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ABSTRACT

The rise of Web 2.0 is signaled by sites such as Flickr,
del.icio.us, and YouTube, and social tagging is essential to
their success. A typical tagging action involves three com-
ponents, user, item (e.g., photos in Flickr), and tags (i.e.,
words or phrases). Analyzing how tags are assigned by cer-
tain users to certain items has important implications in
helping users search for desired information. In this pa-
per, we explore common analysis tasks and propose a dual
mining framework for social tagging behavior mining. This
framework is centered around two opposing measures, sim-
ilarity and diversity, being applied to one or more tagging
components, and therefore enables a wide range of analy-
sis scenarios such as characterizing similar users tagging di-
verse items with similar tags, or diverse users tagging similar
items with diverse tags, etc. By adopting different concrete
measures for similarity and diversity in the framework, we
show that a wide range of concrete analysis problems can
be defined and they are NP-Complete in general. We de-
sign efficient algorithms for solving many of those problems
and demonstrate, through comprehensive experiments over
real data, that our algorithms significantly out-perform the
exact brute-force approach without compromising analysis
result quality.

1. INTRODUCTION
Tagging is a core activity on the social web. It reflects

a wide range of content interpretations and serves many
purposes, ranging from bookmarking websites in del.icio.us,
organizing personal videos in YouTube, and characterizing
movies in MovieLens. While one can possibly examine tags
used by a single user on a single item, it is easy to see that
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the task becomes quickly intractable for a collection of tag-
ging actions involving multiple users and items. In this pa-
per, we aim to formalize the analysis of the tagging behavior
of a set of users for a set of items and develop appropriate
algorithms to complete that task.

A typical tagging action involves three components, user,
item, and tag. We propose to study a variety of analysis
tasks that involve applying two alternative measures, sim-
ilarity and diversity, to those components and producing
groups of similar or diverse items, tagged by groups of simi-
lar or diverse users with similar or diverse tags. For example,
one possible analysis outcome would be: “teenagers use di-
verse tags for action movies” or “males from New York and
California use similar tags for movies directed by Cameron
and Spielberg”. In Section 2.1 and 2.2, we will describe some
of these problem instances that are enabled in our frame-
work. A general dual mining framework that encompasses
many common analysis tasks is then defined in Section 2.3.

A core challenge in this dual mining framework is the de-
sign of similarity and diversity measures. For user or item
components, defined by (attribute, value) pairs, several ex-
isting comparison techniques have been proposed that can
leverage their structured nature or bipartite connections.
Section 2.1.1 illustrates some of those techniques.

Comparing similarity and diversity of tags used by various
users on different items, however, presents a new challenge.
First, tags are drawn from a much larger vocabulary than
user or item attributes and exhibit a long tail characteristic.
Second, it is often the case that different tags are used for the
same set of items and, accounting for those tags separately
would not capture their co-usage. Finally, tags may have
linguistic connections such as synonymy. In order to capture
tag similarity and diversity, we propose to summarize tags
first to account for their co-usage and semantic relationships.
Section 2.1.2 describes some techniques from Information
Retrieval and Machine Learning that can be used.

The tag component is also the most interesting among
the three to be analyzed. Figure 1 shows a rendering of a
tag summarization for Woody Allen movies in the form of
a tag cloud. Similarly, Figure 2 shows a summarization of
tags for the same movies from California users only. In both
cases, summarization is defined as a simple frequency-based
tag cloud where the size of a tag corresponds to how often it
has been used on those movies. While “Woody” and “Allen”
are not surprisingly common to both, the two clouds are dif-
ferent: all users highlight the dramatic, tragic and disturbing
nature of those movies, and California users emphasize tags
such as classic and psychiatry. Moreover, one of the direc-
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Figure 1: Tag Signature for All Users Figure 2: Tag Signature for CA Users

tor’s popular movies, Noiva Nervosa is prominent in the tag
cloud of all users, and yet is conspicuously absent in that
of California users. Our goal is to define analysis tasks that
can help users easily spot those interesting patterns and use
that knowledge in subsequent actions.
We emphasize that, in this study, it is not our goal to

advocate one particular similarity or diversity measure over
another. Rather, we focus on formalizing the Tagging Be-
havior Dual Mining framework and the problem defini-
tions, and designing general algorithms that will work well
for most measures.
The analysis problems formally defined in our proposed

framework fall into the wider category of constrained opti-
mization problems. We are looking for groups of tagging
actions that achieve maximum similarity or diversity on one
or more components while satisfying a set of constraints
such as support. Not surprisingly, as our complexity anal-
ysis shows in Section 3, those problems are NP-Complete
in general. We propose two sets of efficient algorithms for
solving them. The first set incorporates Locality Sensitive
Hashing (LSH) and can be used for problems maximizing
tagging action component similarity. While traditional LSH
is frequently used for performing nearest neighbor search
in high-dimensional spaces, our algorithm finds the bucket
containing the result set of our tagging behavior analysis.
The second set of algorithms borrows ideas from techniques
employed in Computational Geometry to handle the Facil-
ity Dispersion Problem (FDP) and is effective for problems
maximizing diversity. Both sets of algorithms possess com-
pelling theoretical characteristics for problem instances op-
timizing the dual mining goal without any constraints. For
both sets, we also propose advanced techniques that return
better quality results in comparable running time.
In summary, we make the following main contributions:
• We formalize the task of analyzing the tagging behav-

ior of a set of users for a set of items and propose a
novel general constrained optimization framework for
tagging behavior mining.

• We show that the tagging analysis problems are NP-
Complete and propose efficient algorithms for solving
the problems.

• We develop locality sensitive hashing based algorithms
for solving problems maximizing tagging action com-
ponent similarity. We also design computational ge-
ometry based algorithms for problem instances max-
imizing diversity. We provide theoretical guarantees
for both sets of algorithms for handling problems opti-
mizing the dual mining goal without any constraints.

• We perform detailed experiments on real data to show
that our proposed algorithms generate equally good re-
sults as exact brute-force in much less execution time.

2. THE TAGDM FRAMEWORK
We model the data on a social tagging site as a triple
⟨U, I, T ⟩, representing the set of users, the set of items
and the tag vocabulary, respectively. Each tagging action
can be considered as a triple itself, represented as ⟨u, i, T⟩,
where u ∈ U , i ∈ I, T ⊂ T , respectively. A group of tag-
ging actions is denoted as g = {⟨u1, i1, T1⟩, ⟨u2, i2, T2⟩, . . . , }.
We define a user schema, SU = ⟨a1, a2, . . .⟩, to repre-
sent each user as a set of attribute values conforming to
the user schema: u = ⟨u.a1, u.a2, . . .⟩, where each u.ax

is a value for the attribute ax ∈ SU . For example, let
SU = ⟨age, gender, state, city⟩, a user can be represented
as ⟨18, student, new york, nyc⟩. Similarly, we define an item
schema, SI = ⟨a1, a2, . . .⟩, to represent each item as a set of
attribute values, i = ⟨i.a1, i.a2, . . .⟩, where each i.ay is a
value for the attribute ay ∈ SI .

Each tagging action therefore can be represented
as an expanded tuple that concatenates the user at-
tributes, the item attributes and the tags: r = ⟨ru.a1,
ru.a2, . . . , ri.a1, ri.a2, . . . , T⟩. G denotes the set of all such
tagging action tuples. Many social sites have hundreds of
millions of such tuples. Most, if not all, mining tasks in-
volve analyzing sets of such tuples collectively. While there
are a number of different ways tagging action tuples can
be grouped, we adopt the view proposed and experimen-
tally verified in [6], where groups of users (or items) that are
structurally describable (i.e., sharing common attribute value
pairs) are meaningful to end-users. Such groups correspond
to conjunctive predicates on user or item attributes. An ex-
ample of a user describable tagging action group is {gender=
male, state=new york}, and of an item describable group is
{genre=comedy, director=woody allen}. Next we define
an essential characteristic of a set of tagging action groups.

