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ABSTRACT 

Database backups have traditionally been used as the primary 

mechanism to recover from hardware and user errors. High 

availability solutions maintain redundant copies of data that can 

be used to recover from most failures except user or application 

errors. Database backups are neither space nor time efficient for 

recovering from user errors which typically occur in the recent 

past and affect a small portion of the database. Moreover periodic 

full backups impact user workload and increase storage costs. In 

this paper we present a scheme that can be used for both user and 

application error recovery starting from the current state and 

rewinding the database back in time using the transaction log. 

While we provide a consistent view of the entire database as of a 

point in time in the past, the actual prior versions are produced 

only for data that is accessed. We make the as of data accessible to 

arbitrary point in time queries by integrating with the database 

snapshot feature in Microsoft SQL Server. 

1. INTRODUCTION 
Database backups have traditionally been used as the primary 

mechanism to recover from media failures, natural disasters, 

hardware errors as well as user or application errors such as 

deleting a table by mistake. In cloud database and storage systems 

such as SQL Azure [8] and Windows Azure [9], the system 

natively provides local high availability by maintaining redundant 

copies of data within the cluster. Many of these systems also 

maintain geo-replicas for disaster recovery. It is increasingly 

common for on-premise database installations to employ out of 

the box solutions such as SQL Server log shipping, database 

mirroring and AlwaysOn to maintain local and geo replicas for 

high availability and disaster recovery. With features such as 

automatic page repair [5], these redundant copies provide 

protection against hardware corruptions such as bit rot. When 

redundant copies of data are maintained, the use of traditional 

backups is reduced to recovery from user or application errors. 

User or application errors typically occur in the recent past and 

affect a very small portion of the database (a table or a small 

subset of rows deleted by mistake). The user wants to recover 

from the error without losing changes made to data unaffected by 

the error. With traditional backup-restore the only way to meet 

these requirements is to create a copy by restoring the full 

baseline database backup, apply any subsequent incremental log 

backups to roll the database forward to a point in time prior to the 

mistake, then extract the relevant information and reconcile with 

the current contents of the database. The time and the resources 

required for the restore operation are proportional to the size of 

the database, much larger than the amount of the data that is being 

extracted. Moreover we must temporarily make twice the space 

available for the restored copy of the database. The restore 

sequence above expects the user to provide the point in time to 

which the database must be restored to. Determining the correct 

point in time which includes all the desired changes prior to the 

user error is not trivial. However the cost of choosing an incorrect 

point in time is high as it requires starting the restore process from 

scratch. Ideally the efficiency of user error recovery should be 

proportional to the amount of data that was affected by the user 

error and the amount of time passed since then.  

Maintaining full database backups incurs high costs. The full 

backup is another copy of the database. These backups themselves 

generally need to be made highly available thereby doubling the 

total storage costs. The process of generating backups of large 

databases can impact the user workload, so backups are taken 

during a designated backup window. However, due to the 

mission-critical nature of database workloads, that window has 

shrunk. It is therefore desirable to reduce the frequency of 

periodic full database backups. 

In this paper we present a novel scheme that allows the database 

to be queried as of any time in the past within a specified retention 

period. This allows the user to extract the data that must be 

recovered and reconcile it with data in the active database.  

Here is an example of using our solution to recover a table that 

was dropped by mistake: 

 Determine the point in time and mount the snapshot: The 

user first constructs a snapshot of the database as of an 

approximate time when the table was present in the database. 

He then queries the metadata to ascertain that the table exists. 

If it does not, she drops the current snapshot and repeats the 

process by creating a new snapshot as of an earlier point in 

time. Although this involves multiple iterations, these 

iterations are independent of the size of the database as only 

the prior versions of the metadata are generated.  
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 Reconcile the deleted table with the current database:  

The user first queries the catalogs of the snapshot to extract 

schema information about the table and then creates an 

empty table with all its dependent objects (indexes, 

constraints, etc.) in the current database. He then issues an 

“INSERT… SELECT” statement to extract data from the 
snapshot database and populate the table in the current 

database.  

