 −7 −4 −11 −10

4 A −∞ −13 −20 −10 −17 −7 −14 −4 −11 4 −3 −3

Figure 1: An example of calculating local alignment score (bold

values represent MX(i, j)).

Fig. 1 shows an example of the dynamic programming of align-

ing a substring X=GCTA against a query P=GCTAG. For example,

MX(4, 3) = max{MX(3, 2) + δ(X[4], P [3]), Ga(4, 3), Gb(4, 3)}.

Since X[4] does not equal to P [3], δ(X[4], P [3]) = sb = −3.

Ga(4, 3) = max{Ga(3, 3)+ss,MX(3, 3)+(sg+ss)} = max{−11
+(−2), 3 + (−5− 2)} = −4 and Gb(4, 3) = max{Gb(4, 2)+ ss,

MX(4, 2) + (sg + ss)} = max{−17 + (−2),−7 + (−5− 2)} =

−14. Therefore, MX(3, 4) = max{−5 + (−3),−4,−14} = −4.

The variables used in this paper are shown in Table 1.

Table 1: List of variables and their notations.
Variables Notations

T A sequence (a.k.a. a text).
P A query pattern.
n Length of T .
m Length of P .
X A substring represented by a suffix path from the root to a

leaf node in the suffix trie of T .
MX A matrix for a substring X of T and a query P .

MX(i, j) Best alignment score of X[1, i] and P [y, j], where 1≤y≤j.
A(i, j) The alignment with the largest alignment score of T [x, i]

and P [y, j], where 1≤x≤i, 1≤y≤j. We use A(i, j).score
to express the largest alignment score, and A(i, j).pos to
express the starting position x in T .

In the remaining of this paper, we will focus on local alignment

on whole texts only. Notice that, the techniques can be immedi-

ately applied to collections of sequences: given all the sequences

T1, . . . , Tn in the database, we concatenate them into a single se-

quence T . A local alignment query is then performed directly on

the sequence T .

2.3 Suffix Trie and Compressed Suffix Array

Suffix Trie. Let T be a text with n characters. The suffix trie of the

text T is a trie whose edges are labeled with strings, such that each

path from the root of the trie to a leaf represents exactly one suffix

of T . Each leaf node stores the starting location of the correspond-

ing suffix of T .

Compressed Suffix Array. Compressed suffix array [5] is a com-

bination of the Burrows-Wheeler compression algorithm [3] and

the suffix array [10]. In [3], Burrows and Wheeler propose a new

compression algorithm based on a reversible transformation, called

BWT, which transforms a text T into a new string that is “easy to

compress.” BWT appends a special symbol $ smaller than any oth-

er symbol of Σ at the end of T . Let the position of $ be n + 1.

For example, given a text T = GCTAGC, we append $ at the end of

T and get T ′ = GCTAGC$. Then the BWT transformation of T ′ is

CTGGA$C.

The suffix array SA[0, n] of T ′ is an array of indexes such that

SA[i] stores the starting position of the i-th lexicographically s-

mallest suffix. For example, SA of GCTAGC$ is {7, 4, 6, 2, 5, 1, 3}.

The space occupancy of the compressed suffix array is optimal in

an information-content sense.

The compressed suffix array can support effective searches for

arbitrary patterns [5]. Given a substring X , we can use the back-

ward search algorithm [6] to identify the SA range of X in O(|X|)
steps. In particular, it processes the last character c of X in the first

step. It looks at c as a string S. Let [i, j] be the SA range of S.

Then it processes the string xS by iteratively inserting one charac-

ter x before S in X . The backward search algorithm shows that

each step could be done in constant time. For any string X , if there

exists an SA range of X , say [i, j] in SA, the starting positions

of X in T can be found in SA[i], SA[i + 1], . . ., and SA[j]. For

instance, the SA range of a substring GC is [4, 5], then the starting

positions of GC in T are 5 and 1.

In Section 5 we show how to simulate traversals of a suffix trie

T using the compressed suffix array.

2.4 Related Work
There are a large amount of techniques on supporting local align-

ments, such as [4, 11, 13, 14].

The Smith-Waterman algorithm supports slow but formally cor-

rect local-alignment searches and guarantees users the optimal lo-

cal alignments between query and database sequences. It requires

O(nm) time complexity, which is a considerable disadvantage.

OASIS [11] employs a dynamic programming A*-search which

is driven by traversing a suffix tree index constructed on the database

sequences. It can accurately find local alignments and outperform-

s both BLAST and the Smith-Waterman algorithm only when the

query sequences are very short (less than 60 characters).

BWT-SW is a recently proposed exact method for finding all lo-

cal alignments. It uses a BWT index to emulate the suffix trie of T
and modifies the dynamic programming (i.e. the BASIC algorithm)

to allow pruning but without missing any results. BWT-SW travers-

es the suffix trie in preorder and provides an early-termination tech-

nique by ignoring all negative alignment scores. Each path from the

root to an intermediate node u represents multiple substrings of T .

It shows that for any a path from the root to an intermediate node

u, if the matrix indicates that there is not any substring of the query

pattern having a positive score when aligned with the path, then

BWT-SW can safely prune the subtree rooted at u away. Given the

fixed scoring scheme 〈1,−3,−5,−2〉, the expected running time

is O(mn0.628) for random strings and the total number of calculat-

ed entries is upper bounded by 69mn0.628. In addition, BWT-SW

requires that |sb| ≥ 3|sa|, which highly limits its usability.

Although BWT-SW improves the time complexity of the Smith-

Waterman algorithm under the constraint |sb| ≥ 3|sa|, it is still

much slower than the approximate method BLAST. By compar-

ing the Smith-Waterman and BWT-SW algorithms with BLAST

we find that BLAST gets notable differences in accuracy and speed

with the former two algorithms. However, BLAST is an approxi-

mate approach that could not guarantee to find all local alignments

even though BLAST is indeed accurate enough in most cases [8].

In this paper, we propose a new approach ALAE to find all align-

ments with a comparative speed.

1509

3. AVOIDING MEANINGLESS CALCULA

TIONS
Ideally, we hope to only calculate the alignment scores that can

generate the optimal alignments. For an entry whose alignment

score is impossible to be an optimal alignment score, we call it

meaningless, otherwise, we call it meaningful.

In this section, we propose a family of filtering techniques to

prune meaningless entries. In Section 3.1, we show that some en-

tries in a single matrix are meaningless and we propose local filter-

ing techniques to prune those meaningless ones. In Section 3.2, we

show that an entry in a matrix is meaningless if its alignment score

has been calculated in some other matrixes, and we propose global

filtering techniques across matrixes.

3.1 Local Filtering
We propose three local filtering techniques to prune meaningless

entries in a single matrix for a substring X and a query P .

3.1.1 Length Filtering

Given a query P and a score threshold H , the BASIC algorithm

aligns each substring represented by a suffix path against P . In this

section, we show that we only need to align substrings of T with

certain lengths against P .

THEOREM 1. Length filtering. Given a query P with m char-

acters, a substring X of T , and a score threshold H . The (i, j)-
entry of MX is meaningless if i does not satisfy the following con-

dition:

⌈H
sa

⌉ ≤ i ≤ max{m,m+ ⌊H − (sa×m+ sg)

ss
⌋}. (1)

We use Lmax to express the length upper bound max{m,m +

⌊H−(sa×m+sg)

ss
⌋}.

PROOF. Remind that MX(i, j) is the score of aligning X[1, i]
against a substring P ′ of P ending at position j in P . Let the length

of the substring P ′ be h.

When i≤h, there are at most i matches and the maximum pos-

sible score of MX(i, j) is sa×i. Since we are only interested in

MX(i, j)≥H , we get sa×i ≥ MX(i, j) ≥ H , i.e., ⌈ H
sa

⌉ ≤ i ≤ h.

When i>h, there are at most h matches and at least i − h gaps.

Therefore, the maximum possible score of MX(i, j) is sa×h +
sg + ss×(i − h). As we have mentioned above, we are only in-

terested in MX(i, j) ≥ H , we get sa×h + sg + ss×(i − h) ≥
MX(i, j) ≥ H . Since ss < 0, sa − ss > 0, and h ≤ m, we get

i ≤ sa+(sa−ss)×m−H

|ss| , i.e., h < i ≤ m+ ⌊H−(sa×m+sg)

ss
⌋.