Definition 1. Group Support. Given the input set
of tagging action tuples G, the support of a set of tag-
ging action groups G = {g1, g2, . . .} over G, is defined as
SupportGG = |{r ∈ G | ∃gx ∈ G, r ∈ gx}|. Intuitively, group
support measures the number of input tagging action tuples
that belongs to at least one of the groups in G.

2.1 Concrete TagDM Problems
A large number of concrete TagDM problem instances can

be defined, with their variations coming from two main as-
pects. The first category of variations depends on which
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measure, similarity or diversity, the user is interested in ap-
plying to which tagging components (i.e, users, items, or
tags). For example, a user can be interested in identifying
similar tags produced by similar user groups on diverse item
groups, or similar tags produced by diverse user groups on
similar item groups. Since there are three components, each
of which can adopt one of two measures, this variation alone
can lead to 23 = 8 different problem instances.
The second category of variations depends on which com-

ponents the user is adding to the optimization goal and
which components the user is adding to the constraints.
For example, a user can be interested in finding tagging
action groups that maximize a tag diversity measure and
satisfy user and item similarity constraints, or groups that
maximize a combination of tag diversity and user diversity
measures and satisfy an item similarity constraint. Since
each component can be part of the optimization goal, or
part of the constraint, or neither, this variation can lead to
33 − 1 = 26 different problem instances.
Combining both categories of variations, there is a total

of 112 concrete problem instances that our framework cap-
tures! Table 1 illustrates six of the problem instantiations
that we have investigated in detail. In particular, we focus
on problems with all three components with constraints on
user and item and optimization on the tag component, since
those are the most novel and intuitive mining problems.

ID User Item Tag C O
1 similarity similarity similarity U,I T
2 similarity diversity similarity U,I T
3 diversity similarity similarity U,I T
4 diversity similarity diversity U,I T
5 similarity diversity diversity U,I T
6 similarity similarity diversity U,I T

Table 1: Concrete TagDM Problem Instantiations.
Column C lists the constraint dimensions and col-
umn O lists the optimization dimensions.

Before we formalize the mining problems, we introduce
the core concept of Dual Mining Function.

Definition 2. Dual Mining Function. A Dual Min-
ing Function, F : G × b ×m → float, takes as inputs: G,
a set of tagging action groups; b ∈ {users, items, tags}, a
tagging behavior dimension; m ∈ {similarity, diversity},
a dual mining criterion; and produces a float score, s, that
quantifies the mining criterion over the particular dimension
for the set of tagging action groups.

Definition 2 defines a general dual mining function that
computes a score using arbitrary evaluations over the tag-
ging action groups. In practice, there is a subset of dual
mining functions that are more restricted and yet powerful
enough for solving many real mining scenarios:

Definition 3. Pair-Wise Aggregation Dual Mining
Function. A Pair-Wise Aggregation (PA) Dual Mining
Function, Fpa : G×b×m→ float, is a dual mining function
with two component function Fp : gi × gj × b ×m → float

and Fa : {s1, s2, . . .} → float, where (gi, gj) is a pair
of distinct tagging action groups and each si is an inter-
mediate score produced by Fp, such that: Fpa(G, b,m) =
Fa({Fp(gi, gj , b,m)}, ∀gi, gj ∈ G, i ̸= j.

Pair-wise dual mining functions simplify the general dual
mining functions by enabling the overall mining score to be
computed via aggregating the scores computed over pairs

of the tagging action groups, which is often much easier to
define and compute. We now present a few examples of
the pair-wise dual mining function. The key to a pair-wise
dual mining function is the pair-wise comparison function,
Fp(g1, g2, b,m), where g1 and g2 are distinct tagging action
groups, and b ∈ {users, items, tags}, is a tagging behavior
dimension, and m ∈ {similarity, diversity}, is a dual
mining criterion.

2.1.1 User & Item Dimensions Dual Mining

Given a user describable tagging action group1, its user
dimension is effectively its user group description, i.e., a set
of (attribute, value) pairs that describes the group. There-
fore, given two user groups, g1 and g2, their similarity or
diversity can be captured mainly in two ways: 1) structural
distance between the user group descriptions and 2) set dis-
tance based on the items they have rated.

Let A be the set of user attributes shared between two
user describable tagging action groups g1 and g2, an example
of the pair-wise comparison function leveraging structural
distance is the following:

Fp(g1, g2, users, similarity) =
∑

a∈A sim(v1, v2)
where a.v1 and a.v2 belong to the set of user attribute value
pairs and sim can be a string similarity function that simply
computes the edit distance between two values or a more so-
phisticated similarity function that takes domain knowledge
into consideration. For example, a domain-aware similarity
function can determine “New York City” to be more similar
to “Boston” than to “Dallas”. Fp(g1, g2, users, diversity)
can be similarly defined using the inverse function.

Let g1.I and g2.I be the sets of items tagged by tuples in g1
and g2, respectively, an example of the pair-wise comparison
function leveraging set distance is the following:

F ′
p(g1, g2, users, similarity) =

|{r|r∈g1.I∧r∈g2.I}|
|{r|r∈g1.I∨r∈g2.I}|

which simply computes the percentages of items tagged by
both groups (akin to Jaccard distance.) If numerical ratings
are available for each tagging tuple, a more sophisticated set
distance similarity function can further impose an additional
constraint that an item is common to both groups if its av-
erage ratings in both are close. F ′

p(g1, g2, users, diversity)
can be similarly defined using the inverse function.

2.1.2 Tag Dimension Dual Mining

The tag dimension is fundamentally different from the
user and item dimensions. First, there is no fixed set of
attributes associated with the tag dimension, therefore the
structural distance does not apply. Second, tags are chosen
freely by users using diverse vocabularies. As a result, a
single tagging action group can contain a large number of
tags. Both characteristics make comparing two sets of tags
very difficult.

We propose a two-step approach for handling the tag di-
mension. First, we propose an initial step to summarize the
set of all tags of a tagging action group into a smaller rep-
resentative set of tags, called group tag signature. Second,
we apply comparison functions to compute distance between
signatures. Once again, we are not advocating any partic-
ular way of producing signatures and/or comparing them.
Rather, we simply argue for the need for tag signatures and
their comparisons.

1Since the user and item dimensions share the same charac-
teristics in the dual mining framework, we present here only
the user dimension for simplicity.
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Group tag signature generation: Given a group
of tagging actions g = {⟨u1, i1, T1⟩, ⟨u2, i2, T2⟩, . . .}, we
aim to summarize the tags in T1 ∪ T2 ∪ . . . into a
tag signature Trep(g). The general form of Trep(g) is
{(tc1, w1), (tc2, w2), . . . } where tci is topic category (can be
a tag itself) and wi is weight, i.e., relevance of g for ci.
One can define several methods to compute tag signa-

tures. For example, when tags are hand-picked by editors
and hence the number of unique tags is small, a simple def-
inition can be Trep(g) = {(t, freq(t)) | t ∈ T1 ∪ T2 ∪ . . .},
where freq(t) computes how many times t is used in g.
Most collaborative tagging sites encourage users to create

their own tags, thereby creating a long tail of tags. This
raises challenges such as sparsity and the choice of different
tags to express similar meanings. Techniques from Infor-
mation Retrieval and Machine Learning such as tf*idf and
Latent Dirichlet Allocation (LDA) can be used for tag sum-
marization. LDA aggregates tags into topics based on their
co-occurrence and reason at the level of topics, and han-
dles long tail issues [2]. Also, a Web service such as Open
Calais2 can be used to match a set of tags to a set of pre-
defined categories through sophisticated language analysis
and information extraction.
Comparing group tag signatures: When tagging ac-

tion groups are represented as tag signatures over the same
set of topics, we can leverage many existing vector com-
parison functions to compute the distance between any two
group tag signature vectors pair-wisely. An example is sim-
ply cosine similarity as follows:
F ′′
P (g1, g2, tags, similarity) = cos(θ(Trep(g1), Trep(g2))),

where θ is the angle between the two vectors.
F ′′
P (g1, g2, tags, diversity) can be defined similarly
The comparison can also be enhanced by using an ontol-

ogy such as WordNet to compare entries of similar topics.