Our scheme comprises of the following: 

 We extend the database snapshot capability in SQL Server to 

create a replica as of the specified time in the past – bounded 

by the retention period.  

 We provide the flexibility to run arbitrary queries on this 

replica by using the transaction log to undo committed 

changes and produce previous versions of the data. 

 The undo process undoes each data page independently of 

the other data pages in the database. Therefore previous 

versions are generated only for the data that is accessed by 

queries on the replica.  

This paper makes the following contributions: 

 An efficient scheme – both in time and in space –  for user 

and application error recovery. 

 A simple yet generalizable architecture –provides a common 

mechanism for undoing data and metadata and also maintains 

orthogonality with existing as well as future features and 

application surface area in the DBMS. 

 A fully functional implementation in the Microsoft SQL 

Server codebase and a detailed performance evaluation to 

substantiate our claims.  

The rest of the paper is organized as follows: In section 2, we give 

a brief description of SQL Server database engine architecture. In 

section 3, we provide an overview of our solution and then in 

sections 4 and 5, we discuss the algorithms in detail. In section 6, 

we present performance evaluation. In section 7, we review 

related work and in section 8, we offer our conclusions. 

2. BACKGROUND 
We implemented our solution as a prototype system for a future 

version of Microsoft SQL Server. The SQL Server architecture is 

similar to that of System R. Its storage engine consists of various 

managers—index manager, lock manager, buffer manager, 

transaction manager, log manager and recovery manager—and 

uses ARIES-like [1] algorithm for logging and recovery.   

2.1 Query Workflow 
To read or update a row, the query processor uses the metadata 

catalog to locate the appropriate base tables or indexes that must 

be accessed to satisfy the request. The metadata itself is stored in 

relational format and accessing metadata involves reading rows 

from system tables which follows the same workflow as data. 

Having located the indexes, the query processor calls the index 

manager to find and optionally update the relevant row in the 

index or the base table. The index manager finds the data page on 

which the row is located and requests the buffer manager to 

retrieve the page for read or write access. If the data page is not 

already in memory, the buffer manager invokes the file 

management subsystem which retrieves the page from persistent 

storage. Once the page is in memory, the buffer manager latches 

the page in shared or exclusive mode based on the intended access 

and returns the page.  

The index manager finds the required row in the page and 

acquires shared or exclusive lock on the row. If this is an update, 

the index manager generates a log record and applies the change 

to the page. If this is a read, the row is copied from the page into 

private memory. Then the page is unlatched. 

When the transaction commits, the transaction manager generates 

a commit log record and requests the log manager to flush the 

contents of the log up to and including the commit log record to 

disk. Only after those log records are written to disk is the 

transaction declared committed and its locks released.  

The log manager and the buffer manager use log sequence 

numbers (LSNs) to keep track of changes to the pages. Log 

records in the log have monotonically increasing LSNs assigned 

to them. Whenever a log record is generated for an update to a 

page, the log record’s LSN is stored in the page as pageLSN. 

2.2 Database Snapshots 
Microsoft SQL Server implements the database snapshot feature 

which allows users to create a copy (snapshot) of the primary 

database that is transactionally consistent as of the creation time. 

The lifetime of the snapshot is controlled by the user. Typically 

these snapshots are created for running reports and dropped after 

the reporting job completes. 

Database snapshots use a sparse file for every database file in the 

primary database. The sparse files store the prior version of data 

pages that have been modified in the primary database since the 

snapshot was created (copy-on-write). When a page is about to be 

modified in the primary database for the first time after the 

snapshot creation, the database engine pushes the current copy of 

the page to the sparse file.  

When the snapshot is created, the database engine determines the 

SplitLSN which represents the point in time to which the snapshot 

will be recovered. Then standard crash recovery is run on the 

snapshot and all transactions that are active as of the SplitLSN are 

undone. Any data pages modified during snapshot recovery are 

pushed to the snapshot file with the modifications so that the 

reads from the snapshot see consistent data.  After the snapshot is 

recovered, data pages get pushed to the sparse file by the copy-on-

write mechanism described above. 