Accordingly, i should be either in the interval [⌈ H
sa

⌉, h] or the

interval (h,m+ ⌊H−(sa×m+sg)

ss
⌋]. Thus, Equation 1 holds.

For example, given a text T=CTAGCTAG, a query P=GCTAC,

and let the threshold H = 3. We only need to consider substrings

of T with length in between 3 and 4.

3.1.2 Score Filtering

We could early terminate the calculation of a score MX(i, j)
if we know for any score MX(i′′, j′′) based on MX(i, j) (i′′ ≥
i, j′′ ≥ j), MX(i′′, j′′) is impossible to attain the threshold H .

THEOREM 2. Score filtering. For any substring X[1, i] start-

ing at position πt in T (1 ≤ πt ≤ n), the (i, j)-entry of MX is

meaningless if:

MX(i, j)≤ max

0,
H − (m− j)× sa − 1,
H − (min{Lmax, n− πt} − i)× sa − 1

.

PROOF. We are only interested in those alignments scores ≥H .

Let MX(i, j) be the score of X[1, i] and P [y, j] (1 ≤ y ≤ j).

(i) BWT-SW shows that MX(i, j) must be greater than 0. Let

MX(i′, j′) be the score of X[1, i′] and P [y, j′] (i′ ≤ i, j′ ≤
j). Assume MX(i′, j′)≤0, then the score of the alignment be-

tween X[i′+1, i] and P [j′+1, j] must be greater than or equal to

MX(i, j). According to the definition of local alignment problem

in Section 2, the alignment between X[1, i] and P [y, j] could not

be the best alignment, therefore, the (i, j)-entry in this matrix is

meaningless.

(ii) Now we consider an alignment score MX(i′′, j′′) in the ma-

trix MX . Let C be the alignment score of X[i+ 1, i′′] and P [j +
1, j′′], then MX(i′′, j′′) = MX(i, j) + C ≥ H . If MX(i, j) ≤
H −C − 1, then the alignment of X[1, i′′] and P [y, j′′] could not

be the answer, thus it is meaningless to calculate the (i, j)-entry.

As we know, the only way to increase an alignment score is by

a match. The largest possible value of C is (j′′ − j) × sa or

(min{Lmax, i
′′} − i) × sa since there are at most (j′′ − j) or

(min{Lmax, i
′′} − i) matches between X[i + 1, i′′] and P [j +

1, j′′]. As we know, the maximal j′′ is m and the maximal i′′ is n−
πt, then the upper bound of C is (m− j)×sa or (min{Lmax, n−
πt} − i) × sa. Therefore, when MX(i, j) ≤ H − C − 1 ≤
max{H−(m−j)×sa−1, H−(min{Lmax, n−πt}−i)×sa−1},

the (i, j)-entry of MX is meaningless.

For example, given a text T=CTAGCTAG. Let X=GCTA be a

substring of T , and let the threshold H = 3. Consider the matrix

MX in Fig. 1. All the entries with negative scores are meaningless.

The (1, 5)-entry is meaningless, since the lower bound of the score

for the 5-th column must be 3, but the calculated MX(1, 5) = 1.

The lower bound of the scores for the 4-th row is 3. Therefore,

among the 30 entries in Fig. 1, only four entries (1, 1), (2, 2),
(3, 3), and (4, 4) are meaningful according to score filtering.

3.1.3 Prefix Filtering

Consider a suffix path p in the suffix trie T of the text T . Let X
be the substring represented by the path p. We start from the first

character of X and align each prefix X[1, i] (1 ≤ i ≤ Lmax) in

the query P . According to score filtering, we are only interested in

positive alignment scores. According to the scoring scheme, only

an identical mapping has a positive score sa. Therefore, for an

alignment of X[1, i] and P [y, j], there must exist an integer q such

that X[1, q] exactly matches P [y, y + q − 1] (1 ≤ y ≤ m − q +
1) to make their alignment score large enough to counteract the

effect of a mismatch or a gap. Equation 2 defines the length value

q according to the scoring scheme.

q = ⌊min{|sb|, |sg + ss|}
sa

⌋+ 1. (2)

We call the substring X[1, q] q-prefix for the suffix path p. Based

on the observation above, we present prefix filtering in Theorem 3.

THEOREM 3. q-Prefix filtering. Let MX(i, j) be the alignment

score of X[1, i] and P [y, j] (1≤y≤j). The (i, j)-entry of MX is

meaningless if X[1, q] does not match P [y, y+q−1] exactly.

Furthermore, for a substring X of T , if we could not find an

exact match between X[1, q] and a substring of P , entries of the

whole matrix for X and P are meaningless. For instance, consid-

er a substring X=ACACAT and a query P=GCGTGTGA under the

scoring scheme 〈1,−3,−5,−2〉. All entries in the matrix for X
and P are meaningless since we could not find an exact match of

X[1, q] in P , where q = 4.

1510

In order to find the exact match of X[1, q] in P efficiently, we

build inverted lists of q-grams of P on the fly. We decompose P
into a set of q-grams by sliding a window of length q over the char-

acters of P . For each q-gram in P , we generate an inverted list of

its start positions in P . The time complexity of building inverted

lists is O(m).
According to Theorem 3, for each starting position πp of X[1, q]

in P , there must exist a fork area that entries outside of this fork

are meaningless. Fig. 2 shows the sketch of a fork. The rectangle

in the figure represents a matrix MX for X and P . Each fork in the

matrix consists of three regions: an exact match region (denoted

EMR), a no gap region (denoted NGR), and a gap region. We call

an entry (l, l + πp − 1) a first gap open entry (FGOE for short) if

the entry satisfies the following two conditions:

(i) MX(l, πp + l − 1) > |sg + ss|, and

(ii) for each i < l and j = πp + i− 1, MX(i, j) ≤ |sg + ss|.
An FGOE belongs to an NGR and it is a point switch from the

NGR to a gap region. From the FGOE (l, πp + l − 1), we need to

calculate another two extension entries (l, πp + l) and (l+1, πp +
l − 1). The shape of a gap region can be determined by a set of

extension entries. Each extension entry is represented by a concave

corner point such that its score is greater than |ss|.

N
G

R

 L
m

a
x

EM
R

Extension Entry

score > |ss|

FGOE: score > |ss+sg|

1

p

Gap

Region

1

q

l

Figure 2: Entries outside of fork areas are meaningless.

Given a fork starting from the entry (1, πp), an entry (i, j) be-

longs to its EMR if 1 ≤ i ≤ q and j = πp + i− 1. An entry (i, j)
belongs to its NGR if q < i ≤ l and j = πp + i− 1.

According to Theorem 3, for each entry (i, j) in an EMR, its

score MX(i, j) = i; for each entry (i, j) in an NGR, it is no need

to consider the auxiliary scores in Ga or Gb, so we can simplify the

recurrence function of MX(i, j) in Section 2.2 as follows:

MX(i, j) = MX(i− 1, j − 1) + δ(X[i], P [j]). (3)

3.2 Global Filtering
Basically, given a suffix trie T of text T with k paths, we need

to calculate k matrixes to align a substring represented by each suf-

fix path against the query pattern P . For each matrix, we need to

calculate entries inside its forks. A natural question is whether we

can safely avoid calculating a certain fork in a matrix based on the

results of calculated matrixes. The answer to this question is yes if

we could find a “good” order of calculations for suffix paths in T .

In this section, we first analyze the effect of a calculated matrix

and use bitwise operations to dynamically update and check mean-

ingless calculations. We then show there exists dominate relation-

ships between q-prefixes in T and observe that a fork area could be

safely pruned using q-prefix domination. We show how to find the

good order of calculations based on q-prefix domination and give a

space-efficient approach to do global filtering for a large text.

3.2.1 Meaningless Fork Areas

Let X ′ be a substring starting at position t in T and X be the suf-

fix of X ′ starting at position t+ i in T . We first consider the simple

case where both X ′ and X only appear once in T (see Fig. 3). Ac-

cording to the BASIC algorithm, we need to construct two matrixes

MX′ and MX . The following two cases show that calculating a

fork area starting from (1, j)-entry in MX is meaningless.

Case (1) : X[1, q] does not match P [j, j + q − 1]. According to

our analysis in Section 3.1.3, the (1, j)-entry of MX is mean-

ingless; or

Case (2) : X[1, q] matches P [j, j+q−1], and the alignment score

A(t+i, j).score ≥ sa. Since there is an identity mapping be-

tween X[1] and P [j], MX(1, j) must be equal to sa. When

the matrix MX′ makes A(t+i, j).score ≥ sa, we could ig-

nore calculating MX(1, j).