2.2 Common Problem Instances
We are now ready to define two of the concrete dual min-

ing problems listed in Table 1. The first one aims to find
similar user sub-populations who agree most on their tag-
ging behavior for a diverse set of items. The second one
aims to find diverse user sub-populations who disagree most
on their tagging behavior for a similar set of items.

Problem 1. Identify a set of tagging action groups,
Gopt = {g1, g2, . . .}, such that:

• ∀gx ∈ Gopt, gx is user- and/or item-describable;
• 1 ≤ |Gopt| ≤ k;

• SupportG
opt

G ≥ p;
• F1(G

opt, users, similarity) ≥ q;
• F2(G

opt, items, diversity) ≥ r;
• F3(G

opt, tags, similarity) is maximized.

where F1 and F2 are structural similarity based dual mining
functions as defined in Definition described in Section 2.1.1,
and F3 is the LDA based tag dual mining function as de-
scribed in Section 2.1.2.
For k = 2, p = 100, q = 0.5, and r = 0.5, solving the prob-

lem on the full set of tagging action tuples in MovieLens [5]
can give us the following Gopt:
g1 = {⟨gender, male⟩, ⟨age, young⟩, ⟨actor, j.aniston⟩,

(comedy, drama, friendship)}
g2 ={⟨gender, male⟩, ⟨age, young⟩, ⟨actor, j.timberlake⟩,

(drama, friendship)}
2https://www.opencalais.com/

which illustrates the interesting pattern that male young
users assign similar tags, drama and friendship, to movies
with “Jennifer Aniston” and “Justin Timberlake,” the for-
mer for her involvement in the popular TV show “Friends”
and the latter for his movie “The Social Network.”

A closely related problem to Problem 1 is to inverse the
similarity and diversity constraints for the user and item
components, i.e., finding diverse user sub-populations who
agree most on their tagging behavior for a similar set of
items (Problem 3 in Table 1). Both problems focus on opti-
mizing the tag similarity and therefore can be solved using
similar techniques. Next, we define a problem that aims to
identify groups that disagree on their tagging behavior.

Problem 4. Identify a set of tagging action groups,
Gopt = {g1, g2, . . .}, such that:

• ∀gx ∈ Gopt, gx is user- and/or item-describable;

• 1 ≤ |Gopt| ≤ k;

• SupportG
opt

G ≥ p;

• F1(G
opt, users, diversity) ≥ q;

• F2(G
opt, items, similarity) ≥ r;

• F3(G
opt, tags, diversity) is maximized.

where F1, F2, and F3 are similarly defined as in Problem 1.
For k = 2, p = 100, q = 0.5, and r = 0.5, solving the

problem on the full set of tagging action tuples in MovieLens
can give us the following Gopt:
g1 = {⟨gender, male⟩, ⟨age, teen⟩, ⟨genre, action⟩,

(gun, special effects)}
g2 ={⟨gender, female⟩, ⟨age, teen⟩, ⟨genre, action⟩,

(violence, gory)}
which illustrates teenaged male users and female users have
entirely different perspectives on action movies. This gives
a user a new insight that there is something about action
movies that is causing the different reactions among two
different groups of users.

2.3 Generalizing the TagDM Framework
We take the novel approach of proposing a general con-

strained optimization framework for tagging behavior min-
ing, upon which various analysis tasks can be instantiated
and optimized.

Definition 4. Tagging Behavior Dual Mining
(TagDM) Problem. Given a triple ⟨G,C,O⟩ in the
TagDM framework where G is the input set of tagging ac-
tions and C, O are the sets of constraints and optimiza-
tion criteria respectively, the Tagging Behavior Dual Min-
ing problem is to identify a set of tagging action groups,
Gopt = {g1, g2, . . .} for b ∈ {users, items, tags} and m ∈
{similarity, diversity}, such that:

• ∀gx ∈ Gopt, gx is user- and/or item-describable;

• klo ≤ |Gopt| ≤ khi;

• SupportG
opt

G ≥ p;

• ∀ci ∈ C, ci.F (Gopt, b,m) ≥ threshold;

• Σoj∈O, oj .F (Gopt, b,m) is maximized.

Intuitively, TagDM aims to identify a set of user- and/or
item-describable sub-groups from input tagging actions,
such that the dual mining constraints are satisfied and a
dual mining goal is optimized. We now clearly see how this
framework generalizes the common problem instances given
in Section 2.2.
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3. COMPLEXITY ANALYSIS
In this section we provide the proof that the Tagging Be-

havior Dual Mining problem is NP-Complete. The decision
version of the TagDM problem is defined as follows:
Given a triple ⟨G,C,O⟩, is there a set of tagging ac-

tion groups Gopt = {g1, g2, . . .} such that
∑

oj∈O(oj .Wt ×
oj.F (Gopt, oj .D, oj .M) ≥ α subject to:

• ∀gx ∈ Gopt, gx is user- and/or item-describable.

• klo ≤ |Gopt| ≤ khi

• SupportG
opt

G ≥ p

• ∀ci ∈ C, ci.F (Gopt, ci.D, ci.M) ≥ ci.Th

Theorem 1. The decision version of the TagDM problem
is NP-Complete.

Proof. The membership of decision version of TagDM
problem in NP is obvious. To verify NP-Completeness, we
reduce Complete Bipartite Subgraph problem (CBS) to our
problem and argue that a solution to CBS exists, if and only
if, a solution our instance of TagDM exists. First, we show
that the problem CBS is NP-Complete.

Lemma 1. Complete bipartite subgraph problem (CBS) is
NP-Complete.

Proof. The decision version of CBS is defined as follows:
Given a bipartite graph G′ = (V1, V2, E) and two positive

integers n1 ≤ |V1|, n2 ≤ |V2|, are there two disjoint subsets

V
′

1 ⊆ V1, V
′

2 ⊆ V2 such that |V ′

1 | = n1, |V
′

2 | = n2 and u ∈
V

′

1 , v ∈ V
′

2 implies that {u, v} ∈ E.
The membership of CBS in NP is obvious. We ver-

ify the NP-Completeness of the problem by reducing it
to Balanced Complete Bipartite Subgraph (BCBS) prob-
lem which is defined as : Given a bipartite graph G′′ =

(V
′′

1 , V
′′

2 , E
′

) and a positive integer n
′

, find two disjoint sub-

sets V
′′′

1 ⊆ V
′′

1 , V
′′′

2 ⊆ V
′′

2 such that |V ′′′

1 | = |V
′′′

2 | = n
′

and

u ∈ V
′′′

1 , v ∈ V
′′′

2 implies that {u, v} ∈ E
′

. This problem
was proved to be NP-Complete by reduction from Clique
in [14]. We can reduce BCBS to CBS by passing the input

graph G′′(V
′′

1 , V
′′

2 , E
′

) of BCBS to CBS and setting n1 and

n2 to n
′

. If a solution exists for the CBS instances, then the

disjoint subsets V
′′′

1 , V
′′′

2 form a balanced complete bipartite
subgraph in G′′.