Maintaining the copy-on-write data and re-directing page reads to 

the sparse files are managed entirely in the database file 

management subsystem. All the other components in the database 

engine (metadata subsystem, access methods, query processor 

etc.) are oblivious to this indirection. To them snapshot database 

appears like a regular read-only database. In the workflow 

described in section 2.1, when the buffer manager requests a page 

from the file management subsystem, the page is read from the 

sparse file if found in it otherwise from the active database. The 

rest of the workflow remains unchanged. 

3. OVERVIEW OF THE SOLUTION 
SQL Server allows users to creating database snapshots as of the 

time of creation. We have extended the database snapshot feature 

to create a replica as of a time in the past as long as the time lies 

within a user specified retention period. This as-of snapshot is 
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presented to the user as a transactionally consistent read-only 

database that supports arbitrary queries. When the user issues 

queries against the snapshot, the data and metadata that is 

accessed, is unwound to produce its version as of the snapshot 

time.  

We retain transaction logs for the specified period and use 

information in the transaction log to undo committed changes 

producing previous versions of the data. In the ARIES recovery 

scheme, each modification to a data page is logged as a separate 

log record. This facilitates the undo mechanism to process each 

data page independently of the other data pages in the database. 

We generate previous page versions as arbitrary queries are run. 

Only the pages that are required to process the queries get 

unwound. 

Logical metadata (such as object catalog) itself is stored in 

relational format and updates to it are logged similar to updates to 

data. Allocation maps are also stored in data pages and updates 

are logged as regular page modifications. Unwinding the metadata 

and allocation maps relies on the same physical undo mechanism 

described above. 

In Sections 4 and 5, we will discuss the undo mechanism and as-

of snapshots in detail.      

4. TRANSACTION LOG BASED UNDO 
As the transaction log is used to undo incomplete transactions, it 

already contains most of the undo information necessary to 

generate prior versions of the data; therefore it is attractive to use 

the log to go back in time starting from the current database state.  

4.1 Logical vs. Physical Undo 
We considered two approaches to use transaction log to generate 

prior versions: 

A) Transaction-oriented (Logical) Undo:  

Here we undo complete transactions as if they never committed, 

by running standard logical undo that is used during rollback. 

This approach has two main drawbacks: 

1. Individual transactions cannot be undone independent of 

each other; those with data dependencies must be undone in 

reverse order of their completion. Hence selectively undoing 

transactions that are relevant to the data being retrieved is 

non-trivial. 

2. Even within a transaction, logical undo must sequentially 

undo log records in reverse chronological order. Therefore 

we cannot restrict undo only to specific portions of the data 

that may be accessed by the user. 

B) Page-oriented (Physical) Undo: 

The second approach is to undo database pages physically. As 

described in the previous section, data pages are modified and the 

changes are logged under an exclusive latch establishing complete 

order among modifications to the same page. The sequence of log 

records of a specific page are back linked using a prevPageLSN. 

The data page contains the pageLSN which is the last log record 

that modified the page. Through this chain, page log records can 

be traversed backwards undoing the changes to the page till the 

desired point in time.  

This approach has several advantages over transaction-oriented 

undo: 

1. Pages are undone independently of each other; there is no 

need for dependence tracking. 

2. All pages in the database (data or metadata) can be undone 

using a single mechanism. 

3. Since individual pages are undone independently, it is 

straightforward to limit the undo to data and metadata pages 

that were accessed by the user. 

Because of these desirable properties, we chose page oriented 

undo. 

Conceptually, the undo mechanism provides the primitive: 

PreparePageAsOf (page, asOfLSN) 

It reads the current copy of page from the source database and 

applies the transaction log to undo modifications up to the 

asOfLSN. 

Section 4.2 describes how this primitive is realized in the system. 

The subsequent sections describe how the rest of the system uses 

this primitive to produce prior versions of the data accessed by the 

user. 