T X
X

t+it

P
jy

t+i

j

Figure 3: For the same alignment A(t + i′, j′), using MX′ can

produce higher score than using MX if MX′(i, j) ≥ sa, where

MX′(i, j) is associated with the alignment A(t+ i′, j′).

We extend the above analysis to the general scenario that X
might have multiple occurrences in T .

THEOREM 4. Let X be represented by the suffix path pu. Let

t1, . . . , tk be the starting positions of X . The (1, j)-entry of MX

is meaningless if the following two cases hold:

Case (1) : X[1, q] does not match P [j, j + q − 1]; or

Case (2) : X[1, q] matches P [j, j + q − 1], and each alignment

score A(th, j).score ≥ sa (1 ≤ h ≤ k).

Update and check meaningless calculations on-the-fly. According

to Theorem 4, we can avoid calculating the fork area starting from

the (1, j)-entry in the matrix MX . In order to do it, a simple way

is to construct an n×m boolean matrix G as follows. A (πt, πp)-
entry of G is 1 if A(πt, πp).score ≥ sa, otherwise, it is 0.

Consider a matrix MX and its (1, j)-entry. If there exists a sub-

string X ′ and MX′(i, j) ≥ sa, we construct a column vector z.

Let entries z[th + i − 1] be 1 (i ≥ 1, t1 ≤ th ≤ tk) and the

remaining entries be 0. The (1, j)-entry of MX is meaningless if

the bitwise AND operation between the j-th column of G and z
equals to z. Then the fork area starting from this (1, j)-entry does

not need to be calculated. If the above bitwise AND operation does

not equal to z, we update the j-th column of G by doing bitwise

OR operation between the j-th column of G and z. We repeat the

above process until all suffix paths have been processed.
For example, given a text T=GCTAGCTA. Let X ′=GCTA be a

substring of T . Suppose we have calculated the matrix shown in
Fig. 1 to align GCTA against the query P=GCTAG. Based on this
matrix MX′ , we generate the following boolean matrix G.

1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

8×5

For another substring X=CTAG, before constructing its matrix

MX , we find an exact match between X[1, q]=CTAG and P [2, 5].
We then check if the (1, 2)-entry of MX is meaningless. We con-

struct a column vector z = (0, 1, 0, 0, 0, 0, 0, 0) and make a bitwise

1511

AND operation between the second column of G and z. The result

of this bitwise AND operation equals to z, since X appears once in

the text T and it associates with one alignments A(1, 1). Therefore,

(1, 2)-entry of MX is meaningless.

3.2.2 Prune Meaningless Forks using qPrefix Dom
ination

The online approach in Section 3.2.1 requires n × m space to

store the matrix G, which is space consuming especially when both

the lengths of the text and the query are large. The question is

whether there exists a “good” order of calculations to avoid using

this matrix G. In this section, we show that the answer is yes.

Based on the analysis in Section 3.1.3, we know that each fork

must be started at an exact match between the q-prefix of X and a

substring of P . That is, given another substring X ′, for any fork in

MX′ , there must exist at least q entries with scores greater than or

equal to sa. We could use this property to define the order of the

calculations. We formally define this property below.

DEFINITION 1. Let p and p1, . . . , pk be suffix paths from the

root to leaf nodes in the suffix trie of T . Let Xq and Xq
1 , . . . , X

q

k be

q-prefixes represented by p and p1, . . . , pk, respectively. If for each

appearance of Xq at position t, we can always find an appearance

of a q-prefix in {Xq
1 , . . . , X

q

k} at position t − 1, we say each Xq
i

q-dominates Xq , denoted Xq
i ≻ Xq (1 ≤ i ≤ k).

LEMMA 1. Given a text T and a query pattern P . Let P [j, j+
q− 1] and P [j− 1, j+ q− 2] be two substrings with length q. It is

meaningless to calculate the alignment score A(x, j) if one of the

following conditions holds:

• We could not find a substring X whose q-prefix exactly match-

es P [j, j + q − 1];
• We could find two substrings X and X ′ such that X[1, q] =

P [j, j+ q−1], X ′[1, q] = P [j−1, j+ q−2], and X ′ ≻ X .

Constructing dominations offline. According to Lemma 1, we need

to find all dominate relationships among q-length substrings of the

text T to filter meaningless calculations. We preprocess the text

T and construct dominations offline in O(n) time as follows. We

start from the first character of T and scan the whole text. For

any two substrings Xq
1 and Xq

2 at position i and i + 1 with q-

length, respectively, we construct dominate relationship Xq
1 ≻ Xq

2 .

We require that the q-length substring at position 1 could not be

dominated by any other q-length substrings.

Check meaningless calculations on-the-fly. Given a query P , we

build up q-gram inverted lists on-the-fly as discussed in Section 3.1.3.

For each position j in each gram list, we search P [j, j + q − 1]
and P [j − 1, j + q − 2] in the text T (We show a space-efficient

approach to simulate traversals of the suffix trie T using com-

pressed suffix array in Section 5). If we can find exact matches

Xq
2 = P [j, j+q−1] and Xq

1 = P [j−1, j+q−2], and Xq
1 ≻ Xq

2 ,

we ignore calculating MX
q
1
(1, j).

The approach is sound that there cannot be any false dismissals.

Using this approach, however, we could not guarantee to filter all

meaningless forks since it also depends on the online calculated

alignment scores.

4. REUSING SCORE CALCULATIONS
There might exist duplicated substrings in both T and P . This

situation is even going further when considering T can reach length

of a few gigabytes and P can reach length of several megabytes.

Obviously, we do not want to align a substring of T against a

substring of P more than once if they have been aligned before.

The BASIC algorithm in Section 2 represents a distinct substring

X starting at positions t1, . . . , tk in T using a suffix path from the

root to a leaf node in the suffix trie of T . In this way, X is needed

to be calculated only once and the alignments A(t1 + i, j), . . .,
A(tk + i, j) can share the same alignment score MX(i, j).

A natural question is whether we could share previous calculat-

ed scores on duplicated substrings in P to speed up the alignment

process. In this section, we show the techniques of reusing score

calculations between forks. We first analyze the relationship be-

tween scores of duplicated substrings in P . We then show how to

identify duplicated substrings in P that can be reused and present

an algorithm to reuse score calculations efficiently.

4.1 Duplicate Alignment Scores
Consider a matrix MX shown in Fig. 4. There are two forks

starting from (1, π1)-entry and (1, π2)-entry, respectively. Ps is

the common prefix of P [π1,m] and P [π2,m]. We mark the en-

tries with common prefix Ps using black color. In the black areas,

two alignment scores MX(i, π1+s) and MX(i, π2+s) are equiv-

alent (0 ≤ s ≤ |Ps|), since the substring P [π1, π1 + s] equals to

P [π2, π2 + s] and they must find the same alignment against X .

1

Ps
2

Ps

X

Figure 4: Entries with a common prefix Ps can share alignment

scores. (Black areas represent reusable alignment entries.)

LEMMA 2. Given a matrix for a substring X . Let P [π1, π1 +
q− 1] and P [π2, π2 + q− 1] be two substrings that match X[1, q]
exactly. Let Ps be the common prefix of P [π1,m] and P [π2,m].
For any two alignment scores MX(i, π1 + s) and MX(i, π2 + s),
we say MX(i, π1 + s) equals to MX(i, π2 + s), if 0 ≤ s ≤ |Ps|.

Fig. 5 shows another case that alignment scores in two forks

could be duplicate. Assume the substrings P [π1, j1−1] and P [π2,

j2−1] in the figure do not match. Instead, we could find a common

substring Ps starting from the two FGOEs. Theorem 5 shows that

the two black areas with common substring Ps could share align-

ment scores if the scores of the two FGOEs are equivalent.

j1
Ps

j2
Ps

FGOE FGOE

i

1 2

Figure 5: If two forks have equivalent scores for their FGOEs,

their entries with common substring Ps can share alignment

scores. (Black areas represent reusable alignment entries.)

THEOREM 5. Let f1 and f2 be two forks starting from (1, π1)-
entry and (1, π2)-entry in a matrix MX , respectively. Let (i1, j1)-
entry and (i2, j2)-entry be the FGOEs of f1 and f2, respectively. If

i1 equals to i2, then the alignment score MX(i1, j1) must be equal

to the score MX(i2, j2).