We have already established that TagDM problem is in
NP. To verify its NP-Completeness, we reduce CBS to the
decision version of our problem. Given an instance of

the problem CBS with G
′

= (V1, V2, E) and positive in-
tegers n1, n2, we construct an instance of TagDM prob-
lem such that there exists a complete bipartite subgraph

induced by disjoint vertex subsets V
′

1 ⊆ V1, V
′

2 ⊆ V2 and

|V ′

1 | = n1, |V
′

2 | = n2, if and only if, a solution to our in-
stance of TagDM exists.
First, we create an user schema SU = ⟨a1, a2, . . . , a|V2|⟩

such that for each vertex vj ∈ V2, there exists a correspond-
ing user attribute aj ∈ SU . Next, we define a set of users
U = {u1, u2, . . . , u|V1|}. Again, for each vertex vi ∈ V1 there
exists a corresponding user ui ∈ U .
For all pairs of vertices (vi, vj), vi ∈ V1, vj ∈ V2 , we set

ui.aj to 1 if {vi, vj} ∈ E; else, we set it to a unique value
such that ux1.ay1 ̸= ux2.ay2 unless x1 = x2, y1 = y2. Intu-
itively, we set the j-th attribute of i-th user to 1 if an edge
exists between vertex pairs (vi, vj); else, we set it to a unique
value that is not shared with any attribute of any user. One
possible way to assign the unique attribute values is to pick

a previously unassigned value from the set [2, |V1|×|V2|+1].
Since the number of possible edges is at most |V1|×|V2|, this
set suffices to generate unique attribute values.

We construct an instance of the TagDM problem where
I = {i} and T = {t}. This results in a set of tagging actions,
G = {⟨u1, i, t⟩, . . . , ⟨u|V1|, i, t⟩} where only the user dimen-
sion plays a non-trivial role in determining the problem solu-
tion. Given a pair of users, the pairwise similarity function
F1 on user dimension measures their structural similarity
by counting the number of attribute values that are shared
between them. Intuitively, the problem collapses to that of
finding a subset of users who share a subset of attributes.

We then define our TagDM problem instance as : For a
given a triple ⟨G,C,O⟩, identify a set Gopt of tagging action
groups such that F3(G

opt, tags,m) ≥ 0 subject to:
• 1 ≤ |Gopt| ≤ n1

• SupportG
opt

G ≥ n1

• F1(G
opt, users, similarity) ≥ n2 ×

(

n1

2

)

If there exists a solution to this TagDM problem instance,
then there are n1 users who have identical values for at least
n2 of their attributes. If two users ux and uy have same
values for a set of attributes A, then for all attributes a ∈ A,
ux.a = uy.a = 1. In other words, whenever the attributes
of two users overlap, the shared attributes can only take a
value of 1. Any other symbol that was assigned is unique
and cannot overlap by construction. If there exists a subset
of attributes A′ ⊆ SU and a subset of users U ′ ⊆ U , then
the corresponding vertices in V1 and V2 form a complete
bipartite subgraph solving the input instance of BCS. Thus
TagDM problem is NP-Complete. ✷

3.1 Exact Algorithm
A brute-force exhaustive approach (henceforth, referred to

as Exact) to solve the TagDM problem requires us to enu-
merate all possible combinations of tagging action groups in
order to return the optimal set of groups maximizing the
mining criterion and satisfying the constraints. The num-
ber of possible candidate sets is exponential in the num-
ber of groups. Evaluating the constraints on each of the
candidate sets and selecting the optimal result can thus be
prohibitively expensive. Each tagging action group is asso-
ciated with a group tag signature vector (the size of which
is determined by the cardinality of the global set of topics),
which may introduce additional challenges in the form of
higher dimensionality. Therefore, we develop practical and
efficient algorithms.

We develop two sets of algorithms. The first set comprises
of locality sensitive hashing based algorithms for handling
TagDM problem instances maximizing similarity of tagging
action components. The algorithms are efficient in practice,
but cannot handle TagDM problem instances maximizing
diversity. The second set is based on techniques employed in
computational geometry for the facility dispersion problem
and is our solution for diversity mining problem instances.

4. LSH BASED ALGORITHMS
The first of our algorithmic solutions is based on local-

ity sensitive hashing (LSH) which is a popular technique
to solve nearest neighbor search problems in higher dimen-
sions [13]. The basic idea is to hash similar input items
into the same bucket (i.e., uniquely definable hash signa-
ture) with high probability. It performs probabilistic di-
mension reduction of high dimensional data by projecting
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input items in higher dimension to a lower dimension such
that items that were in close proximity in the higher dimen-
sion get mapped to the same item in the lower dimensional
space with high probability. LSH guarantees a lower bound
on the probability that two similar input items fall into the
same bucket in the projected space and also the upper bound
on the probability that two dissimilar vectors fall into the
same bucket. For any pair of points in a high-dimensional
space, P1 is the probability of two close points falling into
the same bucket and P2 is the probability of two far-apart
points falling into the same bucket; we want P2 < P1 . If
input items are projected from higher dimension d to a lower
dimension d′, the probabilities can be bounded by:

P (similar items colliding) ≥ (1− P1)
d′ (1)

P (dissimilar items colliding) ≤ P d′

2

This provides an approach to select a set of tagging ac-
tion groups that are similar in their tagging behavior. In our
problem, we need to compare the input set G of n tagging
action groups (i.e., n d-dimensional tag signature vectors,
where d is the cardinality of the global set of tag topic cate-
gories mentioned in Section 2.1.2) using a pairwise compar-
ison function F ′′

p (g1, g2, tags, similarity) that operates on
group tag signature vectors in order to optimize tag similar-
ity. The result set of tagging action groups Gopt maximizing
tag similarity can be retrieved by finding the k closest vec-
tors with minimum average pairwise distance between them.
Note that, our LSH based algorithms works for Problems

1, 2 and 3 in Table 1 maximizing tag similarity. We first in-
troduce an algorithm that returns the set of tagging action
groups Gopt, 1 ≤ |Gopt| ≤ k having maximum similarity in
tagging behavior (ColumnO in Table 1) and then discuss ad-
ditional techniques to include the multiple hard constraints
into the solution (Column C in Table 1).

4.1 Maximizing Similarity based on LSH
Our LSH based algorithm SM-LSH deals with TagDM

problem instances optimizing tag SiMilarity. In traditional
LSH, the buckets obtained after hashing input items are
used to find the nearest neighbors for new items. In our
solution, we instead rank the buckets based on the scoring
function. One of the key requirement for good performance
of LSH is the careful selection of the family of hashing
functions. In SM-LSH, we use the LSH scheme proposed by
Charikar [4] which employs a family of hashing functions
based on cosine similarity. As discussed in Section 2.1.2,
the cosine similarity between two tagging action group
tag signature vectors is defined as the cosine of the angle
between them and can be defined as:

cos(θ(Trep(gx), Trep(gy))) =
|Trep(gx).Trep(gy)|√
|Trep(gx)|.|Trep(gx)|

The algorithm computes a succinct hash signature of the
input set of n tagging action groups by computing d′ in-
dependent dot products of each d-dimensional group tag
signature vector Trep(gx), where gx ⊆ G with a random
unit vector r⃗ and retaining the sign of the d′ resulting prod-
ucts. This maps a higher d-dimensional vector to a lower d′-
dimensional vector (d′ ≤≤ d). Each entry of r⃗ is drawn from
a 1-dimensional Normal distribution N(0,1) with zero mean
and unit variance. Alternatively, we can generate a spher-
ically symmetric random vector r⃗ of unit length from the
d-dimensional space. The LSH function for cosine similarity
for our problem is given by the following Theorem 2 [4]:

Theorem 2. Given a collection of n d-dimensional vec-
tors where each vector Trep(gx) corresponds to a gx ⊆ G, and
a random unit vector r⃗ drawn from a 1-dimensional Normal
distribution N(0,1), define the hash function hr as:

hr(Trep(gx)) =

{

1 if r⃗.Trep(gx) ≥ 0
0 if r⃗.Trep(gx) < 0

Then for two arbitrary vectors Trep(gx) and Trep(gy), the
probability that they will fall in the same bucket is:

P [hr(Trep(gx)) = hr(Trep(gy))] = 1− θ(Trep(gx), Trep(gy))

π

where θ(Trep(gx), Trep(gy)) is angle between two vectors.

