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ABSTRACT

As the complexity of enterprise systems increases, the need for

monitoring and analyzing such systems also grows. A number of

companies have built sophisticated monitoring tools that go far be-

yond simple resource utilization reports. For example, based on

instrumentation and specialized APIs, it is now possible to monitor

single method invocations and trace individual transactions across

geographically distributed systems. This high-level of detail en-

ables more precise forms of analysis and prediction but comes at

the price of high data rates (i.e., big data). To maximize the benefit

of data monitoring, the data has to be stored for an extended period

of time for ulterior analysis. This new wave of big data analytics

imposes new challenges especially for the application performance

monitoring systems. The monitoring data has to be stored in a sys-

tem that can sustain the high data rates and at the same time enable

an up-to-date view of the underlying infrastructure. With the ad-

vent of modern key-value stores, a variety of data storage systems

have emerged that are built with a focus on scalability and high data

rates as predominant in this monitoring use case.

In this work, we present our experience and a comprehensive

performance evaluation of six modern (open-source) data stores in

the context of application performance monitoring as part of CA

Technologies initiative. We evaluated these systems with data and

workloads that can be found in application performance monitor-

ing, as well as, on-line advertisement, power monitoring, and many

other use cases. We present our insights not only as performance

results but also as lessons learned and our experience relating to

the setup and configuration complexity of these data stores in an

industry setting.

1. INTRODUCTION
Large scale enterprise systems today can comprise complete data

centers with thousands of servers. These systems are heteroge-

neous and have many interdependencies which makes their admin-

istration a very complex task. To give administrators an on-line

view of the system health, monitoring frameworks have been de-

veloped. Common examples are Ganglia [20] and Nagios [12].

These are widely used in open-source projects and academia (e.g.,

Wikipedia1). However, in industry settings, in presence of stringent

response time and availability requirements, a more thorough view

of the monitored system is needed. Application Performance Man-

agement (APM) tools, such as Dynatrace2, Quest PerformaSure3,

AppDynamics4, and CA APM5 provide a more sophisticated view

on the monitored system. These tools instrument the applications

to retrieve information about the response times of specific services

or combinations of services, as well as about failure rates, resource

utilization, etc. Different monitoring targets such as the response

time of a specific servlet or the CPU utilization of a host are usu-

ally referred to as metrics. In modern enterprise systems it is not

uncommon to have thousands of different metrics that are reported

from a single host machine. In order to allow for detailed on-line

as well as off-line analysis of this data, it is persisted at a cen-

tralized store. With the continuous growth of enterprise systems,

sometimes extending over multiple data centers, and the need to

track and report more detailed information, that has to be stored for

longer periods of time, a centralized storage philosophy is no longer

viable. This is critical since monitoring systems are required to in-

troduce a low overhead – i.e., 1-2% on the system resources [2]

– to not degrade the monitored system’s performance and to keep

maintenance budgets low. Because of these requirements, emerg-

ing storage systems have to be explored in order to develop an APM

platform for monitoring big data with a tight resource budget and

fast response time.

1Wikipedia’s Ganglia installation can be accessed at http://
ganglia.wikimedia.org/latest/.
2Dynatrace homepage - http://www.dynatrace.com
3PerformaSure homepage - http://www.quest.com/
performasure/
4AppDynamics homepage - http://www.appdynamics.
com
5CA APM homepage - http://www.ca.com/us/
application-management.aspx
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APM has similar requirements to current Web-based informa-

tion systems such as weaker consistency requirements, geograph-

ical distribution, and asynchronous processing. Furthermore, the

amount of data generated by monitoring applications can be enor-

mous. Consider a common customer scenario: The customer’s data

center has 10K nodes, in which each node can report up to 50K

metrics with an average of 10K metrics. As mentioned above, the

high number of metrics result from the need for a high-degree of

detail in monitoring, – an individual metric for response time, fail-

ure rate, resource utilization, etc. of each system component can

be reported. In the example above, with a modest monitoring in-

terval of 10 seconds, 10 million individual measurements are re-

ported per second. Even though a single measurement is small in

size, below 100 bytes, the mass of measurements poses similar big

data challenges as those found in Web information system applica-

tions such as on-line advertisement [9] or on-line analytics for so-

cial Web data [25]. These applications use modern storage systems

with focus on scalability as opposed to relational database systems

with a strong focus on consistency. Because of the similarity of

APM storage requirements to the requirements of Web informa-

tion system applications, obvious candidates for new APM storage

systems are key-value stores and their derivatives. Therefore, we

present a performance evaluation of different key-value stores and

related systems for APM storage.

Specifically, we present our benchmarking effort on open source

key-value stores and their close competitors. We compare the throu-

ghput of Apache Cassandra, Apache HBase, Project Voldemort,

Redis, VoltDB, and a MySQL Cluster. Although, there would have

been other candidates for the performance comparison, these sys-

tems cover a broad area of modern storage architectures. In contrast

to previous work (e.g., [7, 23, 22]), we present details on the maxi-

mum sustainable throughput of each system. We test the systems in

two different hardware setups: (1) a memory- and (2) a disk-bound

setup.

Our contributions are threefold: (1) we present the use case and

big data challenge of application performance management and

specify its data and workload requirements; (2) we present an up-

to-date performance comparison of six different data store archi-

tectures on two differently structured compute clusters; and, (3)

finally, we report on details of our experiences with these systems

from an industry perspective.

The rest of the paper is organized as follows. In the next section,

we describe our use case: application performance management.

Section 3 gives an overview of the benchmarking setup and the

testbed. In Section 4, we introduce the benchmarked data stores. In

Section 5, we discuss our benchmarking results in detail. Section 6

summarizes additional findings that we made during our bench-

marking effort. In Section 7, we discuss related work before con-

cluding in Section 8 with future work.

2. APPLICATION PERFORMANCE MAN

AGEMENT
Usually enterprise systems are highly distributed and heteroge-

neous. They comprise a multitude of applications that are often

interrelated. An example of such a system can be seen in Figure 1.

Clients connect to a frontend, which can be a Web server or a client

application. A single client interaction may start a transaction that

can span over more than a thousand components, which can be

hosted on an equal number of physical machines [26]. Neverthe-

less, response time is critical in most situations. For example, for

Web page loads the consumer expectation is constantly decreasing

and is already as low as 50 ms to 2 s [3]. In a highly distributed
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Figure 1: Example of an enterprise system architecture

system, it is difficult to determine the root cause of performance

deterioration especially since it is often not tied to a single com-

ponent, but to a specific interaction of components. System com-

ponents themselves are highly heterogeneous due to the constant

changes in application software and hardware. There is no unified

code base and often access to the entire source code is not possible.