1512

For example, let X=GCTACCCCCTTTGGAA, q=4, P [π1, j1 −
1]=GCTACACCCTTT and P [π2, j2 − 1]=GCTACCTCCTTT. Since

the q-prefix X[1, q]=GCTAmatches P [π1, π1+q−1] and P [π2, π2+
q − 1], there are two forks starting from (1, π1)-entry and (1, π2)-
entry in a matrix MX , respectively. Although P [π1, j1 − 1] and

P [π2, j2 − 1] do not match, using Equation 3, their FGOEs have

the same score MX(12, π1 + 11) = MX(12, π2 + 11) = 8.

LEMMA 3. Suppose there are two fork areas f1 and f2, and

their FGOEs are (i, j1) and (i, j2) respectively. Let Ps be the

common prefix of P [j1,m] and P [j2,m], then ∀0 ≤ s ≤ |Ps| and

i′ ≥ i, MX(i′, j1 + s) equals to MX(i′, j2 + s).

4.2 Identify Duplicates in a Query
Reexamine the two cases described in Figs. 4 and 5. The reusable

entries belong to two parts: no gap regions and gap regions. If

an entry (i, j) belongs to a no gap region, we could use Equa-

tion 3 to calculate the score MX(i, j). If an entry (i, j) belongs

to a gap region, however, we have to first calculate the other two

auxiliary scores Ga(i, j) and Gb(i, j), and then choose a maxi-

mal value among Ga(i, j), Gb(i, j), and the score calculated using

Equation 3. It takes more time to calculate a score in a gap region

than in a no gap region. Therefore, we focus on reusing scores of

entries in gap regions in this section.

Consider a matrix MX that contains k forks. Let (i, j1), . . ., and

(i, jk) be FGOEs of these forks respectively. When calculating the

alignment score of the (i, j)-entry in the gap region in a fork with

FGOE (i, jw) (j1 ≤ jw ≤ jk−1), we need to record the substring

P [jw, j] so that whenever we meet a duplicate of this substring

starting from the next position jw+1 in P , we could reuse scores of

entries in between columns jw and j to entries in between columns

jw+1 and j + jw+1 − jw. In order to do it, we need to identify du-

plicates among any two substrings P [ju,m] and P [jv,m], where

j1 ≤ ju, jv ≤ jk and ju 6= jv .

A straightforward approach is to build up a path for each suffix

P [jw,m]. For each node u in the tree, we merge its child nodes if

they have the same input edge from u. However, this approach is

both time and space consuming. We could build up a common pre-

fix tree TPs in linear time on-the-fly (see Algorithm 2). Instead of

process each suffix, we use a set of disjoint substrings {P [j1, j2 −
1], P [j2, j3 − 1], . . ., P [jk,m]} to construct TPs , since each suffix

P [jw,m] can be assembled by concatenating P [jw, jw+1−1], . . .,
and P [jk,m].

The algorithm CONSTRUCTCPTREE first initializes TPs using a

root node root (line 1). It then inserts each substring S = P [ji, ji+1

−1] into TPs . The algorithm CONSTRUCTCPTREE checks if root
of TPs has an outgoing edge. If there is no outgoing edge from

root, it directly creates a child node c of root and labels the edge

between root and c using S. Notice that, S is only the prefix of

P [ji,m]. When processing P [ji+1, ji+2 − 1], we need to concate-

nate S to corresponding leaf nodes in TPs . The algorithm sets a link

from root to c to mark such a leaf node, which need to be processed

for succeeding substring (lines 4 – 5). Otherwise, the algorithm

searches P [ji, ji+1 − 1] in TPs until it reaches a node u with lev-

el l such that the substring S[1, l] is represented by path(root, u)
(line 7). If there exists an outgoing edge that can match a substring

S[l + 1, l′] from l + 1 in S, then the algorithm splits the edge into

two substrings S[l + 1, l′] and S[l′ + 1, |S|] by inserting a new n-

ode c′; otherwise it creates a new child node c of u and labels the

edge between u and c using S[l+1, |S|] (lines 8 – 12). Finally, the

algorithm concatenates S to all leaf nodes marked by links (lines

14 – 16). The algorithm returns the root node of TPs . The time

complexity of constructing a common prefix tree for k substrings

is O(k + m
k
).

Algorithm 2: CONSTRUCTCPTREE()

Input: A query P , a vector of column ids Fv ;
Output: Root of the common prefix tree TPs

;
1 Initialize a common prefix tree TPs

using a root node root;
2 foreach 1 ≤ i ≤ k − 1 do // process P [jw, jw+1 − 1]
3 S = P [jw, jw+1 − 1];
4 if root of TPs

has no outgoing edge then

5 Create a node c; edge(root, c) = S; link(root) = c;

6 w = link(root);
7 Find a deepest node u such that the prefix S′ = S[1, l]

(1 ≤ l ≤ |S|) can be represented by path(root, u);
8 if there exists a node v such that the prefix of edge(u, v) matches

S[l + 1, l′] (l′ ≤ |S|) then

9 Split edge(u, v) by inserting a node c′;
10 Create a node c; edge(c′, c) = S[l′ + 1, |S|];
11 else

12 Create a node c; edge(u, c) = S[l + 1, |S|];
13 link(root) = c;
14 while w 6= null do

15 Set a temp link node v=w;
16 Create a node c; edge(w, c)=S; w = link(v); link(v) = c;

17 return root;

For example, let P=CACGTATACG and assume j1 = 2, j2 =
4, j3 = 6, j4 = 8. The constructed procedures for each inserted

substring P [ji, ji+1−1] (1 ≤ i < 4) are shown in Fig. 6. Fig. 6(a)

shows the tree that only contains a substring P [j1, j2 − 1]=AC.

When inserting the second substring P [j2, j3−1]=GT, the function

CONSTRUCTCPTREE creates a node of root and let the edge from

root to this created node be GT since GT has no common prefix with

substrings in the tree shown in Fig. 6(a). It then processes nodes

pointed by links from the root and concatenate GT to the leaf node

under AC and modifies links as shown in Fig. 6(b). Fig. 6(c) shows

the common prefix tree after inserting P [j3, j4 − 1]=AT. Since AT

and the edge from root to its left child AC has a common prefix A,

the function needs to split the edge AC into A and C by inserting a

new node. It then concatenates T under the new inserted node and

processes all the nodes pointed by links. Fig. 6(d) shows the final

common tree for P [j1, |P |]=ACGTATACG, P [j2, |P |]=GTATACG,

P [j3, |P |]=ATACG, and P [j4, |P |]=ACG.

Figure 6: An example of constructing a common prefix tree.

Notice that, the online created suffix paths are only related to

substrings with the same prefix X[1, q]. We could release the on-

line created suffix paths when processing another matrix with dif-

ferent prefix X ′[1, q].

4.3 A Hybrid Algorithm for Efficiently Reusing
Score Calculations

In order to reuse the alignment scores of entries in one fork, in-

stead of calculating the matrix row by row, we do it in hybird. That

is, we calculate scores of entries in no gap regions horizontally to

identify FGOEs with the same row, we then calculate scores of

1513

Algorithm 3: HYBRID - reusing score calculations

Input: A substring X , a query pattern P , alignments A;
Output: The matrix MX ;

1 Find positions posset = {t1, . . . , tk} of all the occurrences of
X[1, q] in P ;

2 Initialize a matrix MX using a hash table;
// process entries in no gap regions

3 Fset = calMatrixByRow(X , P , q, posset, MX);
4 while Fset 6= ∅ do // process entries in gap regions

5 Pop all FGOEs with the same row id from Fset and push the
correponding column ids into a vector Fv ;

6 calMatrixByColumn(X , P , MX , Fv);

7 return MX ;

entries in gap regions vertically to make copy operations between

forks efficiently. Algorithm 3 is an overview of the HYBRID algo-

rithm. The HYBRID algorithm first locates positions of all match-

ing grams of X[1, q] in P using the inverted lists of q-grams for P
(line 1). It then initializes a hash table to store entries in a matrix

MX for the substring X and the query P .