The proof of the above Theorem 2 establishing that the
probability of a random hyperplane (defined by r⃗ to hash
input vectors) separating two vectors is directly proportional
to the angle between the two vectors follows from Goemans
et. al’s theorem [9]. Any pairwise dual mining function for
comparing tag signatures must satisfy such properties. We
represent the d′-dimensional-bit LSH function as:

g(Trep(gx)) = [hr1(Trep(gx)), . . . , hrd′(Trep(gx))]
T

For d′ LSH functions and from (1), the probability of sim-
ilar tag signature vectors falling into the same bucket for all
d′ hash functions is given by:

P (similar tag vectors colliding) ≥
(

θ(Trep(gx),Trep(gy))

π

)d′

Now, each input vector is entered into l hash ta-
bles indexed by independently constructed hash functions
g1(Trep(gx)), . . . , gl(Trep(gx)). Using this LSH scheme,
we hash the group tag signature vectors to l different d′-
dimensional hash signatures(or, buckets). The total number
of possible hash signatures in each of the l lower dimensional

space is 2d
′

. However, the maximum bound on the number
of buckets in each of the lower dimensional space is n.

While LSH is generally used to find the nearest neighbors
for new items, we take the novel approach of finding the
right bucket to output as result of our problem based on
checking for the number of tagging action groups in result
set and ranking by scoring function. For each of the l hash
tables, we first check for satisfiability of 1 ≤ |Gopts| ≤ k in
each bucket and then rank the buckets based on the scoring
function in order to determine the result set of tagging action
groups Gopt with maximum similarity.

Theorem 3. Given a collection of n d-dimensional tag
signature vectors where each pair of vectors Trep(gx) and
Trep(gy) corresponds to a gx, gy ⊆ G, the probability of find-
ing result set Gopt of k most similar vectors by SM-LSH is
bounded by:

P (Gopt) ≥ 1−
∑

x,y∈[1,k]

[1−
(

θ(Trep(gx), Trep(gy))

π

)d′

]

Proof. The probability of finding the set of tagging ac-
tion groups Gopt, 1 ≤ |Gopt| ≤ k having maximum similarity
in tagging behavior, P (Gopt):
= 1 - P(one of kC2 vector pair belongs to different buckets)
≥ 1 -

∑

x,y∈[1,k] P(Trep(gx),Trep(gy) in different buckets)

≥ 1 -
∑

x,y∈[1,k] [ 1 - P(Trep(gx),Trep(gy) in same buckets) ]

≥ 1 -
∑

x,y∈[1,k] [ 1 -
(

θ(Trep(gx),Trep(gy))

π

)d′

]

The above theorem establishes the theoretical probabilis-
tic bound of finding the optimal result set. This is a Monte
Carlo randomized algorithm whose probability of success
can be boosted by either increasing the number of hash func-
tions d′ or the number of trials of the algorithm. We also
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validate the efficiency of our technique in a practical setting
in Section 6.
Algorithm 1 is the pseudo code of our SM-LSH algorithm.

This algorithm may return null result if post-processing of
all l hash tables yields no bucket satisfying 1 ≤ |Gopt| ≤ k.
This could be either because there are no set of tagging ac-
tion groups that satisfy the ≤ k requirement of our problem
instance or because the input parameters to LSH caused
a partitioning of data that seperated the candidate set of
groups across different buckets. This motivates us to tune
SM-LSH by iterative relaxation that varies the input param-
eter d′ in each iteration. Decreasing the parameter d′ in-
creases the expected number of tagging action groups hash-
ing into a bucket, thereby increasing the chances of our al-
gorithm finding the result set. We perform a binary search
between 1 and d′ to identify the correct number of hash
functions to employ.
Complexity Analysis: The pre-processing or locality

sensitive hashing time is bounded by O(nld′ log n) since the
binary search relaxation iteration runs for log n times in the
worst case and hashing time is O(nld′). In the second phase,
we post-process the buckets for ranking by scoring function
which is a O(n log n) operation. The space complexity of
the algorithm is O(nl) since there are l hash tables and each
table has at most n buckets.
SM-LSH is a fast algorithm with interesting probabilis-

tic guarantees and is advantageous, especially for high-
dimensional input vectors. However, the hard constraints
along user and item dimensions are not leveraged in the op-
timization solution so far. Next, we discuss LSH based ap-
proaches for accommodating the multiple hard constraints
into the solution.

4.2 Dealing with Constraints: Filtering
A straightforward method of refining the result set of SM-

LSH for satisfiability of all the hard constraints in TagDM
problem instances is post-processing or Filtering. We refer
to this algorithm as SM-LSH-Fi. For each of the l hash
tables, we first check for satisfiability of the hard constraints
in each bucket and then rank the buckets (satisfying hard
constraints) according to the scoring function in order to
determine the result set of tagging action groups Gapp (We
represent Gopt as Gapp since LSH based technique now per-
form approximate nearest neighbor search) with maximum
similarity. Such post-processing of buckets for satisfiabil-
ity of hard constraints may also return null results, if post-
processing of hash tables yields no bucket satisfying all the
hard constraints. Therefore, we propose a smarter method
that folds the hard constraints concerning similarity as part
of vectors in high-dimensional space, thereby increasing the
chances of similar groups hashing into the same bucket.

4.3 Dealing with Constraints: Folding
Problems 2 and 3 in Table 1 has two out of the three

tagging action components to be mined for similarity. In
order to explore the main idea of LSH, we Fold the hard
constraints maximizing similarity as soft constraints into
our SM-LSH algorithm in order to hash similar input tag-
ging action groups (similar with respect to group tag signa-
ture vector and user and/or item attributes) into the same
bucket with high probability. We refer to this algorithm
as SM-LSH-Fo. We fold the user or item similarity hard
constraints in Problems 2 and 3 respectively into the op-
timization goal and apply our algorithm, so that tagging

Algorithm 1 SM-LSH (G, O, k, d′, l): Gopt

//Main Algorithm

1: min = 1
2: max = d′

3: TU
rep ← {}; T I

rep ← {}
4: if C1.m = similarity then
5: TU

rep ← Unarize user vector
6: end if
7: if C2.m = similarity then
8: T I

rep ← Unarize item vector
9: end if
10: for x = 1 to n do
11: Trep(gx) ← TU

rep(gx) + T I
rep(gx) + Trep(gx)

12: end for
13: repeat
14: Buckets ← LSH(G, d′, l)
15: Gopt ← MAX(Rank(Buckets, k))
16: if Gopt = null then
17: max = d′ − 1
18: else
19: min = d′ + 1
20: end if
21: d′ = (min+max)/2
22: until (min > max) or (Gopt ̸= null)
23: return Gopt