Thus, an in depth analysis of the components or the integration of

a profiling infrastructure is not possible.

To overcome this challenges, application performance manage-

ment systems (APM) have been developed and are now a highly

profitable niche in enterprise system deployment. APM refers to

the monitoring and managing of enterprise software systems. There

are two common approaches to monitor enterprise systems: (1)

an API-based approach, which provides a programming interface

and a library that has to be utilized by all monitored components;

(2) a black-box approach, which instruments the underlying sys-

tem components or virtual machines to obtain information about

the monitored system. The first approach gives a high degree of

freedom to the programmer on how to utilize the monitoring tool-

box. A popular example is the ARM standard [1]. In this approach

every component has to implement the ARM API that is available

for C and Java. Prominent ARM-instrumented applications are the

Apache HTTP server and IBM DB2. Although several common

enterprise software systems are already ARM enabled, it is often

not feasible to implement the ARM API in legacy systems. In gen-

eral, this solution is often not possible, especially when 3rd party

software components are used. The instrumentation of virtual ma-

chines and system libraries is a non-intrusive way of monitoring an

application. In the case of Java programs, this is enabled by the

Virtual Machine Tool Interface that was specified in JSR-163 and

introduced in J2SE 5.0 [11]. The intention of JSR-163 is to present

an interface for profiling and debugging. Byte code instrumentation

allows to augment software components with agents that have ac-

cess to the state and the method invocations. This approach enables

monitoring components, tracing transactions, and performing root

cause analysis without changing the code base of the monitored

system. Another benefit of this approach is the low performance

overhead incurred.

By making it possible to capture every method invocation in a

large enterprise system, APM tools can generate a vast amount of

data. However, in general, only specific method invocations are

actually of interest. Most notably, these are communication meth-

ods such as RMI calls, Web service calls, socket connections and

such. Still, current systems process thousands of transactions per

second with each transaction being processed by multiple nodes.

Due to the resulting amount of data, monitoring agents do not re-

port every single event but instead aggregate events in fixed time

intervals in the order of seconds. Nevertheless, each agent can re-

port thousands of different measurements in each interval. In larger
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deployments, i.e., hundreds to thousands of hosts, this results in a

sustained rate of millions of measurements per second. This in-

formation is valuable for later analysis and, therefore, should be

stored in a long-term archive. At the same time, the most recent

data has to be readily available for on-line monitoring and for gen-

erating emergency notifications. Typical requirements are sliding

window aggregates over the most recent data of a certain type of

measurement or metric as well as aggregates over multiple metrics

of the same type measured on different machines. For instance two

typical on-line queries are:

• What was the maximum number of connections on host X

within the last 10 minutes?

• What was the average CPU utilization of Web servers of type

Y within the last 15 minutes?

For the archived data more analytical queries are as follows:

• What was the average total response time for Web requests

served by replications of servlet X in December 2011?

• What was maximum average response time of calls from ap-

plication Y to database Z within the last month?

While the on-line queries have to be processed in real-time, i.e.,

in subsecond ranges, historical queries may finish in the order of

minutes. In comparison to the insertion rate, these queries are how-

ever issued rarely. Even large clusters are monitored by a modest

number of administrators which makes the ad-hoc query rate rather

small. Some of the metrics are monitored by certain triggers that

issue notifications in extreme cases. However, the overall write

to read ratio is 100:1 or more (i.e., write-dominated workloads).

While the writes are simple inserts, the reads often scan a small set

of records. For example, for a ten minute scan window with 10

seconds resolution, the number of scanned values is 60.

An important prerequisite for APM is that the performance of the

monitored application should not be deteriorated by the monitoring

(i.e., monitoring should not effect SLAs.) As a rule of thumb, a

maximum tolerable overhead is five percent, but a smaller rate is

preferable. This is also true for the size of the storage system. This

means that for an enterprise system of hundreds of nodes only tens

of nodes may be dedicated to archiving monitoring data.

3. BENCHMARK AND SETUP
As explained above, the APM data is in general relatively simple.

It usually consists of a metric name, a value, and a time stamp.

Since many agents report their data in fixed length intervals, the

data has the potential to be aggregated over a (short) time-based

sliding window, and may also contain additional aggregation values

such as minimum, maximum, average, and the duration. A typical

example could look as shown in Figure 2. The record structure is

usually fixed.

As for the workload, the agents report the measurements for each

metric in certain periodic intervals. These intervals are in the order

of seconds. Using this approach, the data rate at the agent is in gen-

eral constant regardless of the system load. Nevertheless, current

APM tools make it possible to define different monitoring levels,

e.g., basic monitoring mode, transaction trace mode, and incident

triage mode, that results in different data rates. It is important to

mention that the monitoring data is append only. Every new re-

ported measurement is appended to the existing monitoring infor-

mation rather than updating or replacing it. Since the agents report

changes in the system in an aggregated manner, for example, every

Table 1: Workload specifications

Workload % Read % Scans % Inserts

R 95 0 5

RW 50 0 50

W 1 0 99

RS 47 47 6

RSW 25 25 50

10 seconds, the queries on the reported measurements do not have

latency as low as that found in OLTP use cases, rather a latency in

the same order as the reporting interval is still adequate. As far as

the storage system is concerned, the queries can be distinguished

into two major types: (1) single value lookups to retrieve the most

current value and (2) small scans for retrieving system health infor-

mation and for computing aggregates over time windows.

Based on the properties of the APM use case described above,

we designed a benchmark that models this use case, which at the

same time is generic enough to be valid for similar monitoring ap-

plications. We used the popular Yahoo! Cloud Serving Benchmark

(YCSB) benchmark suite [7] as a basis. YCSB is an extensible and

generic framework for the evaluation of key-value stores. It allows

to generate synthetic workloads which are defined as a configurable

distribution of CRUD (create, read, update and delete) operations

on a set of records. Records have a predefined number of fields and

are logically indexed by a key. This generic data model can eas-

ily be mapped to a specific key-value or column-based data model.

The reason for YCSB’s popularity is that it comprises a data gener-

ator, a workload generator, as well as drivers for several key-value

stores, some of which are also used in this evaluation.

Our data set consists of records with a single alphanumeric key

with a length of 25 bytes and 5 value fields each with 10 bytes.

Thus, a single record has a raw size of 75 bytes. This is consistent

with the real data structure as shown in Figure 2.

We defined five different workloads. They are shown in Table 1.