4.2 Extensions to the Transaction Log  
While the transaction log already contains most of the undo 

information necessary, we make the following enhancements for 

the page-oriented undo to work: 

1. Page Re-allocation: 

Upon allocation, a page is formatted with a format log record. 

This log record marks the beginning of the chain of the 

modifications to this page. However, this chain is interrupted 

when a page is de-allocated and subsequently re-allocated to store 

new content. The re-allocation logs a format log record which 

marks the beginning of the new chain as illustrated in Figure 1. 

 

 

 

 

The broken chain presents two problems: 

a. The traversal during undo cannot get to the log records from 

the previous incarnation of the page. 

b. The format log record during re-allocation erases the 

contents of the de-allocated page, so the previous page 

content cannot be used for as-of query. 

 

Figure 1: Re-allocation breaking the chain of modifications 
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We have introduced a special “preformat” page log record that 
links the two chains together and stores the previous content of 

the page as shown in Figure 2. 

Instead of logging pro-actively during de-allocation, the preformat 

page log record is logged when the page is reallocated. This 

eliminates overhead in the path of dropping or truncating a table 

but may require an IO at reallocation; this is an acceptable trade-

off because this cost amortized across all modifications to the 

page between successive re-allocations.  

We maintain metadata in the allocation map to differentiate 

between the first allocation of a data page and subsequent re-

allocations. This eliminates unnecessary logging during the initial 

data loading as a data page does not contain useful information if 

it has never been allocated before.  

2. Compensation Log Records: 

In the ARIES, compensation log records (CLRs) are considered 

redo-only – they do not contain undo information. We extend the 

CLRs to include pertinent undo information. Theoretically the 

undo information we record in the CLRs can be derived from the 

log record that the CLR compensates for. In our experience, 

increasing the log record size does not impact performance as 

long as we do not increase the number of distinct log records 

generated. Therefore we choose simplicity over optimizing the 

size of CLRs. 

3. B-Tree Structure Modification Operations: 

Structure modification operations move rows between data pages 

of a B-Tree. The moves are logged as inserts followed by deletes. 

Only inserts contain undo information. In order to facilitate page 

oriented undo, we include the undo information in the delete log 

records. The deleted rows could have been derived from the 

corresponding insert log records; however as in the case of CLRs, 

we choose to keep the implementation simple. As we show in the 

performance evaluation, this additional logging does not have any 

noticeable impact on the throughput. 

With the minor extensions to the log described above, we have all 

the information necessary to implement PreparePageAsOf 

(page, asOfLSN) which will allow us to reconstruct any page 

in the database to an arbitrary point in-time within the retention 

period. PreparePageAsOf has a very simple algorithm as 

illustrated by the pseudo code in Figure 3. 

4.3 Retention period 
Since page oriented undo requires retaining the transaction log for 

long duration, we provide the user the ability to specify a 

retention period by extending the ALTER DATABASE statement 

as follows:  

 

This retains the log up to 24 hours allowing undoing up to a day’s 
worth of changes. 

 

 

5. AS-OF DATABASE SNAPSHOTS 
Database snapshots have the desirable property of keeping the 

changes localized to very few components in the database engine 

while letting most components treat the snapshot database as a 

regular read-only database. So we extend the database snapshot 

functionality to enable creating snapshots as of a previous point 

in-time. These new as-of database snapshots are read-only query-

able databases and are backed by NTFS sparse files. Creation, 

recovery and accessing data pages on these as-of snapshots work 

differently from those of regular database snapshots. 

5.1 As-of Snapshot Creation 
During as-of database snapshot creation the user specifies the 

database to create a snapshot of and the requested point of time 

using syntax such as the following: 

 

The initial step of as-of snapshot creation translates the specified 

wall-clock time into the SplitLSN by scanning the transaction log 

of the primary database. The SplitLSN search is optimized to first 

narrow down the transaction log region using checkpoint log 

records which store wall-clock time and then by using transaction 

commit log records to find the actual SplitLSN. This method is 

similar to that used by point in time restore operations where the 

user has specified a wall clock time. 