//LSH(G, d′, l): Buckets

1: for z = 1 to l do
2: for x = 1 to n do
3: for y = 1 to d′ do
4: Randomly choose r⃗ from d-dimensional Normal

distribution N(0, 1)
5: if r⃗.Trep(gx) ≥ 0 then
6: hry(Trep(gx)) ← 1
7: else
8: hry(Trep(gx)) ← 0
9: end if
10: gz(Trep(gx)) = [hr1(Trep(gx)), .., hrd′(Trep(gx))]

T

11: end for
12: end for
13: end for
14: Buckets ← g1(Trep(gx)) ∪ · · · ∪ gl(Trep(gx))
15: return Buckets

action groups with similar user attributes or similar item
attributes, and similar group tag signature vectors hash to
the same bucket. For each tagging action group gx ⊆ G, we
represent the categorical user attributes or item attributes
as a boolean vector and concatenate it with Trep(gx). We

map n vectors from a higher (d +
∑|SU |

i=1

∑|ai|
j=1 |ai = vj |) di-

mensional space for users (replace |SU | with |SI | for items)
to a lower d′ dimensional space. Similar to Algorithm 1,
we consider l LSH hash functions and then post-process
the buckets for satisfiability of the remaining constraints
in order to retrieve the final result set of tagging action
groups Gapp with maximum optimization score. Problem
1 in Table 1 has all three tagging action components set
to similarity. In this case, we build one long vector for
each tagging action group gx ⊆ G by concatenating boolean
vector corresponding to categorical user attributes, boolean
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vector corresponding to categorical item attributes and nu-
meric tag topic signature vector Trep(gx). The dimension-
ality of the high-dimensional space for Problem 1 is d +
∑SU

i=1

∑|ai|
j=1 |ai = vj | +

∑SI

i=1

∑|ai|
j=1 |ai = vj |.

Complexity Analysis: The pre-processing time and
search time of the complete LSH based algorithms continue
to be O(nld′ log n) and O(n log n) respectively. The space
complexity of the algorithms is O(nl).
Both SM-LSH-Fi and SM-LSH-Fo are efficient algorithms

for solving TagDM similarity maximization problem in-
stances and readily out-performs the baseline Exact, as
shown in Section 6. However, there are other instantiations
namely, Problems 4, 5 and 6 in Table 1 which concern tag di-
versity maximization. Since it is non-obvious how the hash
function may be inversed to account for dissimilarity while
preserving the properties of LSH, we develop another set of
algorithms (less efficient than LSH based, as per complexity
analysis) in Section 5 for diversity problems.

5. FDP BASED ALGORITHMS
The second of our algorithmic solutions borrows ideas

from techniques employed in computational geometry, which
model data objects as points in high dimensional space and
determine a subset of points optimizing some objective func-
tion. Such geometric problem examples include clustering a
set of points in euclidean space so as to minimize the max-
imum intercluster distance, computing the kth smallest or
largest inter-point distance for a finite set of points in eu-
clidean space, etc. Since we consider tagging action groups
as tag signature vectors, and since the cardinality of the
global set of topics (that, in turn, determines the size of
each vector) is often high, computational geometry based
approach is an intuitive choice to pursue.
We focus on a specific geometric problem, namely the

facility dispersion problem (FDP), which is analogous to
our TagDM problem instances, finding the tagging action
groups maximizing the mining criterion. The facility dis-
persion problem deals with the location of facilities on a
network in order to maximize distances between facilities,
minimize transportation costs, avoid placing hazardous ma-
terials near housing, outperform competitors’ facilities, etc.
We consider the problem variant in Ravi et al.’s paper [18]
that maximizes some function of the distances between fa-
cilities. The optimality criteria considered in the paper are
MAX-MIN (i.e., maximize the minimum distance between
a pair of facilities) and MAX-AVG (i.e., maximize the av-
erage distance between a pair of facilities). Under either
criterion, the problem is known to be NP-hard by reduction
from the Set Cover problem, even when the distances satisfy
the triangle inequality [7]. The authors present an approx-
imation algorithm for the MAX-AVG dispersion problem,
that provides a performance guarantee of 4. The algorithm
initializes a pair of nodes (i.e., facilities) which are joined by
an edge of maximum weight and adds a node in each sub-
sequent iteration which has the maximum distance to the
nodes already selected.
The facility dispersion problem solution provides an ap-

proach to determine a set of tagging actions groups that
have maximum average pair-wise distance, i.e., that are dis-
similar in their tagging behavior. In fact, this approach may
also be extended to determine a set of tagging action groups
that are similar in their behavior, unlike the LSH based al-
gorithm in Section 4 (which works only for similarity, not

diversity). We consider each of the input n tagging action
groups as d-dimensional tag signature vector in a unit hyper-
cube and intend to identify k vectors with maximum average
pairwise distance between them. We compare the input set
G of n tagging action groups using a pairwise comparison
function F ′′

p (g1, g2, tags, diversity) that operates on tagging
action group signature vectors; and return the set of tagging
groups ≤ k having maximum diversity in tagging behavior.

Our FDP based algorithms work for Problems 4, 5 and 6
in Table 1 maximizing tag diversity. We first introduce an
algorithm that returns the groups having maximum diver-
sity in tagging behavior (Column O in Table 1) and then
discuss additional techniques to handle the multiple hard
constraints in the solution (Column C in Table 1).

5.1 Maximizing Diversity based on FDP
Our FDP based algorithm DV-FDP handles TagDM

problem instances optimizing tag DiVersity. Given an in-
put set G of n tagging action groups, each having a numeric
tag signature vector Trep(gx), where gx ⊆ G, we build the
result set Gapp (we represent the result set as Gapp since the
technique returns approximate solution) by adding a tagging
action group in each iteration which has the maximum dis-
tance to the groups already included in the result set. Again,
we use cosine similarity measure between two tag signature
vectors for determining the distance since the distance met-
ric hold triangular inequality property. Thus, our DV-FDP
attempts to find one tight set of k groups with maximum av-
erage pairwise distance between them. The approximation
bounds for this algorithm follows from [18] :

Theorem 4. Let I be an instance of the TagDM problem
maximizing the mining criterion with k ≥ 2 and no other
hard constraints, where the collection of n d-dimensional
vectors are in a unit hypercube satisfying the triangle in-
equality. Let Gopt and Gapp denote respectively the optimal
set of k tagging action groups returned by Exact and DV-
FDP algorithms. Then Gopt/Gapp ≤ 4.

Algorithm 2 is the pseudo-code of our DV-FDP algorithm.
Once the n× n distance matrix SG is built using the cosine
distance function, the implementation exhaustively scans S
for determining the best add operation in each of the subse-
quent iterations. If A represents the result set, the objective
is to find an entry from G − A to add to A, such that its
total sum of weight to a node in A is maximum.

Algorithm 2 DV-FDP (G, O, k): Gapp

//Main Algorithm

1: SG ← Compute n× n Distance Matrix(G)
2: {gx, Ix, gy, Iy } ← MAX(SG)
3: A ← [gx, gy]
4: while A ̸= k do
5: gz ← Σ{z′∈[A],z∈[G−A]}MAX(SG−A)
6: A ← [A, gz]
7: end while
8: Gapp ← A
9: return Gapp

Complexity Analysis: The complexity of the imple-
mentation of the DV-FDP algorithm is O(n2 + nk), i.e.,
O(n2) due to operations around the n × n distance matrix
SG. The space complexity of the algorithm is O(n2). Note
that, our LSH based algorithms have better space and time
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complexity than FDP based algorithms. However, experi-
ments in Section 6 show comparable execution time for LSH
and FDP based algorithms in a practical setting.
Like SM-LSH, this algorithm does not leverage the hard

constraints along user and item dimensions into the opti-
mization solution, as well. We now illustrate approaches for
including the multiple hard constraints into the solution.