As mentioned above, APM data is append only – which is why we

only included insert, read, and scan operations. Since not all tested

stores support scans, we defined workloads with (RS,RSW) and

without scans (R,RW,W). As explained above, APM systems ex-

hibit a write to read ratio of 100:1 or more as defined in workloads

However, to give a more complete view on the systems under test,

we defined workloads that vary the write to read ratio. Workload

R and RS are read-intensive where 50% of the read accesses in RS

are scans. Workload RW and RSW have an equal ratio of reads and

writes. These workloads are commonly considered write-heavy in

other environments [7]. All access patterns were uniformly dis-

tributed. We also tested a write intensive workload with scans, but

we omit it here due to space constraints.

We used two independent clusters for our tests: memory-bound

cluster (Cluster M) and disk-bound cluster (Cluster D). Cluster M

consists of 16 Linux nodes. Each node has two Intel Xeon quad

core CPUs, 16 GB of RAM, and two 74 GB disks configured in

RAID 0, resulting in 148 GB of disk space per node. The nodes

are connected with a gigabit ethernet network over a single switch.

Additionally, we used an additional server with the same configu-

ration but an additional 6 disk RAID 5 array with 500 GB disk per

node for a total of 2.5 TB of disk space. This RAID disk is mounted

on all nodes and is used to store the binaries and configuration files.

During the test, the nodes do, however, use only their local disks.

Cluster D consists of a 24 Linux nodes, in which each node has two

Intel Xeon dual core CPUs, 4 GB of RAM and a single 74 GB disk.

The nodes are connected with a gigabit ethernet network over a sin-
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Metric Name Value Min Max Timestamp Duration

HostA/AgentX/ServletB/AverageResponseTime 4 1 6 1332988833 15

Figure 2: Example of an APM measurement

gle switch. We use the Cluster M for memory-bound experiments

and the Cluster D for disk-bound tests.

For Cluster M the size of the data set was set to 10 million

records per node resulting 700 MB of raw data per node. The raw

data in this context does not include the keys which increases the

total data footprint. For Cluster D we tested a single setup with 150

million records for a total of 10.5 GB of raw data and thus mak-

ing memory-only processing impossible. Each test was run for 600

seconds and the reported results are the average of at least 3 inde-

pendent executions. We automated the benchmarking process as

much as possible to be able to experiment with many different set-

tings. For each system, we wrote a set of scripts that performed the

complete benchmark for a given configuration. The scripts installed

the systems from scratch for each workload on the required number

of nodes, thus making sure that there was no interference between

different setups. We made extensive use of the Parallel Distributed

Shell (pdsh). Many configuration parameters were adapted within

the scripts using the stream editor sed.

Our workloads were generated using 128 connections per server

node, i.e., 8 connections per core in Cluster M. In Cluster D, we

reduced the number of connection to 2 per core to not overload

the system. The number of connections is equal to the number of

independently simulated clients for most systems. Thus, we scaled

the number of threads from 128 for one node up to 1536 for 12

nodes, all of them working as intensively as possible. To be on the

safe side, we used up to 5 nodes to generate the workload in order

to fully saturate the storage systems. So no client node was running

more than 307 threads. We set a scan-length of 50 records as well

as fetched all the fields of the record for read operations.

4. BENCHMARKED KEYVALUE STORES
We benchmarked six different open-source key-value stores. We

chose them to get an overview of the performance impact of dif-

ferent storage architectures and design decisions. Our goal was

not only to get a pure performance comparison but also a broad

overview of available solutions. According to Cartell, new gener-

ation data stores can be classified in four main categories [4]. We

chose each two of the following classes according to this classifi-

cation:

Key-value stores: Project Voldemort and Redis

Extensible record stores: HBase and Cassandra

Scalable relational stores: MySQL Cluster and VoltDB

Our choice of systems was based on previously reported perfor-

mance results, popularity and maturity. Cartell also describes a

fourth type of store, document stores. However, in our initial re-

search we did not find any document store that seemed to match

our requirements and therefore did not include them in the com-

parison. In the following, we give a basic overview on the bench-

marked systems focusing on the differences. Detailed descriptions

can be found in the referenced literature.

4.1 HBase
HBase [28] is an open source, distributed, column-oriented data-

base system based on Google’s BigTable [5]. HBase is written in

Java, runs on top of Apache Hadoop and Apache ZooKeeper [15]

and uses the Hadoop Distributed Filesystem (HDFS) [27] (also an

open source implementation of Google’s file system GFS [13]) in

order to provide fault-tolerance and replication.

Specifically, it provides linear and modular scalability, strictly

consistent data access, automatic and configurable sharding of data.

Tables in HBase can be accessed through an API as well as serve as

the input and output for MapReduce jobs run in Hadoop. In short,

applications store data into tables which consist of rows and col-

umn families containing columns. Moreover, each row may have a

different set of columns. Furthermore, all columns are indexed with

a user-provided key column and are grouped into column families.

Also, all table cells – the intersection of row and column coordi-

nates – are versioned and their content is an uninterpreted array of

bytes.

For our benchmarks, we used HBase v0.90.4 running on top of

Hadoop v0.20.205.0. The configuration was done using a dedicated

node for the running master processes (NameNode and Secondary-

NameNode), therefore for all the benchmarks the specified number

of servers correspond to nodes running slave processes (DataNodes

and TaskTrackers) as well as HBase’s region server processes. We

used the already implemented HBase YCSB client, which required

one table for all the data, storing each field into a different column.

4.2 Cassandra
Apache Cassandra is a second generation distributed key value

store developed at Facebook [19]. It was designed to handle very

large amounts of data spread out across many commodity servers

while providing a highly available service without single point of

failure allowing replication even across multiple data centers as

well as for choosing between synchronous or asynchronous repli-

cation for each update. Also, its elasticity allows read and write

throughput, both increasing linearly as new machines are added,

with no downtime or interruption to applications. In short, its ar-

chitecture is a mixture of Google’s BigTable [5] and Amazon’s Dy-

namo [8]. As in Amazon’s Dynamo, every node in the cluster has

the same role, so there is no single point of failure as there is in

the case of HBase. The data model provides a structured key-value

store where columns are added only to specified keys, so different

keys can have different number of columns in any given family as

in HBase. The main differences between Cassandra and HBase are

columns that can be grouped into column families in a nested way

and consistency requirements that can be specified at query time.

Moreover, whereas Cassandra is a write-oriented system, HBase

was designed to get high performance for intensive read workloads.

For our benchmark, we used the recent 1.0.0-rc2 version and

used mainly the default configuration. Since we aim for a high

write throughput and have only small scans, we used the default

RandomPartitioner that distributes the data across the nodes ran-

domly. We used the already implemented Cassandra YCSB client

which required to set just one column family to store all the fields,

each of them corresponding to a column.