In order to calculate all FGOEs in MX , it invokes a function

calMatrixByRow to calculate scores of entries row by row in

no gap regions until all FGOEs have been found. The FGOEs

are pushed into a queue Fset (line 3). Based on the calculated

FGOEs, the HYBRID algorithm processes entries in each gap re-

gion represented by an FGOE column by column. According to

Lemma 3, only when the FGOEs have the same row ids, their

gap regions could reuse alignment scores. The algorithm HYBRID,

therefore, popps all FGOEs with the same row id from Fset and

pushes them into a vector of FGOEs Fv . It then invokes a function

calMatrixByColumn to reuse scores of entries in gap regions

until all FGOEs in Fset have been processed (lines 4 – 6). It finally

returns the matrix MX represented by a hash table (line 7).

Horizontal calculations in no gap regions. We use the function

calMatrixByRow to show details of calculations in no gap re-

gions. It initializes a queue of FGOEs Fset. According to length

filtering (see Theorem 1), it only processes rows less than or equal

to Lmax. For each row id i (1 ≤ i ≤ q), it assigns sa × i to

MX(i, t + i − 1), where t ∈ posset is the starting position of an

occurrence of X[1, q] in P (lines 6 – 7). These scores could be

assigned without any calculation according to the q-prefix filter-

ing in Section 3.1.3. For each row id i(> q) in no gap regions, it

calculate scores using Equation 3 (line 9). Notice that, the func-

tion calMatrixByRow only needs to calculate scores of entries

(i, t + i − 1) (t1 ≤ t ≤ tk) since only these entries might be

meaningful. If a score MX(i, t + i − 1) is greater than |sg + ss|,
it means the corresponding (i, t + i − 1)-entry is an FGOE (see

Section 3.1.3). The function pushes the entry (i, t+ i− 1) into the

queue Fset and removes the starting position t from posset (lines

10 – 12). If the score MX(i, t+ i− 1) does not satisfy score filter-

ing (see Theorem 2), the function removes t from posset (lines 13

– 14). We repeat the above process until posset becomes empty.

Vertical calculations in gap regions. In order to reuse scores of

duplicates in P efficiently, we identify duplicates and reuse align-

ment scores among gap regions. As the Algorithm HYBRID shows,

for each iteration, the function calMatrixByColumn processes

a gap region starting from each position in Fv . It first constructs

a common prefix tree TPs to identify duplicate substrings using P
and Fv (line 1). For each substring P [jw, jw+1 − 1], the function

does not calculate the score of an entry (i, j) unless it could not

find a duplicate in the common prefix tree TPs (lines 2 – 21).

Function calMatrixByRow

Input: A substring X , a query P , an integer q, starting positions
posset = {t1, . . . , tk} of occurrences of X[1, q] in P , a
matrix MX ;

Output: A queue of FGOEs Fset;
1 Initialize a queue Fset to store FGOEs of forks in MX ;
2 foreach 1 ≤ i ≤ Lmax do // length filtering

3 if posset == ∅ then

4 break;

5 foreach position t in posset do
6 if i ≤ q then

7 MX(i, t+ i− 1) = sa × i;

8 else
9 MX(i, t+ i− 1) =

M(i− 1, t+ i− 2) + δ(X[i], P [t+ i− 1]);

10 if MX(i, t+ i− 1) > |sg + ss| then

11 Fset.push back(i, t+ i− 1);
12 posset = posset − {t};

13 if MX(i, t+ i− 1) does not satisfy score filtering then

14 posset = posset − {t};

15 return Fset;

Before calculating score MX(i, j) in a gap region, the function

calMatrixByColumn checks if a prefix of P [jw, jw+1 − 1] is

a duplicate of another substring starting at a previous position jh
(j1 ≤ jh < jw) in Fv . It finds a path path(r, z) to represent

P [jw, jw+1−1] (line 3) and then evaluates each edge in path(r, z)
(line 5). While an edge edge(u, v) has been processed, the func-

tion could reuse entries associated with this edge, i.e. it copies each

score MX(i, v.column + d) to MX(i, jw + d) (lines 7 – 9). The

function calMatrixByColumn repeats the above iteration until

it meets an edge that has not been processed. For each remaining

edge in path(r, z), it calculates a range of row ids [s, e] such that

for each row id i ∈ [s, e] the (i, jw + d)-entry belongs to the cur-

rent processing gap region. It calculates the alignment scores for

each (i, jw + d)-entry and records this range [s, e] so that other

gap regions could reuse scores of entries in this column (lines 14 –

18). Notice that, when calculating MX(i, jw + d) in a gap region,

the function takes the advantage of our vertical calculation. It only

needs one byte to store the auxiliary score Ga(i− 1, jw + d) and a

vector to store the auxiliary score Gb in the (jw+d−1)-th column.

The size of the vector equals to e − s + 1. These auxiliary scores

could be released after calculating MX(i, jw + d). The calculation

stops when all the entries in the (jw + d)-th column of the current

gap region are meaningless. It releases TPs after all positions in Fv

have been processed since TPs is only used locally (line 22).

Reuse substrings in text T with the same prefix X[1, q]. In the

BASIC algorithm, the suffix trie T of T provides an advantage of

avoiding aligning substrings of T that are identical. When moving

from a node in T to its child node, a row is added to the calculation

matrix and when a node is going up to its father node, the last row

is deleted. Hence, the common prefixes in T are only aligned once.

In order to combine the above advantage in our hybrid calcula-

tions, we process paths in T which have the common prefix X[1, q].
For each such path, we identify the forks whose FGOEs no longer

exist as we are going up along the suffix trie and recalculate the

FGOEs for them using the function calMatrixByRow. Then, we

vertically calculate these newly updated gap regions using the func-

tion calMatrixByColumn. We repeat the above process until all

paths with the same X[1, q] prefix have been processed.

1514

Function calMatrixByColumn

Input: A substring X , a query P , a matrix MX , a vector of column
ids Fv ;

1 r = u = CONSTRUCTCPTREE(P, Fv);
2 foreach 1 ≤ w ≤ k − 1 do // process P [jw, jw+1 − 1]
3 Find a node z such that P [jw, jw+1 − 1] can be represented by

path(r, z);
4 Let v be the child node of u in path(r, z);

// Reuse entries in gap regions

5 while v.column > 0 do // the substring

represented by edge(u, v) has been processed

6 d = 0;
7 while d < edge(u, v).length() do

// calculate the (jw + d)-th column

8 for i ∈ v.range[jw + d] do
9 MX(i, jw + d) = MX(i, v.column+ d);

10 d++;

11 u = v; v = the child node of u in path(r, z);

12 repeat // Calculate entries in gap regions

13 d = 0;
14 while d < edge(u, v).length() do
15 Calculate a range of row ids [s, e] such that ∀i ∈ [s, e],

the (i, jw + d)-entry belongs to the current gap region;
16 for i ∈ [s, e] do

17 Calculate MX(i, jw + d);

18 v.range[jw + d] = [s, e];

19 v.column = jw;
20 u = v; v = the child node of u in path(r, z);

21 until all the scores in the (jw + d)-th column of the current gap

region are meaningless;

22 Release the common prefix tree TPs
rooted at r;

5. SIMULATING SEARCHES USING COM

PRESSED SUFFIX ARRAY
As discussed in Sections 3 and 4, our technique requires the fol-

lowing three kinds of searches in the suffix trie T of a text T :

(1) Given a q-length substring Sq in the query P , check if Sq ap-

pears in T exactly. In the scenario of this paper, for each suffix path

in T , the alignment scores of the (i + 1)-th row in the matrix M
depend on the scores of the i-th row in M . Therefore, based on the

SA range of X , we hope to process the string X ′ = Xc by itera-

tively appending one character c behind X . We use the technique

reported in [8] to construct a compressed suffix array for the rever-

sal of $T (denoted T−1). In T−1, we do not change the position

of each character in T and let position of $ be 0.

Given a q-length substring Sq , we search (Sq)−1 using the back-

ward search algorithm [6] on the compressed suffix array and get

an SA range from SA[i] to SA[j] for (Sq)−1. Sq does not appear

in T only when i < j. This search operation could be done in O(q)
steps and each step costs constant time.

(2) Given a substring Xs = X[1, i], find its starting positions of

all occurrences in T . We search X−1
s and find the SA range from

SA[x] to SA[y] for X−1
s . The position of each appearance of Xs

in T is SA[h] − |Xs| + 1, where x ≤ h ≤ y. For example, T =

GCTAGC$, and T−1 = C6G5A4T3C2G1$0, where integers represent

positions of characters in T . Let |Xs| be GC, we search its reversed

string CG and get the SA range [2, 3]. The suffix array SA[0, 6] =

{0, 4, 2, 6, 1, 5, 3}, so the positions of the query GC are SA[2] −
|Xs|+ 1 = 1 and SA[3]− |Xs|+ 1 = 5.