5.2 Dealing with Constraints: Filtering
Similar to SM-LSH-Fi, a straightforward method of refin-

ing the result set of groups for satisfiability of all the hard
constraints in TagDM problem instances is post-processing
or Filtering. We refer to this algorithm as DV-FDP-Fi.
Once the result set Gapp of k groups is identified, we post-
process it to retrieve the relevant answer set of tagging ac-
tion groups, satisfying all the hard constraints. Note that,
such post-processing of the result set for satisfiability of hard
constraints may return null results frequently and hence we
propose a smarter algorithm that folds some of the hard
constraints into the DV-FDP approach, thereby decreasing
the chances of hitting a null result.

5.3 Dealing with Constraints: Folding
In contrast to general DV-FDP algorithm whose objec-

tive is to add groups to the result set greedily so that
average pair-wise distance is maximized, we want to re-
trieve the set in each iteration whose members, besides be-
ing dissimilar, satisfy many other constraints. In DV-FDP,
the greedy add operation in Line 5 of Algorithm 2 maxi-
mizes tag diversity. If the algorithm includes a bad tag-
ging action group to the result set in an iteration, the al-
gorithm may return null result or an inferior approximate
result, after final filtering of the result set for hard con-
straint satisfiability. Therefore, we propose our second ap-
proach in which multiple hard constraints are Folded into
the add operation. We refer to this algorithm as DV-
FDP-Fo. During each new group addition to the result
set, we not only check for the pair with maximum distance,
but also check for the satisfiability of the hard constraints
F ′
p(g1, g2, users,m) ≥ q and F ′

p(g1, g2, items,m) ≥ r, where
m ∈ {similarity, diversity}. The algorithm terminates
when the number of groups in result set equals k. Once the
result set of k groups is identified, we post-process the set for
satisfiability of the support constraint, in order to retrieve

the answer result of tagging action groups Gapp′ .
Complexity Analysis: The time and space complexity

of the algorithm continues to be O(n2) in the worst case.

Discussion: Table 2 broadly summarizes our algorith-
mic contributions for solving the TagDM problem instances
in Table 1. Note that, our algorithms are capable of han-
dling all 112 concrete problem instances that our framework
captures.

Optimization Algorithm Constraints Additional Techniques

similarity LSH based

similarity fold constraints

diversity filter constraints

similarity,

diversity

fold similarity constraints,

filter diversity constraints

diversity FDP based

similarity fold constraints

diversity fold constraints

similarity,

diversity
fold constraints

Table 2: Summary of TagDM Problem Solutions.

6. EXPERIMENTS
We conduct a set of comprehensive experiments for quan-

titative (Section 6.1) and qualitative (Section 6.2) analysis of
our proposed algorithms for all 6 problems listed in Table 1.
Our quantitative performance indicators are (a) efficiency of
the algorithms, and (b) analysis quality of the results pro-
duced. The efficiency of our algorithms is measured by the
overall response time, whereas the result quality is measured
by the average pairwise distance between the k tagging ac-
tion group vectors returned by our algorithms (i.e., Fpa).
In order to qualitatively assess the tagging behavior analy-
sis generated by our approaches, we conduct a user study
through Amazon Mechanical Turk as well as write interest-
ing case studies.

Data Set: We use the MovieLens3 1M and 10M ratings
dataset for our evaluation purposes. The MovieLens 1M
dataset consists of 1 million ratings from 6000 users on 4000
movies while the 10M version has 10 million ratings and
100,000 tagging actions applied to 10,000 movies by 72,000
users. The titles of movies in MovieLens are matched with
those in the IMDB dataset4 to obtain movie attributes.

User Attributes: The 1M dataset has well-defined user
attributes but no tagging information, whereas the 10M
dataset has tagging information but no user attributes.
Therefore, for each user in the 1M dataset with a complete
set of attributes, we build her rating vector and compare it
to the rating vectors (if available) of all 72,000 users in the
10M dataset. For every user in 10M dataset, we find the user
in 1M dataset such that the cosine similarity of their movie
rating vector is the highest (i.e., user rating behaviors are
most identical). The attributes of user in 10M dataset are
obtained from the closest user in 1M dataset. In this way,
we build a dataset consisting of 33,322 tagging and rating
actions applied to 6,258 movies by 2,320 users. The tag vo-
cabulary size is 64,663. The user attributes are gender, age,
occupation and zip-code. The attribute gender takes 2 dis-
tinct values: male or female. The attribute age is chosen
from one of the eight age-ranges: under 18, 18-24, . . . , 56+.
There are 21 different occupations listed by MovieLens such
as student, artist, doctor, lawyer, etc. Finally, we convert
zipcodes to states in the USA (or foreign, if not in USA) by
using the USPS zip code lookup5. This produces the user
attribute location, which takes 52 distinct values.

Movie Attributes: Movie attributes are genre, actor
and director. There are 19 movie genres such as action,
animation, comedy, drama, etc. The pool of actor values and
director values, corresponding to movies which have been
rated by at least one user in the MovieLens dataset, is huge.
We pick only those actors and directors who belong to at
least one movie that has received greater than 5 tagging
actions. In our experiments, the number of distinct actor
attribute values is 697 while that of distinct director is 210.

Mining Functions: The set of tagging ac-
tion groups is built by performing a cartesian
product of user attribute values with item at-
tribute values. An example tagging action group is
{gender=male, age=under 18, occupation=student,
location=new york, genre=action, actor=tom hanks,

3http://www.grouplens.org/node/73
4http://www.imdb.com/interfaces
5http://zip4.usps.com
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Figure 3: Execution Time:Problems 1, 2, 3 in Table 1 Figure 4: Quality:Problems 1, 2, 3 in Table 1

Figure 5: Execution Time:Problems 4, 5, 6 in Table 1 Figure 6: Quality:Problems 4, 5, 6 in Table 1

director=steven spielberg}. The total number of pos-
sible tagging action groups is more than 40 billion, while
the number of tagging action groups containing at least
one tuple is over 300K. For our experiments, we consider
4535 groups that contain at least 5 tagging action tuples.
The user and item similarity (or diversity) is measured by
determining the structural distance between user and item
descriptions of groups respectively. For topic discovery, we
apply LDA [3] as discussed in Section 2.1.2. We generate a
set of 25 global topic categories for the entire dataset, i.e.,
d = 25. For each tagging action group, we perform LDA
inference on its tag set to determine its topic distribution
and then generate its tag signature vector of length 25.
Finally, we use cosine similarity for computing pairwise
similarity between tag signature vectors.

System Configuration: Our prototype system is imple-
mented in Python. All experiments were conducted on an
Ubuntu 11.10 machine with 4 GB RAM, AMD Phenom II
N930 Quad-Core Processor.

6.1 Quantitative Evaluation
We compare the execution time of all 6 TagDM problem

instantiations in Table 1 for the entire dataset (consisting
of 33K tuples and 4K tagging action groups) using Exact,
SM-LSH-Fi, SM-LSH-Fo, DV-FDP-Fi and DV-FDP-Fo al-
gorithms. We use the name Exact for the brute-force ap-
proach on both tag similarity and diversity maximization
instances. For all our experiments, we set the number of

tagging action groups to be returned at k = 3, since the
Exact algorithm is not scalable for larger k. Figure 3 and 4
compare the execution time and quality respectively of Ex-
act and LSH based algorithms for Problems 1, 2 and 3 (Tag
Similarity). Figure 5 and 6 compare the execution time and
quality respectively of Exact and FDP based algorithms for
Problems 4, 5 and 6 (Tag Diversity). The quality of the
result set is measured by computing the average pair-wise
cosine similarity between the tag signature vectors of the
k = 3 tagging action groups returned. The group support
is set at p = 350 (i.e., 1%); the user attribute similarity (or,
diversity) constraint as well as the item attribute similarity
(or, diversity) constraint is set to q = 50%, r = 50% respec-
tively. For LSH based algorithms, the number of hash tables
is l = 1 while the initial value of d′ is 10.