4.3 Voldemort
Project Voldemort [29] is a distributed key-value store (devel-

oped by LinkedIn) that provides highly scalable storage system.
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With a simpler design compared to a relational database, Volde-

mort neither tries to support general relational model nor to guar-

antee full ACID properties, instead it simply offers a distributed,

fault-tolerant, persistent hash table. In Voldemort, data is automat-

ically replicated and partitioned across nodes such that each node

is responsible for only a subset of data independent from all other

nodes. This data model eliminates the central point of failure or the

need for central coordination and allows cluster expansion without

rebalancing all data, which ultimately allow horizontal scaling of

Voldemort.

Through simple API, data placement and replication can easily

be tuned to accommodate a wide range of application domains. For

instance, to add persistence, Voldemort can use different storage

systems such as embedded databases (e.g., BerkeleyDB) or stand-

alone relational data stores (e.g., MySQL). Other notable features

of Voldemort are in-memory caching coupled with storage system

– so a separate caching tier is no longer required and multi-version

data model for improved data availability in case of system failure.

In our benchmark, we used version 0.90.1. with the embed-

ded BerkeleyDB storage and the already implemented Voldemort

YCSB client. Specifically, when configuring the cluster, we set

two partitions per node. In both clusters, we set Voldemort to use

about 75% of the memory whereas the remaining 25% was used for

the embedded BerkeleyDB storage. The data is stored in a single

table where each key is associated with an indexed set of values.

4.4 Redis
Redis [24] is an in-memory, key-value data store with the data

durability option. Redis data model supports strings, hashes, lists,

sets, and sorted sets. Although Redis is designed for in-memory

data, depending on the use case, data can be (semi-) persisted either

by taking snapshot of the data and dumping it on disk periodically

or by maintaining an append-only log of all operations.

Furthermore, Redis can be replicated using a master-slave archi-

tecture. Specifically, Redis supports relaxed form of master-slave

replication, in which data from any master can be replicated to any

number of slaves while a slave may acts as a master to other slaves

allowing Redis to model a single-rooted replication tree.

Moreover, Redis replication is non-blocking on both the mas-

ter and slave, which means that the master can continue serving

queries when one or more slaves are synchronizing and slaves can

answer queries using the old version of the data during the synchro-

nization. This replication model allows for having multiple slaves

to answer read-only queries resulting in highly scalable architec-

ture.

For our benchmark, we used version 2.4.2. Although a Redis

cluster version is expected in the future, at the time of writing this

paper, the cluster version is in an unstable state and we were not

able to run a complete test. Therefore, we deployed a single-node

version on each of the nodes and used the Jedis6 library to imple-

ment a distributed store. We updated the default Redis YCSB client

to use ShardedJedisPool, a class which automatically shards and

accordingly accesses the data in a set of independent Redis servers.

This gives considerable advantage to Redis in our benchmark since

there is no interaction between the Redis instances. For the storage

of the data, YCSB uses a hash map as well as a sorted set.

4.5 VoltDB
VoltDB [30] is an ACID compliant relational in-memory database

system derived from the research prototype H-Store [17]. It has a

shared nothing architecture and is designed to run on a multi-node

6Jedis, a Java client for Redis - http://github.com/
xetorthio/jedis.

cluster by dividing the database into disjoint partitions by making

each node the unique owner and responsible for a subset of the

partitions. The unit of transaction is a stored procedure which is

Java interspersed with SQL. Forcing stored procedures as the unit

of transaction and executing them at the partition containing the

necessary data makes it possible to eliminate round trip messag-

ing between SQL statements. The statements are executed serially

and in a single threaded manner without any locking or latching.

The data is in-memory, hence, if it is local to a node a stored pro-

cedure can execute without any I/O or network access, providing

very high throughput for transactional workloads. Furthermore,

VoltDB supports multi-partition transactions, which require data

from more than one partition and are therefore more expensive to

execute. Multi-partition transactions can completely be avoided if

the database is cleanly partitionable.

For our benchmarking we used VoltDB v2.1.3 and the default

configuration. We set 6 sites per host which is the recommenda-

tion for our platform. We implemented an YCSB client driver for

VoltDB that connects to all servers as suggested in the documenta-

tion. We set a single table with 5 columns for each of the fields and

the key as the primary key as well as being the column which allows

VoltDB for computing the partition of the table. This way, as read,

write and insert operations are performed for a single key, they are

implemented as single-partition transactions and just the scan op-

eration is a multi-partition transaction. Also, we implemented the

required stored procedures for each of the operations as well as the

VoltDB YCSB client.

4.6 MySQL
MySQL [21] is the world’s most used relational database system

with full SQL support and ACID properties. MySQL supports two

main storage engines: MyISAM (for managing non-transactional

tables) and InnoDB (for providing standard transactional support).

In addition, MySQL delivers an in-memory storage abstraction for

temporary or non-persistent data. Furthermore, the MySQL clus-

ter edition is a distributed, multi-master database with no single

point of failure. In MySQL cluster, tables are automatically sharded

across a pool of low-cost commodity nodes, enabling the database

to scale horizontally to serve read and write-intensive workloads.

For our benchmarking we used MySQL v5.5.17 and InnoDB

as the storage engine. Although MySQL cluster already provides

shared-nothing distribution capabilities, instead we spread indepen-

dent single-node servers on each node. Thus, we were able to use

the already implemented RDBMS YCSB client which connects to

the databases using JDBC and shards the data using a consistent

hashing algorithm. For the storage of the data, a single table with a

column for each value was used.

5. EXPERIMENTAL RESULTS
In this section, we report the results of our benchmarking efforts.

For each workload, we present the throughput and the latencies

of operations. Since there are huge variations in the latencies, we

present our results using logarithmic scale. We will first report our

results and point out significant values, then we will discuss the

results. Most of our experiments were conducted on Cluster M

which is the faster system with more main memory. Unless we

explicitly specify the systems were tested on Cluster M.

5.1 Workload R
The first workload was Workload R, which was the most read

intensive with 95% reads and only 5% writes. This kind of work-

load is common in many social web information systems where

the read operations are dominant. As explained above, we used 10
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Figure 3: Throughput for Workload R

million records per node, thus, scaling the problem size with the

cluster size. For each run, we used a freshly installed system and

loaded the data. We ran the workload for 10 minutes with max-

imum throughput. Figure 3 shows the maximum throughput for

workload R for all six systems.

In the experiment with only one node, Redis has the highest

throughput (more than 50K ops/sec) followed by VoltDB. There

are no significant differences between the throughput of Cassan-

dra and MySQL, which is about half that of Redis (25K ops/sec).