 

CREATE DATABASE SampleDBAsOfSnap  

AS SNAPSHOT OF SampleDB  

AS OF '2012-03-22 17:26:25.473' 

ALTER DATABASE SampleDB  

SET UNDO_INTERVAL = 24 HOURS 

PreparePageAsOf (page, asOfLSN) 

{ 

    currLSN = page.pageLSN 

    while (currLSN > asOfLSN) 

    { 

        logRec = GetLogRec (currLSN) 

   UndoLogRec (page, logRec) 

   currLSN = logRec.PrevPageLSN 

    } 

} 
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Figure 2: Preformat log record 

Figure 3: Pseudo code for PreparePageAsOf 
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Figure 4: Query workflow on as-of snapshots 
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Once the SplitLSN is established, the system creates NTFS sparse 

files and performs a checkpoint to make sure that all pages of the 

primary database with LSNs less than or equal to SplitLSN are 

made durable to the primary database files.  

5.2 As-of Snapshot Recovery 
After the database snapshot creation, we run the normal database 

recovery passes: analysis, redo and undo: 

 The analysis phase starts at the most recent successful 

checkpoint prior to the SplitLSN and scans the log up to the 

SplitLSN.  

 During the redo phase no page reads are done because all 

the pages that may need to be redone were flushed to the 

primary database files as part of the snapshot creation. This 

allows skipping any data page IOs for redo and removes the 

tracking of pages in the dirty page table. As is with regular 

crash recovery, the redo pass reacquires the locks that were 

held by the transactions that were in-flight as of the 

SplitLSN. 

 The logical undo phase then backs out any incomplete 

transactions as of the SplitLSN. It runs in a background thus 

opening the as-of database snapshot for queries as soon as 

redo pass completes. When the logical undo needs to access 

a data page, it uses the PreparePageAsOf primitive to 

physically undo changes to the page and generate the redo-

consistent image as of the SplitLSN and then it modifies the 

page to undo effects of incomplete transactions. This 

modified page is then written back to the side file so that 

subsequent accesses to it from the snapshot see the effects of 

the logical undo thereby ensuring the data retrieved from the 

snapshot is transactionally consistent as of the specified point 

in time.    

5.3 Data Page Access on As-of Snapshots 
Standard SQL Server database snapshots use copy on write 

mechanism by persisting previous versions of pages in NTFS 

sparse files. As-of database snapshots use the NTFS sparse files to 

store cached copies of pages undone to the split LSN.  

Pages on the as-of snapshot are read as follows: 

a. If the page exists in the sparse file, return that page. 

b. Else, read the page from the primary database. 

c. Once the read I/O completes and the page is latched for 

access, call PreparePageAsOf (page, SplitLSN) to undo the 

page as of the split LSN. 

d. Write the prepared page to the sparse file. 

Once the page is in the buffer pool, its lifetime is managed like 

any other data page. If the page is dirtied by the logical undo 

phase, undo phase of snapshot recovery, we write the modified 

image to the sparse file before it is discarded from the buffer pool. 

This protocol preserves the database snapshot transparency to all 

the database engine components higher in the stack. By undoing 

pages only when they are accessed, we achieve our goal of 

making the application error recovery system computational 

complexity proportional to the amount of data accessed and to the 

time traversed. 

 

Figure 4 illustrates the lifetime of an as-of query issued against an 

as-of snapshot. The snapshot is created as of LSN 10 when the B-

Tree is as shown in  

Figure 4A. Subsequently there were new records inserted in the 

B-Tree and it has undergone a Page Split; the B-Tree after the 

page split along with the corresponding log records is shown in  

Figure 4B. Let us suppose that the user issues a query to retrieve 

all records with key value less than 7 as of the snapshot.  