Notice that, in the matrix MX , we always process X[1, i] af-

ter X[1, i − 1]. Since X[1, i] equates to appending X[i] behind

X[1, i− 1], we could find the appearances of X[1, i] in T in O(1)
time based on the SA range of X[1, i − 1] using the backward

search algorithm [6].

(3) Given a q-prefix Xq , traverse the suffix trie and get suffix paths

whose represented substrings have the same prefix as Xq . Let u
be a node in the conceptual suffix trie and Xq be the represented

substring of the path from the root to u.

Since we have found the SA range of (Xq)−1 using the com-

pressed suffix array of T−1, we can check the existence of edge

with label c from u by computing the SA range for c(Xq)−1. We

enumerate the corresponding substring if the edge c does exist and

repeat the same procedure to traverse the subtree rooted at u.

6. ANALYSIS OF NUMBER OF CALCULAT

ED ENTRIES
We consider the general scoring scheme 〈sa, sb, sg, ss〉. As we

have analyzed in Section 3.1, the larger the
|sb|
|sa| ,

|sg|
|sa| , and

|ss|
|sa| are,

the better performance of local filtering techniques could be. In

order to understand the behaviors of ALAE deeply, we analyze the

number of calculated entries.

We consider the general scoring scheme for any random sub-

string Xd with d characters (d ≥ 1) in the text T . According to

score filtering, we are interested in each alignment substring P ′ of

the query P such that the alignment scores between P ′ and T are

positive. For a simple case that an alignment cannot insert a space

or a gap, let P ′ contain d characters. We define f(d) to be the

number of length-(d) substring P ′ such that score(Xd, P ′) > 0.

LEMMA 4. When there is no gap between Xd and P ′, we have

f(d) ≤ k1(k2)
d, where k1 = (1 − 1

s
)q(σ−1

σ−2
) s√

2π(s−1)
, k2 =

s s

√

σ−1
(s−1)s−1 , and s = 1 + |sb|

|sa| .

PROOF. Since sa > 0 and sb < 0, when score(Xd, P ′) > 0,

the largest number of mismatches is ⌊d/s⌋. According to prefix fil-

tering in Theorem 3, mismatches could not appear in either X[1, q]
or P ′[1, q].

Therefore, f(d) ≤ ∑⌊ d
s
⌋

i=0 (σ − 1)i(d−q
i). Since (di) = d

d−i
(d−1

i),

we conclude (d−q
i) =

(d−i)(d−1−i)...(d−(q−1)−i)
d(d−1)...(d−(q−1))

(di) ≤ (1− i
d
)q(di),

then f(d)≤∑⌊ d
s
⌋

i=0 (σ−1)i(1− i
d
)q(di)≤(σ−1

σ−2
)(σ−1)

d
s (1− 1

s
)q(d

⌊ s
d
⌋).

As we know, (di) = d!
(d−i)!i!

. Using the Stirling’s approximation,

d! =
√
2πd(d

e
)deλd , where 1

12d+1
< λd < 1

12d
. Therefore,

d!

(d− i)!i!
=

√
2πd(d

e
)deλd

√

2π(d− i)(d−i
e

)d−ieλd−i
√
2πd(i

e
)ieλi

=
dd+

1
2

√
2π(d− i)d−i+ 1

2 (i)i+
1
2

eλd−λd−i−λi .

Obviously, λd − λd−i − λi ≤ 0, then eλd−λd−i−λi ≤ 1. Thus,

(di) ≤ d
d+1

2

√
2π(d−i)

d−i+1
2 (i)

i+1
2

= 1√
2πi

(d
d−i

)d+
1
2 (d−i

i
)i.

So, (d
⌊ s
d
⌋) ≤

√
s√

2πd
(d

d− d
s

)d+
1
2 (

d− d
s

d
s

)
d
s = s√

2π(s−1)d
(s

(s−1)
s−1
s

)d

≤ s√
2π(s−1)

(s

(s−1)
s−1
s

)d. Therefore,

f(d) ≤ (1− 1
s
)q(σ−1

σ−2
) s√

2π(s−1)

(

s s

√

σ−1
(s−1)s−1

)d
= k1(k2)d.

Based on the analysis in [8], the expected total number of calculated

entries of ALAE is

(
k1

k2 − 1
+

k1σ
2

σ − k2
)mnlogσ k2 . (4)

BLAST specifies scoring parameters at http://blast.ncbi.nlm.nih.gov/

Blast.cgi, where (sa, sb) ∈ {(1,−2), (1,−3), (1,−4), (2,−3),

1515

(4,−5), (1,−1)}. For most of the parameters,
|sg |
|sa| ∈ {1, 2, 3, 5}

and
|ss|
|sa| ∈ {1, 2}. According to Equation 4, the upper bound

of the number of calculated entries for DNA sequences can vary

from 4.50mn0.520 to 9.05mn0.896, and for protein sequences can

vary from 8.28mn0.364 to 7.49mn0.723. Notice that both BLAST

and BWT-SW use 〈1,−3,−5,−2〉 as the default scoring scheme

when aligning DNA sequences. Using this scoring scheme, the

number of calculated entries using BWT-SW is upper bounded by

69mn0.628 (see [8]), whereas using ALAE the number is upper

bounded by 4.47mn0.6038.

7. EXPERIMENTS
In this section, we report our experimental results of ALAE.

Data sets: We used the following commonly used real data sets,

including two DNA data sets and one protein data set. The alpha-

bet size of DNA sequences and protein sequences are 4 and 20,

respectively.

Human genome data set. The human reference sequence (GRCh

37) was assembled from a collection of DNA sequences.2 It con-

sists of 24 chromosomes ranging in length from 48 million to 249
million. We used subsequences with different lengths of GRCh37

as texts to be aligned with, and the lengths varied from 50 million

to 1 billion.

Mouse genome data set. The mouse genome (MGSCv37 chr1)

was extracted from house mouse that contains 198 million charac-

ters.3 Since aligning mouse genomes against human genomes is

widely used to do homology search in practice [7, 12], we used

MGSCv37 chr1 to generate queries against human genomes. We

randomly chose 100 starting positions in the first 180 million char-

acters and picked a fixed length substring from each randomly lo-

cated starting position to generate a query workload that contains

100 query sequences with the same query length. We varied the

query length from 1 thousand to 1 million. We used these query

workloads to test performance of ALAE.

Protein data set. We used the comprehensive and non-redundant

database UniParc4 that contains most of the publicly available pro-

tein sequences in the world. We varied the lengths of texts (protein

sequences) from 10 million to 50 million. We randomly chose se-

quences from UniParc as queries, ranging in length from 200 to

100, 000.

Threshold H and E-value: In our experiments, instead of set-

ting a threshold value H explicitly, we used an Expectation val-

ue (a.k.a. E-value) that is widely adopted by the biological com-

munity. The E-value is a parameter that describes the number

of alignments one can “expect” to see by chance when search-

ing a database of a particular size. The following equation re-

lates E-value and alignment score S: E = Kmne−λS , where K
and λ are scaling constants computed by BLAST [1]. The corre-

sponding threshold H for ALAE can be computed as follows [11]:

H = ⌈ ln(Kmn)−ln(E)
λ

⌉. We varied the E-value from 10−15 to 10.

Both BLAST and BWT-SW set E = 10 as the default parameter.

Scoring scheme: In our experiments, we used the same scoring

parameters as BLAST (see Section 6) to evaluate the performance

of ALAE. Both BLAST and BWT-SW adopt 〈1,−3,−5,−2〉 as

the default scoring scheme. Notice that BWT-SW requires that

|sb| ≥ 3|sa|, which highly limits its usability.