Voldemort is 2 times slower than Cassandra (with 12K ops/sec).

The slowest system in this test on a single node is HBase with 2.5K

operation per second. However, it is interesting to observe that the

three web data stores that were explicitly built for scalability in web

scale – i.e. Cassandra, Voldemort, and HBase – demonstrate a nice

linear behavior in the maximum throughput.

As discussed previously, we were not able to run the cluster ver-

sion of Redis, therefore, we used the Jedis library that shards the

data on standalone instances for multiple nodes. In theory, this is a

big advantage for Redis, since it does not have to deal with propa-

gating data and such. This also puts much more load on the client,

therefore, we had to double the number of machines for the YCSB

clients for Redis to fully saturate the standalone instances. How-

ever, the results do not show the expected scalability. During the

tests, we noticed that the data distribution is unbalanced. This ac-

tually caused one Redis node to consistently run out of memory

in the 12 node configuration7. For VoltDB, all configurations that

we tested showed a slow-down for multiple nodes. It seems that

the synchronous querying in YCSB is not suitable for a distributed

VoltDB configuration. For MySQL we used a similar approach as

for Redis. Each MySQL node was independent and the client man-

aged the sharding. Interestingly, the YCSB client for MySQL did

a much better sharding than the Jedis library, and we observed an

almost perfect speed-up from one to two nodes. For higher number

of nodes the increase of the throughput decreased slightly but was

comparable to the throughput of Cassandra.

Workload R was read-intensive and modeled after the require-

ments of web information systems. Thus, we expected a low la-

tency for read operations at the three web data stores. The average

latencies for read operations for Workload R can be seen in Figure

4. As mentioned before, the latencies are presented in logarithmic

scale. For most systems, the read latencies are fairly stable, while

they differ strongly in the actual value. Again, Cassandra, HBase,

and Voldemort illustrate a similar pattern – the latency increases

slightly for two nodes and then stays constant. Project Voldemort

7We tried both supported hashing algorithms in Jedis, Mur-
MurHash and MD5, with the same result. The presented results
are achieved with MurMurHash
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Figure 4: Read latency for Workload R
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Figure 5: Write latency for Workload R

has the lowest latency of 230 µs for one node and 260 µs for 12

nodes. Cassandra has a higher average latency of 5 - 8 ms and

HBase has a much higher latency of 50 - 90 ms. Both sharded

stores, Redis, and MySQL, have a similar pattern as well, with Re-

dis having the best latency among all systems. In contrast to the

web data stores, they have a latency that tends to decrease with the

scale of the system. This is due to the reduced load per system that

reduces the latency as will be further discussed in Section 5.6. The

latency for reads in VoltDB is increasing which is consistent with

the decreasing throughput. The read latency is surprisingly high

also for the single node case which, however, has a solid through-

put.

The latencies for write operations in Workload R can be seen in

Figure 5. The differences in the write latencies are slightly big-

ger than the differences in the read latencies. The best latency has

HBase which clearly trades a read latency for write latency. It is,

however, not as stable as the latencies of the other systems. Cas-

sandra has the highest (stable) write latency of the benchmarked

systems, which is surprising since it was explicitly built for high

insertion rates [19]. Project Voldemort has roughly the same write

as read latency and, thus, is a good compromise for write and read

speed in this type of workload. The sharded solutions, Redis and

MySQL, exhibit the same behavior as for read operations. How-

ever, Redis has much lower latency then MySQL while it has less

throughput for more than 4 nodes. VoltDB again has a high latency

from the start which gets prohibitive for more than 4 nodes.

5.2 Workload RW
In our second experiment, we ran Workload RW which has 50%

writes. This is commonly classified as a very high write rate. In

Figure 6, the throughput of the systems is shown. For a single node,

VoltDB achieves the highest throughput, which is only slightly lower

than its throughput for Workload R. Redis has a similar through-

put, but it has 20% less throughput than for Workload R. Cassandra
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Figure 6: Throughput for Workload RW
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Figure 7: Read latency for Workload RW

has a throughput that is about 10% higher than for the first work-

load. HBase’s throughput increases by 40% for the higher write

rate, while Project Voldemort’s throughput shrinks by 33% as does

MySQL’s throughput.

For multiple nodes, Cassandra, HBase, and Project Voldemort

follow the same linear behavior as well. MySQL exhibits a good

speed-up up to 8 nodes, in which MySQL’s throughput matches

Cassandra’s throughput. For 12 nodes, its throughput does no longer

grow noticeably. Finally, Redis and VoltDB exhibit the same be-

havior as for the Workload R.

As can be seen in Figure 7, the read latency of all systems is es-

sentially the same for both Workloads R and RW. The only notable

difference is MySQL, which is 75% less for one node and 40% less

for 12 nodes.

In Figure 8, the write latency for Workload RW is summarized.

The trends closely follows the write latency of Workload R. How-

ever, there are two important subtle differences: (1) HBase’s la-
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Figure 8: Write latency for Workload RW
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Figure 9: Throughput for Workload W
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Figure 10: Read latency for Workload W

tency is almost 50% lower than for Workload R; and (2) MySQL’s

latency is twice as high on average for all scales.

5.3 Workload W
Workload W is the one that is closest to the APM use case (with-

out scans). It has a write rate of 99% which is too high for web

information systems’ production workloads. Therefore, this is a

workload neither of the systems was specifically designed for. The

throughput results can be seen in Figure 9. The results for one

node are similar to the results for Workload RW with the difference

that all system have a worse throughput except for Cassandra and

HBase. While Cassandra’s throughput increases modestly (2% for

12 nodes), HBase’s throughput increases almost by a factor of 2

(for 12 nodes).

For the read latency in Workload W, shown in Figure 7, the most

apparent change is the high latency of HBase. For 12 nodes, it goes

up to 1 second on average. Furthermore, Voldemort’s read latency

almost twice as high while it was constant for Workload R and RW.

For the other systems the read latency does not change significantly.

The write latency for Workload W is captured in Figure 11. It

can be seen that HBase’s write latency increased significantly, by

a factor of 20. In contrast to the read latency, Project Voldemort’s

write latency is almost identical to workload RW. For the other sys-

tems the write latency increased in the order of 5-15%.

5.4 Workload RS
In the second part of our experiments, we also introduce scans

in the workloads. In particular, we used the existing YCSB client

for Project Voldemort which does not support scans. Therefore,

we omitted Project Voldemort in the following experiments. In the

scan experiments, we split the read percentage in equal sized scan

and read parts. For Workload RS this results in 47% read and scan

operations and 6% write operations.
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Figure 11: Write latency for Workload W
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Figure 12: Throughput for Workload RS

In Figure 12, the throughput results can be seen. MySQL has

the best throughput for a single node, but does not scale with the

number of nodes. The same is true for VoltDB which is, however,

consistent with the general performance of VoltDB in our evalu-

ation. Furthermore, Redis achieves similar performance as in the

workloads without scans. Lastly, Cassandra and HBase, again, ob-

tain a linear increase in throughput with the number of nodes.