We observe that the execution time of our algorithms is
much faster than Exact, for both tag similarity and tag di-
versity problem instances. In Figure 3, the execution times
of SM-LSH-Fi and SM-LSH-Fo for Problems 1, 2 and 3 are
comparable to each other and is less that 1 minute. In Fig-
ure 5, the execution times of DV-FDP-Fi and DV-FDP-Fo
for Problems 4, 5 and 6 are slightly more than 3 minutes.
Despite significant reduction in execution time, our algo-
rithms do not compromise much in terms of analysis quality,
as evident from Figure 4 and Figure 6.

The number of input tagging action tuples available for
tagging behavior analysis is dependent on the query under
consideration. For the entire dataset, there are 33K such tu-
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Figure 7: Execution Time:Varying Tagging Tuples Figure 8: Quality:Varying Tagging Tuples

ples. However, if we want to perform tagging behavior anal-
ysis of all movies tagged by {gender= male} or {location=
CA}, the number of available tuples is 26,229 and 6,256 re-
spectively. Or, if want to perform tagging behavior anal-
ysis of all users who have tagged movies having {genre=
drama}, the number of tuples is 17,368. Needless to say, the
number of tagging action tuples can have a significant im-
pact on the performance of the algorithms since it affects
the number of non-empty tagging action groups on which
our algorithms operate. As a result, we build 4 bins having
30K, 20K, 10K and 5K tagging action tuples respectively
(assume, each bin is a result of some query on the entire
dataset) and compare our algorithm performances for one
of the tag similarity maximization problems and one of the
tag diversity maximization problems, say Problem 1 and
Problem 6 from Table 1 respectively. Both Problems 1 and
6 have user and item dimension constraints set to similarity.
Figures 7 and 8 compare the execution time and quality re-
spectively of the Exact brute-force algorithm with our smart
algorithms: SM-LSH-Fo for Problem 1 and DV-FDP-Fo for
Problem 6. The group support is set at p = 350 (i.e., 1%);
the user attribute similarity (or, diversity) constraint and
the item attribute similarity (or, diversity) constraint are
set to q = 50%, r = 50% respectively, and k = 3. For
each bin along the X axis, the first two vertical bars stand
for Problem 1 (tag similarity) and the last two stand for
Problem 6 (tag diversity).
As expected, the difference in execution time between our

algorithms and the Exact is small for bins with lesser number
of tagging tuples for both tag similarity and diversity. How-
ever, our algorithms return results much faster than Exact
for bins with larger number of tagging tuples. The quality
scores continue to be comparable to the optimal answer, as
shown in Figures 8.

6.2 Qualitative Evaluation
We now validate how social tagging behavior analysis can

help users spot interesting patterns and draw conclusions
about the desirability of an item, by presenting several anec-
dotal results on real data. We also compare the utility and
popularity of the 6 novel mining problems in Table 1 in an
extensive user study conducted on Amazon Mechanical Turk
(AMT)6.

6https://www.mturk.com

6.2.1 Case Study

We present few interesting anecdotal results returned by
our algorithms for the following randomly selected queries:

1. Analyze user tagging behavior for {director=
steven spielberg, genre= war} movies: Old male
and young female use diverse set of tags for war movies
“Saving Private Ryan” and “Schindler’s List” directed
by Steven Spielberg. This is because, the former is
a movie about US military while the latter revolves
around German military in World War II. Also, old
male and young male tag “Schindler’s List” dissimi-
larly: the former likes it while the latter does not.

2. Analyze tagging behavior of {gender=
male, location= california} users for movies:
Old male and young male living in California use
similar tags for “Lord of the Rings” film trilogy of
fantasy genre. However, they differ in their tagging
towards “Star Wars” movies having similar genre.
This is because, the genre of the latter series borders
between fantasy and science fiction. Surprisingly, old
male likes it while young male does not.

6.2.2 User Study

We conduct a user study through Amazon Mechanical
Turk to elicit user responses towards the different TagDM
problem instances we have focused on in the paper. We gen-
erate analysis corresponding to all 6 problem instantiations
for the following randomly selected queries:

1. Analyze tagging behavior of {gender= male} users for
movies.

2. Analyze tagging behavior of {occupation= student}
users for movies.

3. Analyze user tagging behavior for {genre= drama}
movies.

We have 30 independent single-user tasks. Each task is
conducted in two phases: User Knowledge Phase and User
Judgment Phase. During the first phase, we estimate the
user’s familiarity about movies in the task using a survey,
besides her demographics. In the second phase, we ask users
to select the most preferred analysis, out of the 6 presented
to them, for each query. Responses from all users are aggre-
gated to provide an overall comparison between all problem
instances in Figure 9. The height of the vertical bars repre-
sent the percentage of users, preferring a problem instance.
It is evident that users prefer TagDM Problems 2 (find sim-
ilar user sub-populations who agree most on their tagging
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Figure 9: User Study

behavior for a diverse set of items), 3 (find diverse user sub-
populations who agree most on their tagging behavior for a
similar set of items) and 6 (find similar user sub-populations
who disagree most on their tagging behavior for a similar set
of items), having diversity as the measure for exactly one of
the tagging component: item, user and tag respectively.

7. RELATED WORK
To the best of our knowledge, our work is the first to de-

velop a general framework that encompasses mining collab-
orative tagging actions, studies its complexity and develops
efficient algorithms. We summarize work related to topic
discovery, tag mining and its applications, and the heuris-
tics we use in our algorithms.
There are many topic discovery techniques such as

tf*idf [19], Latent Dirichlet Allocation (LDA) [3, 2] and
OpenCalais. In this work, we use LDA, a generative proba-
bilistic method proven to be robust when looking for hidden
topics in Web documents [3, 1].
Tag mining has been used in multiple applications includ-

ing tag recommendations [17], item recommendations [16,
10], document navigation [11], and tagging motivation [15]
However, most of these works are tailored to specific datasets
and none of them defines a general mining problem, studies
its complexity and develops efficient generic algorithms.
Locality Sensitive Hashing (LSH) and the Facility Disper-

sion Problem (FDP), were first introduced in [13, 8] and [12]
respectively. LSH is used in prominent applications includ-
ing duplicate detection and nearest neighbor queries [13]. In
this work, we show how we adapt LSH to rank and choose
the best bucket containing tagging analysis result. While
being less efficient than LSH, the computational geometry
based approach for the facility dispersion problem in [18]
serves tag diversity problem instantiations and may be ex-
tended to solve similarity problems.

8. CONCLUSION
In this paper, we developed the first framework to mine

social tagging behaviors. We identified a family of min-
ing problems that apply two opposing measures: similarity
and diversity, to the three main tagging components: users,
items, and tags. We showed that any instance of those is
NP-Complete and developed efficient algorithms based on
locality sensitive hashing and solutions developed in com-
putational geometry for the facility disperson problem. Our

extensive experiments on the MovieLens dataset show the
superiority of our algorithms over the brute-force approach.
In the future, we plan to handle updates and insertions of
new users, items and tags. We also intend to explore the ap-
plicability of our framework to other domains such as topic-
centric exploration of tweets and news articles, an area that
has been receiving a lot of attention lately. In particular,
we would like to explore the usefulness of our techniques for
mining and characterizing events in tweets and news.
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