2
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/chromosomes/

3
http://hgdownload.cse.ucsc.edu/goldenPath/mm9/chromosomes/

4
ftp://ftp.uniprot.org/pub/databases/uniprot/current release/uniparc/

uniparc active.fasta.gz

Table 2: Comparison of alignment time and number of align-

ment results when varying lengths of queries (n = 1 billion).
Alignment time (Sec.) and number of alignment results C

Approaches m=1K m=10K m=100K m=1M m=10M

Time C Time C Time C Time C Time C
ALAE 0.006 994 0.080 7790 1.484 34911 19.269 150390 393.001 586521

BLAST 0.033 744 0.312 5928 3.074 24154 31.459 99916 330.330 395652

BWT-SW 2.144 994 21.756 7790 177.048 34911 1451.448 150390 - -

Table 3: Comparison of alignment time and number of align-

ment results when varying lengths of texts (m = 1 million).
Alignment time (Sec.) and number of alignment results C

Approaches n=50M n=100M n=200M n=500M n=1G

Time C Time C Time C Time C Time C
ALAE 5.272 21172 6.288 82702 6.537 100562 12.702 114691 19.269 150390

BLAST 18.489 13290 21.362 56377 22.160 83836 28.669 90864 31.459 99916

BWT-SW 84.827 21172 147.969 82702 235.236 100562 617.452 114691 1451.448 150390

All the algorithms were implemented using GNU C++. The ex-

periments were run on a PC with an Intel 2.93GHz Quad Core CPU

i7 and 8GB memory with a 500GB disk, running a Ubuntu (Linux)

operating system.

7.1 Alignment Time and Number of Results
We compared ALAE with three state-of-art algorithms: Smith-

Waterman algorithm, BLAST, and BWT-SW5 using the default set-

tings of both BLAST and BWT-SW (i.e. 〈1,−3,−5,−2〉 and E =
10). We would not include the Smith-Waterman algorithm into our

following discussions because this algorithm is too slow to be con-

sidered. Our experiments show that the Smith-Waterman algorithm

took 7.7 hours to align a query with 10 thousand characters against

a text with 50 million characters. However, ALAE only took 25
ms. For the same reason, we would not report the query perfor-

mance for the BASIC algorithm since it has higher time complexity

than the Smith-Waterman algorithm. We conducted experiments to

show the average time required by ALAE, BLAST, and BWT-SW

under different circumstances.

Table 2 shows the average alignment time and the number of

alignment results when varying the lengths of queries from 1 thou-

sand to 10 million. We used a 1 billion human genome sequence

as the text. ALAE shows a great advantage over BWT-SW with

all queries and can find the results as BWT-SW does. Notice that

our experiments show that BWT-SW could not align a query with

more than 1 million characters against the text due to insufficien-

t memory. ALAE outperformed BLAST when the query lengths

were less than 10 million. However, when the query length was ex-

tremely long, such as 10 million, the alignment time was not as fast

as BLAST. It is worth mentioning that ALAE found more results

than BLAST did.

Table 3 shows the average alignment time and number of align-

ment results when varying the length of a text from 50 million to

1 billion. We used the query workload, in which each query had 1
million characters. Table 3 shows ALAE outperforms both BWT-

SW and BLAST for different text lengths when m = 1 million.

We also conducted experiments on protein sequences. The re-

sults for the protein data sets are similar to those presented here.

For space reason, we omit these results in this paper.

7.2 Filtering Ratio and Reusing Ratio
In this section, we show the effectiveness of our proposed filter-

ing and entry reusing techniques. We use filtering ratio to evaluate

our filtering techniques compared with BWT-SW:

Filtering ratio =
of filtered entries

of calculated entries using BWT-SW
×100% (5)

5
Available at http://i.cs.hku.hk/ ckwong3/bwtsw

1516

Table 4: Number of calculated entries and their computation

costs (n = 1 billion, score = 〈1,−3,−5,−2〉).
m = 10, 000 m = 100, 000 m = 1, 000, 000

Approaches # of calculated Computation # of calculated Computation # of calculated Computation

entries × cost cost entries × cost cost entries × cost cost

31,865 × 1 318,640 × 1 3,266,537 × 1

ALAE 103,403 × 2 1,226,043 2,139,094 × 2 25,623,882 25,890,567 × 2 319,525,130

329,124 × 3 7,009,018 × 3 88,159,153 × 3

BWT-SW 1,245,288 × 3 3,735,864 21,827,128 × 3 65,481,384 271,024,617 × 3 813,073,851

Filtered entries are the entries which are calculated using BWT-

SW but are considered meaningless using ALAE. A higher filtering

ratio means our filtering techniques are more effective.

We use reusing ratio to evaluate our entry reusing technique:

Reusing ratio =
of reused entries

of accessed entries
×100% (6)

Reused entries are the ones whose scores can be simply copied

from previous calculated entries using ALAE. Accessed entries

consist of both reused entries and calculated entries. The higher

the reusing ratio is, the more effective our reusing technique is.

 0

 20

 40

 60

 80

 100

10,0001,000100101

F
ilt

e
ri
n
g
 r

a
ti
o
 (

%
)

Length of a query (x10
3
)

n = 100x10
6

n = 500x10
6

n = 1,000x10
6

(a) Filtering ratio.

 0

 10

 20

 30

 40

 50

10,0001,000100101

R
e
u
s
in

g
 r

a
ti
o
 (

%
)

Length of a query (x10
3
)

n = 100x10
6

n = 500x10
6

n = 1,000x10
6

(b) Reusing ratio.

 0

 20

 40

 60

 80

 100

100050020010050

F
ilt

e
ri
n
g
 r

a
ti
o
 (

%
)

Length of a text (x10
6
)

m = 10,000
m = 100,000

m = 1,000,000

(c) Filtering ratio.

 0

 5

 10

 15

 20

 25

 30

 35

 40

100050020010050

R
e
u
s
in

g
 r

a
ti
o
 (

%
)

Length of a text (x10
6
)

m = 10,000
m = 100,000

m = 1,000,000

(d) Reusing ratio.

Figure 7: Filtering and reusing ratios using 〈1,−3,−5,−2〉.

We conducted experiments with different lengths of queries and

texts. Figs. 7 shows the filtering ratios and reusing ratios using

ALAE, when E = 10 and the scoring scheme is 〈1,−3,−5,−2〉.
Fig. 7(a) shows that a query workload with shorter queries main-

tains a higher filtering ratio. For a fixed text with 100 million char-

acters, the filtering ratio decreased from 75.3% to 51.8% when the

query length increased from 1 thousand to 10 million. The reason

is that when the query length is short, calculated entries are mainly

belonging to no gap regions. In a no gap region, ALAE could filter

more meaningless entries compared with BWT-SW.

Fig. 7(b) shows when the query length increases from 10 thou-

sand to 10 million, the reusing ratio increases from 16.2% to 31.5%.

This is because longer queries contain more repetitions and more

entries can be reused during the alignment process. When the query

length is 1 thousand, the reusing ratio is very low since it is hard to

find duplicates among forks.

Figs. 7(c) and 7(d) show both the filtering ratio and reusing ratio

keep stable when changing the length of a text for a fixed query

workload. The reason is that ALAE only considers a substring with

small length Lmax to do alignment against the query.

ALAE not only reduces the number of entries that need to be

calculated by BWT-SW, but also optimizes the cost for computing

scores. Table 4 shows how the number of calculated entries trans-

lates into the computation cost. Using ALAE, calculated entries

could belong to a no gap region or a gap region in each matrix. In a

no gap region, ALAE uses the simplified recurrence function (see

Equation 3) to calculate score for each entry, whereas BWT-SW has

to consider the auxiliary scores in both Ga and Gb, which requires

extra computation costs. Similarly, the entries in the boundaries of

the fork areas using ALAE only rely on their two adjacent entries

instead of three adjacent entries using BWT-SW.

 0

 5

 10

 15

 20

 25

 30

1010
-5

10
-15

T
im

e
 (

S
e

c
.)

Expectation value (E)

m = 10,000
m = 100,000

m = 1,000,000

Figure 8: Varying E-values

under 〈1,−3,−5,−2〉.

10
-1

10
0

10
1

10
2

10
3

10
4

<1,-3,-2,-2><1,-1,-5,-2><1,-4,-5,-2><1,-3,-5,-2>

T
im

e
 (

S
e

c
.)

Scoring scheme

BWT-SW
BLAST

ALAE

Figure 9: Varying scoring

schemes (E=10, m=100, 000).

 0

 20

 40

 60

 80

 100

<1,-3,-2,-2><1,-1,-5,-2><1,-4,-5,-2><1,-3,-5,-2>

F
ilt

e
ri
n
g
 r

a
ti
o
 (

%
)

Scoring scheme

m = 10,000
m = 100,000

m = 1,000,000

(a) Filtering ratio (n=1 billion).