The scan latency results, shown in Figure 13, signify that the

MySQL scans are slow for setup with larger than two nodes. This

justifies the low throughput. MySQL’s weak performance for scans

can also be justified with the way the scans are done in the YCSB

client. The scan is translated to a SQL query that retrieves all

records with a key equal or greater than the start key of the scan. In

the case of MySQL this is inefficient.

HBase’s latency is almost in the second range. Likewise, Cassan-

dra’s scans are constant and are in the range of 20-25 milliseconds.

Although not shown, it is interesting to note that HBase’s latency

for read and write operations is the same as without scans. In ad-

dition, the scans are not significantly slower than read operations.

This is not true for Cassandra, here all operations have the same

increase of latency, and, in general, scans are 4 times slower than

reads. Redis behaves like HBase, but has a latency that is in the

range of 4-8 milliseconds. Similar to Cassandra, VoltDB has the

same latency for all different operations.

5.5 Workload RSW
Workload RSW has 50% reads of which 25% are scans. The

throughput results can be seen in Figure 14. The results are sim-

ilar to workload RS with the difference that MySQL’s throughput

is as low as 20 operations per second for one node and goes below

one operation per second for four and more nodes. This can again

be explained with the implementation of the YCSB client. HBase

and Cassandra gain from the lower scan rate and have, therefore,
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Figure 13: Scan latency for Workload RS
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Figure 14: Throughput for Workload RSW

a throughput that is twice as high as for Workload RS. VoltDB

achieves the best throughput for one node. Furthermore, VoltDB’s

throughput only slightly decreases from two to four nodes which

can also be seen for Workload RS. The scan operation latency is

for Workload RSW for Cassandra and Voldemort, all other systems

have a slightly increased scan latency. The scan latencies are all

stable with the exception of MySQL. We omit the graph due to

space restrictions.

5.6 Varying Throughput
The maximum throughput tests above are a corner case for some

of the systems as the high latencies show. To get more insights

into the latencies in less loaded system we made a series of tests

where we limited the maximum workload. In this test, we used the

configuration with 8 nodes for each system and limited the load to

95% to 50% of the maximum throughput that was determined in
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Figure 17: Disk usage for 10 million records

the previous tests8. Due to space restrictions, we only present our

results for Workload R.

In Figure 15, the normalized read latency for Workload R can be

seen. For Cassandra the latency decreases almost linearly with the

reduction of the workload. Redis and Voldemort have only small

but steady reductions in the latencies. This shows that for these sys-

tems the bottleneck was probably not the query processing itself.

HBase has an interesting behavior that lets assume that the system

has different states of operation based on the system load. Below

80% of the maximum load the read latency decreases linearly while

being very constant above. For MySQL the latency first decreases

rapidly and then stays steady which is due to the imbalanced load

on the nodes.

The write latencies have a similar development for Cassandra,

Voldemort, and Redis, as can be seen in Figure 16. HBase is very

unstable, however, the actual value for the write latency is always

well below 0.1 milliseconds. MySQL has a more constant latency

as for the read latency.

5.7 Disk Usage
The disk usage of the key value stores initially came as a surprise

to us. Figure 17 summarizes the disk usage of all systems that rely

on disks. Since Redis and VoltDB do not store the data on disk, we

omit these systems. As explained above, the size of each record is

75 bytes. Since we insert 10 million records per node, the data set

grows linearly from 700 megabytes for one node to 8.4 gigabytes

for 12 nodes. As expected, all system undergo a linear increase of

the disk usage since we use no replication.

Cassandra stores the data most efficiently and uses 2.5 gigabytes

per node after the load phase. MySQL uses 5 gigabytes per node

8Due to the prohibitive latency of VoltDB above 4 nodes we omit-
ted it in this test.
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Figure 19: Read latency for 8 nodes in Cluster D

and Project Voldemort 5.5 gigabytes. The most inefficient system

in terms of storage is HBase that uses 7.5 gigabytes per node and

therefore 10 times as much as the raw data size. In the case of

MySQL, the disk usage also includes the binary log without this

feature the disk usage is essentially reduced by half.

The high increase of the disk usage compared to the raw data is

due to the additional schema as well as version information that is

stored with each key-value pair. This is necessary for the flexible

schema support in these systems. The effect of increased disk us-

age is stronger in our tests then other setups because of the small

records. The disk usage can be reduced by using compression

which, however, will decrease the throughput and thus is not used

in our tests.

5.8 Diskbound Cluster (Cluster D)
We conducted a second series of tests on Cluster D. In this case,

all systems had to use disk since the inserted data set was larger

than the available memory. Therefore, we could not test Redis and

VoltDB in this setup. We also omitted MySQL in this test, due to

limited availability of the cluster. Also we only focused on a single

scale for workloads R, RW, and W.

In Figure 18, the throughput on this system can be seen for all

three workloads on a logarithmic scale. In this test, the throughput

increases for all systems significantly with higher write ratios. This

most significant result is for Cassandra which had relatively con-

stant throughput for different tests in Cluster M. In Cluster D, the

throughput increases by a factor of 26 from Workload R to Work-

load W. HBase’s throughput also benefits significantly by factor of

15. Project Voldemort’s throughput also increases only by a factor

of 3. These results are especially interesting since these systems

were originally designed for read-intensive workloads.

As can be seen in Figure 19, the read latencies of all systems

are in the order of milliseconds. Cassandra has a read latency of
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Figure 20: Write latency for 8 nodes in Cluster D

40 ms for Workload R and RW. For workload W the latency is 25

ms. HBase’s read latency is surprisingly best in the mixed Work-

load RW with 70 ms on average, for Workload W it is worst with

over 200 ms. Voldemort has by far the best latency that is 5 and 6

ms for Workload R and Workload RW and increases to 20 ms for

Workload W.

The write latency is less dependent on the workload as can be

seen in Figure 20. As in Cluster M, HBase has a very low latency,

well below 1 ms. Interestingly, it is best for Workload RW. Cas-

sandra and Project Voldemort exhibit a similar behavior. The write

latency of these two systems is stable with a slight decrease for

Workload RW.

5.9 Discussion
In terms of scalability, there is a clear winner throughout our

experiments. Cassandra achieves the highest throughput for the

maximum number of nodes in all experiments with a linear in-

creasing throughput from 1 to 12 nodes. This comes at the price

of a high write and read latencies. Cassandra’s performance is

best for high insertion rates. HBase’s throughput in many exper-

iments is the lowest for one node but also increases almost linearly

with the number of nodes. HBase has a low write latency, espe-

cially in workloads with a considerable number of reads. The read

latency, however, is much higher than in other systems. Project

Voldemort in our tests positions itself in between HBase and Cas-

sandra. It also exhibits a near linear scalability. The read and write

latency in Project Voldemort are similar and are stable at a low-

level. Cassandra, HBase, and Project Voldemort were also evalu-

ated on Cluster D. In this disk-bound setup, all systems have much

lower throughputs and higher latencies.

Our sharded MySQL installation achieves a high throughput as

well which is almost as high as Cassandra’s. Interestingly, the la-

tency of the sharded system decreases with the number of nodes

due to the decreased relative load of the individual systems. For

scans, the performance of MySQL is low which is due to the imple-

mentation of scans in the sharding library. Since we were not able

to successfully run the Redis cluster version, we used the sharding

library Jedis. The standalone version of Redis has a high through-

put that exceeds all other systems for read-intensive workloads.

The sharding library, however, does not balance the workload well

which is why the the throughput does not increase in the same man-

ner as for MySQL. However, the latencies for both read and write

operations also decrease with increasing number of nodes for the

sharded Redis setup. Intrigued by the promised performance, we

also included VoltDB in our experiments. The performance for

a single instance is in fact high and comparable to Redis. How-

ever, we never achieved any throughput increase with more than

one node.

6. EXPERIENCES
In this section, we report, from an industry perspective, addi-

tional findings and observations that we encountered while bench-

marking the various systems. We report on the difficulty to setup,

to configure, and, most importantly, to tune these systems for an

industry-scale evaluation. In our initial test runs, we ran every sys-

tem with the default configuration, and then tried to improve the

performance by changing various tuning parameters. We dedicated

at least a week for configuring and tuning each system (concentrat-

ing on one system at a time) to get a fair comparison.

6.1 YCSB
The YCSB benchmark was intuitive to use and fit our needs pre-

cisely. In the first version of YCSB that we used to benchmark the

system, we, however, had a problem with its scalability. Because

of the high performance of some of the systems under test, YCSB

was not able to fully saturate them with one client node assigned to

four storage nodes. Partly due to a recent YCSB patch (during our

experimental evaluation) and by decreasing the ratio of client nodes

to store nodes up to 1:2, we were able to saturate all data stores.

Cassandra Cassandra’s setup was relatively easy, since there are

quick-start manuals available at the official website9. Since Cassan-

dra is a symmetric system, i.e., all nodes are equal, a single setup

for all nodes is virtually sufficient. There are only a few changes

necessary in the configuration file to setup a cluster of Cassandra.

In our tests, we had no major issues in setting up the cluster.

Like other key-value store systems, Cassandra employs consis-

tent hashing for distributing the values across the nodes. In Cassan-

dra, this is done by hashing the keys in the a range of 2127 values

and dividing this range by certain tokens. The default configura-

tion selects a random seed (token) for each node that determines

its range of hashed keys. In our tests, this default behavior fre-

quently resulted in a highly unbalanced workload. Therefore, we

assigned an optimal set of tokens to the nodes after the installation

and before the load. This resulted in an optimally balanced data

placement it, however, requires that the number of nodes is known

in advance. Otherwise, a costly repartitioning has to be done for

achieving a balanced data load.

HBase The configuration and installation of HBase was more

challenge than in the case of Cassandra. Since HBase uses HDFS,

it also requires the installation and configuration of Hadoop. Fur-

thermore, HBase is not symmetric and, hence, the placement of the

different services has an impact on the performance as well. Since

we focused on a setup with a maximum of 12 nodes, we did not

assign the master node and jobtracker to separate nodes instead we

deployed them with data nodes.

During the evaluations, we encountered several additional prob-

lems, in which the benchmark unexpectedly failed. The first issue

that randomly interrupted the benchmarks was a suspected memory

leak in the HBase client that was also documented in the Apache

HBase Reference Guide10. Although we were able to fix this is-

sue with specific memory settings for the Java Virtual Machine,

determine the root cause was non-trivial and demanded extensive

amount of debugging. Another configuration problem, which al-

most undetectable was due to an incorrect permission setting for

the HDFS data directory, in which the actual errors in log file were

misleading. HBase is strict in the permission settings for its direc-

tories and does not permit write access from other users on the data

9Cassandra website: http://cassandra.apache.org/
10Apache HBase Reference Guide - http://hbase.apache.
org/book.html
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directory. Although the error is written to the data node log, the

error returned to the client reports a missing master.

In contrast to the other systems in our test, the HBase benchmark

runs frequently failed when there was no obvious issue. These fail-

ures were non-deterministic and usually resulted in a broken test

run that had to be repeated many times.

Redis The installation of Redis was simple and the default con-

figuration was used with no major problems. However, Redis re-

quires additional work to be done on the YCSB client side, which

was implemented only to work against a single-node server in-

stance. Since the Redis cluster version is still in development, we

implemented our own YCSB client using the sharding capabilities

of the Java Jedis library. Thus, we spread out a set of independent

single-node Redis instances among the client nodes responsible of

the sharding.

Therefore, as each thread was required to manage a connection

for each of the Redis server, the system got quickly saturated be-

cause of the number of connections. As a result, we were forced

to use a smaller number of threads. Fortunately, smaller number of

threads were enough to intensively saturate the systems.

Project Voldemort The configuration of Project Voldemort was

easy for the most part. However, in contrast to the other systems,

we had to create a separate configuration file for each node. One

rather involved issue was tuning the configuration of the client. In

the default setting, the client is able to use up to 10 threads and up

to 50 connections. However, in our maximum throughput setup this

limit was always reached. This triggered problems in the storage

nodes because each node configured to have a fixed number of open

connections – which is in the default configuration 100 – this limit

is quickly reached in our tests (with only two YCSB client threads).

Therefore, we had to adjust the number of server side threads and

the number of threads per YCSB instances. Furthermore, we had

to optimize the cache for the embedded BerkeleyDB so that Project

Voldemort itself had enough memory to run. For inadequate set-

tings the server was unreachable after the clients established their

connections.

MySQL MySQL is a well-known and widely documented project,

thus the installation and configuration of the system was smooth. In

short, we just set InnoDB as the storage system and the size of the

buffer pool accordingly to the size of the memory.