 0

 5

 10

 15

 20

 25

 30

 35

 40

<1,-3,-2,-2><1,-1,-5,-2><1,-4,-5,-2><1,-3,-5,-2>

R
e
u
s
in

g
 r

a
ti
o
 (

%
)

Scoring scheme

m = 10,000
m = 100,000

m = 1,000,000

(b) Reusing ratio (n=1 billion).

Figure 10: Filtering and reusing ratios using different scores.

7.3 Effect of EValues
In this section, we examine how ALAE would be affected by E-

values. Fig. 8 shows the alignment time of ALAE when varying

E from 10−15 to 10 using three different query workloads. We

can see that ALAE is not very sensitive to E-values. For the query

workload that contains queries with 10, 000 characters, the align-

ment time is 72ms when E is 10−15, 72.9ms when E is 10−5, and

79.9ms when E is 10. The time is too small to be seen in this fig-

ure. For any given query workload, ALAE shows small time rises

when we increase E. The reason of these time rises is that a large

H value (i.e. small E value) terminates calculations earlier than a

small H value. Notice that such rises are very small since score

filtering only shares a small impact on accelerating alignment time.

7.4 Effect of Scoring Schemes
In order to test the effect of scoring schemes, we chose four

scoring schemes in BLAST by varying values sa, sb, sg , and ss.

Fig. 9 shows the four representative scoring schemes that cover

large and small values of q and |sg|+ |ss|. Both ALAE and BWT-

SW are sensitive to scoring schemes, whereas BLAST is barely

affected by the change of scoring schemes, because BLAST adopts

a different heuristic approach to find results.

ALAE runs much faster than BWT-SW for all scoring schemes.

Notice that we do not include the result of BWT-SW for 〈1,−1,

−5,−2〉 since BWT-SW requires that |sb| ≥ 3|sa|. ALAE shows

good performance when the scoring scheme is 〈1,−3,−5,−2〉 or

〈1,−4,−5,−2〉. ALAE is 119 times faster than BWT-SW using

1517

Table 5: Number of entries using ALAE.
Scoring schemes # of reused entries # of accessed entries # of calculated entries

< 1,−1,−5,−2 > 30,652,400 380,960,680 350,308,280

< 1,−3,−2,−2 > 19,047,958 124,804,117 105,756,159

〈1,−3,−5,−2〉 and 65 times faster using 〈1,−4,−5,−2〉. This is

because a larger
|ss|
|sa| makes Lmax much tighter, a smaller sa makes

calculation terminating earlier, and a larger q value (see Equation 2)

makes prefix filtering more effective.

Fig. 9 shows that ALAE is slower than BLAST when the scoring

scheme is 〈1,−1,−5,−2〉. We use Fig. 10 to explain the reason.

The small sb value makes gap regions expanded, which results in

large number of calculated entries. Table 5 shows that the num-

ber of calculated entries using 〈1,−1,−5,−2〉 is 37 times of the

number using 〈1,−3, −5,−2〉. We can see that the reusing ratio

is much lower than other scoring schemes. This result is consistent

with the analysis in Section 6, where 〈1,−1,−5,−2〉 corresponds

with the worst case where the number of calculated entries is up-

per bounded by 9.05mn0.896. For 〈1,−3,−2,−2〉, the smaller

|sg|+ |ss| value makes the no gap regions smaller, which weakens

the effect of filtering techniques (see Fig. 10(a)).

7.5 Index Size
We have evaluated the space efficiency of ALAE for both DNA

sequences and protein sequences. We varied the length of texts and

collected their index sizes. We used the following scoring schemes:

〈1,−3,−5,−2〉 for DNA sequences, and 〈1,−3,−11,−1〉 for pro-

tein sequences. Fig. 11(a) shows the index sizes of ALAE for DNA

sequences. The alphabet size of the DNA sequences is 4, thus ev-

ery character in BWT sequence can be stored using 2 bits. As we

can see in Fig. 11(a), the indexes for storing dominate relationships

of DNA sequences are mostly too small to be seen.

Figs. 11(b) shows the index sizes of ALAE for protein sequences.

For relatively small texts, the index for storing dominate relation-

ships is large compared with BWT index. However, as the size of

a text grows, the size of the dominate index decreases quickly. The

dominate index size is 98.09MB for a text with 10 million charac-

ters and decreases to 8.83MB when the length of the text increases

to 20 million.

 0

 1000

 2000

 3000

 4000

 5000

100050020010050

In
d
e
x
 s

iz
e
 (

M
)

Size of a text (M)

Dominate index

BWT index

(a) DNA sequences.

 0

 50

 100

 150

 200

 250

 300

5040302010

In
d
e
x
 s

iz
e
 (

M
)

Size of a text (M)

Dominate index

BWT index

(b) Protein sequences.

Figure 11: Index size.

8. CONCLUSION AND FUTURE WORK
We have developed a novel approach ALAE to accelerate dy-

namic programming for finding all local alignments. We gave a

full analysis of the dynamic programming approach, and present-

ed a series of filtering techniques to prune meaningless entries and

an algorithm to reuse duplicate calculations. Our extensive experi-

ments on real biosequences showed the high efficiency of our tech-

niques. ALAE improves the time efficiency of the state-of-the-art
exact BWT-SW approach significantly and accelerates BLAST for

most of the scoring schemes. As parts of future work, we will inves-

tigate techniques to further improve the performance of ALAE for

all scoring schemes and exploit algorithms using external memory.

9. ACKNOWLEDGMENTS
The work is partially supported by the National Natural Science

Foundation of China (Nos. 60973018, 60973020), the Joint Re-

search Fund for Overseas Natural Science of China (No. 61129002),

the National Basic Research Program of China (973 Program) (No.

2012CB316201), the National Natural Science of China Key Pro-

gram (No. 60933001), the National Natural Science Foundation

for Distinguished Young Scholars (No. 61025007), the Doctoral

Fund of Ministry of Education of China (No. 20110042110028),

and the Fundamental Research Funds for the Central Universities

(No. N110804002).

10. REFERENCES
[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.

Lipman. Basic local alignment search tool. Journal of

Molecular Biology, 215:403–410, 1990.

[2] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, and

D. J. L. Z. Zhang. Gapped BLAST and PSI-BLAST: A new

generation of protein database search programs. Nucleic

Acids Res., 25(17):3389–3402, 1997.

[3] M. Burrows and D. Wheeler. A block sorting lossless data

compression algorithm. Technical Report, 124, Digital

Equipment Corporation 1994.

[4] X. Cao, S. C. Li, B. C. Ooi, and A. K. H. Tung. Piers: An

efficient model for similarity search in DNA sequence

databases. ACM SIGMOD Record, 33(2):39–44, 2004.

[5] P. Ferragina and G. Manzini. Opportunistic data structures

with applications. In the 41st IEEE Symposium on

Foundations of Computer Science (FOCS), pages 390–398,

2000.

[6] P. Ferragina and G. Manzini. Indexing compressed text.

Journal of the ACM, 52(4):552–581, 2005.

[7] R. Hardison and W. Miller. Use of long sequence alignments

to study the evolution and regulation of mammalian globin

gene clusters. Mol Biol Evol., 10:73–102, 1993.

[8] T. W. Lam, W. K. Sung, S. L. Tam, C. K. Wong, and S. M.

Yiu. Compressed indexing and local alignment of DNA.

Bioinformatics, 24(6):791–797, 2008.

[9] H. Li and R. Durbin. Fast and accurate long-read alignment

with Burrows-Wheeler transform. Bioinformatics,

26(5):589–595, 2010.

[10] U. Manber and G. Myers. Suffix arrays: a new method for

on-line string searches. SIAM Journal on Computing,

22(5):935–948, 1993.

[11] C. Meek, J. M. Patel, and S. Kasetty. OASIS: An online and

accurate technique for local-alignment searches on biological

sequences. In VLDB, pages 910–921, 2003.

[12] S. Schwartz, J. Kent, A. Smit, and et al. Human-mouse

alignments with BLASTZ . Genome Research, 13:103–107,

2003.

[13] T. F. Smith and M. S. Waterman. Identification of common

molecular subsequences. Journal of Molecular Biology,

147:195–197, September 1981.

[14] X. Wu, W.-J. Lee, and C.-W. Tseng. ESTmapper: Efficiently

aligning DNA sequences to genomes. In the 19th

International Parallel and Distributed Processing

Symposium (IPDPS), 2005.

1518