As we used the default RDBMS YCSB client, which automati-

cally shards the data on a set of independent database servers and

forces each client thread to manage a JDBC connection with each

of the servers, we required to decrease the number of threads per

client in order to not saturate the systems. An alternative approach

would be to write a different YCSB client and use a MySQL cluster

version.

VoltDB Our VoltDB configuration was mostly inspired by the

VoltDB community documentation11 that suggested the client im-

plementation and configuration of the store. The VoltDB develop-

ers benchmarked the speed of VoltDB vs. Cassandra themselves

with a similar configuration but only up to 3 nodes [14]. Unlike

our results they achieved a speed-up with a fixed sized database. In

contrast to our setup, their tests used asynchronous communication

which seems to better fit VoltDB’s execution model.

7. RELATED WORK
After many years in which general purpose relational database

systems dominated not only the market but also academic research,

there has been an advent of highly specialized data stores. Based

11VoltDB Performance Guide - http://community.voltdb.
com/docs/PerfGuide/index

on the key-value paradigm many different architectures where cre-

ated. Today, all major companies in the area of social Web have de-

ployed a key-value store: Google has BigTable, Facebook Cassan-

dra, LinkedIn Project Voldemort, Yahoo! PNUTS [6], and Amazon

Dynamo [8]. In our benchmarking effort, we compared six well-

known, modern data stores, all of which are publicly available. In

our comparison, we cover a broad range of architectures and chose

systems that were shown or at least said to be performant. Other

stores we considered for our experiments but excluded in order to

present a more thorough comparison of the systems tested were:

Riak12, Hypertable13, and Kyoto Cabinet14. A high-level overview

of different existing systems can be found in [4].

As explained above, we used the YCSB benchmark for our eval-

uation [7]. This benchmark is fairly simple and has a broad user

base. It also fits our needs for the APM use case. In the YCSB’s

publication, a comparison of PNUTS, Cassandra, HBase, and My-

SQL is shown. Interestingly enough, there is no other large scale

comparison across so many different systems available. However,

there are a multiple online one-on-one comparisons as well as sci-

entific publications. We summarize the findings of other compar-

isons without claiming to be exhaustive. Hugh compared the per-

formance of Cassandra and VoltDB in [14], in his setup VoltDB

outperformed Cassandra for up to 3 nodes on a data set of 500K

values. We see a similar result for Workload R, however, for 4

and more nodes the VoltDB performance drastically decreases in

our setup. In [16], Jeong compared Cassandra, HBase, and Mon-

goDB on a three node, triple replicated setup. In the test, the author

inserted 50M 1KB records in the system and measured the write

throughput, the read-only throughput, and a 1:1 read-write through-

put which is similar to our Workload RW. The results show that

Cassandara outperforms HBase with less difference than we ob-

served in our tests. MongoDB is shown to be less performant, how-

ever, the authors note that they observed high latencies for HBase

and Cassandra which is consistent with our results. Erdody com-

pared the performance and latency for Project Voldemort and Cas-

sandra in [10]. In the three node, triple replicated setup, 1.5KB and

15KB records are used which is much larger than our record size.

In this setup, the performance difference of Project Voldemort and

Cassandra is not as significant as in our setup.

Pirzadeh et al. used YCSB to evaluate the performance of scan

operations in key value stores [23]. The authors compared the per-

formance of Cassandra, HBase, and Project Voldemort with a focus

on scan workloads to determine the scan characteristics of these

systems. Patil et al. developed the YCSB++ benchmark [22]. In

their tests, they compared HBase to their own techniques with up

to 6 nodes. An interesting feature of the YCSB++ benchmark is the

more enhanced monitoring using an extension of Ganglia. A com-

parison of Cassandra, HBase, and Riak discussing their elasticity

was presented by Konstantinou et al. [18]. The authors also use the

YCSB benchmark suite. In the presented results, HBase consis-

tently outperforms Cassandra which could be the case because of

the older version of Cassandra (0.7.0 beta vs. 1.0.0-rc2).

We are not aware of any other study that compares the perfor-

mance of such a wide selection of systems on a scale of up to 12+

nodes. In contrast to previous work, our data set consists of small

records which increases the impact of inefficient resource usage for

memory, disk and network. Our performance numbers are in many

cases consistent with previous findings but give a comprehensive

comparison of all systems for a broad range of workloads.

12Riak homepage - http://wiki.basho.com/
13Hypertable homepage - http://hypertable.org
14Kyoto Cabinet homepage - http://fallabs.com/
kyotocabinet/
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8. CONCLUSION
In this paper, we present the challenge of storing monitoring data

as generated by application performance management tools. Due

to their superior scalability and high performance for other compa-

rable workloads, we analyzed the suitability of six different stor-

age systems for the APM use case. Our results are valid also for

related use cases, such as on-line advertisement marketing, click

stream storage, and power monitoring. Unlike previous work, we

have focused on the maximum throughput that can be achieved by

the systems. We observed linear scalability for Cassandra, HBase,

and Project Voldemort in most of the tests. Cassandra’s throughput

dominated in all the tests, however, its latency was in all tests pecu-

liarly high. Project Voldemort exhibits a stable latency that is much

lower than Cassandra’s latency. HBase had the least throughput

of the three but exhibited a low write latency at the cost of a high

read latency. The sharded systems, i.e., Redis and MySQL, showed

good throughput that was, however, not as scalable as the first three

systems’ throughput. It has to be noted, however, that the through-

put of multiple nodes in the sharded case depends largely on the

sharding library. The last system in our test was VoltDB, a shared-

nothing, in-memory database system. Although it exhibited a high

throughput for a single node, the multi-node setup did not scale.

In our tests, we optimized each system for our workload and

tested it with a number of open connections which was 4 times

higher than the number of cores in the host CPUs. Higher num-

bers of connections led to congestion and slowed down the sys-

tems considerably while lower numbers did not fully utilize the

systems. This configuration resulted in an average latency of the

request processing that was much higher than in previously pub-

lished performance measurements. Since our use case does not

have the strict latency requirements that are common in on-line ap-

plications and similar environments, the latencies in most results

are still adequate. Considering the initial statement that a maxi-

mum of 5% of the nodes are designated for storing monitoring data

in a customer’s data center, for 12 monitoring nodes, the number of

nodes monitored would be around 240. If agents on each of these

report 10K measurements every 10 seconds, the total number of in-

serts per second is 240K. This is higher than the maximum through-

put that Cassandra achieves for Workload W on Cluster M but not

drastically. However, since data is stored in-memory on Cluster M

further improvements are needed in order to reliably sustain the

requirements for APM.

In future work, we will determine the impact of replication and

compression on the throughput in our use case. Furthermore, we

will extend the range of tested architectures.
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