Figure 4C shows the workflow of this query at the B-Tree 

manager. First the database snapshot consults the catalog which 

will point to the B-Tree root page; the B-Tree manager then tries 

to access the Root Page; at this point the root page is read from 

the disk and it is undone up to LSN 10. The split that had 

propagated to the root after the LSN 10 would now have been 

undone and the root no longer points to Page P2 which was added 

by the split operation. Now based on the query, the B-Tree 

manager accesses page P1; P1 is read from the disk, the two log 

records that modified P1 after LSN 10 are undone and P1 is 

presented to the B-Tree manager as-of LSN 10. The query iterates 

through the records on P1 and correctly returns records R2, R3 

and R5 as the result of the query as of LSN 10. 

6. PERFROMANCE EVALUATION 
To evaluate the performance of our system, we used a scaled-

down version of the TPC-C benchmark we use internally to test 

Microsoft SQL Server. The machine had two quad-core 2.4GHz 

Intel Xeon L5520 processors (i.e. total of eight cores), 24GB 

DRAM, 8 146GB 2.5” 10K RPM SAS disks and 8 32GB SLC 

SSD disks. 

The scaled down TPC-C benchmark uses an initial database size 

of 40GB size, with 800 warehouses, 10 districts per warehouse 

with 8 clients simulating 25 users each. The benchmark normally 

runs for about 50 minutes in the steady state. 

6.1 Logging Overhead 
As described in section 4, we have extended the transaction log to 

include additional information to undo pages physically starting 

from the current state.  In addition to the extensions described in 

section 4, we optionally emit preformat log records containing the 

complete image of the data page after every Nth modification to 

the page. These log records allow us to skip over regions of the 

log during undo as we only need to undo individual modifications 

staring from the first complete image of the page after the 

SplitLSN. 

The first experiment we ran was to compare the benchmark 

throughput on the system without checkpointing. Although this is 

not representative of production workload it measures the 

overhead of the logging extensions.  

The second set of experiments we conducted used checkpoint 

settings with a target recovery interval of 30 seconds. This setting 

is more representative of normal database usage where some form 

of periodic checkpoints is used to bound crash recovery time. 

Periodic checkpoints also ensure that the as-of database snapshots 

can recover in a reasonable amount of time as their recovery starts 

from the checkpoint nearest to the SplitLSN.  

Two sets of experiments are shown Figure 5 and Figure 6; the first 

graph compares throughput (in transactions per minute) for 

various values of N (the frequency at which full page images are 
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logged) and the second graph compares transaction log space 

usage for the same values of N.  

Based on these results, we conclude that the additional logging 

has little impact to the transaction throughput; however it does 

increase the transaction log space usage. We know from past 

experience that the throughput is not affected by the size of log 

records as much as by the total number of log records produced. 

This is due to the synchronization in log manager on every log 

record generation. We sustain the sequential IO needed for the 

additional information on modern rotating media (it consumes 

about 100MB/sec of sequential IO bandwidth at the peak) and it is 

easily sustainable on SSD based media. 

 

 

Figure 5: Space overhead of additional logging 

 

 

Figure 6: Throughput impact of additional logging 

 

6.2 As of Query Time 
The next set of experiments we ran was to measure the cost of 

going back in time. There are two costs associated with this – the 

creation of the as-of database snapshot (including its recovery) 

and the cost of the actual query itself which needs to prepare the 

data accessed as of snapshot time.  

The cost of database snapshot creation depends on the amount of 

log scanned as part of recovery for analysis and redo passes. After 

the redo pass is complete, we start allowing the queries against the 

database snapshot. The undo pass is running in the background 

and its cost is bound by the number of active transactions and the 

number of page modifications in these active transactions. 

The cost of the query is bound by the number of pages that are 

being touched by the query and the number of modifications that 

affected these pages since the time the query is targeting. For each 

modification we need to read the corresponding log record and 

undo the modifications to the page. Each log IO is a potential stall 

if the log is not present in the cache.  

We measured the cost of the as-of query by running a TPC-C 

stock level stored procedure against a fixed district/warehouse 

with linear increase of the time we are going backwards. We used 

a database generated by our TPC-C like benchmark, which 

produced about 100GB of log in about 50 minutes. 

We also compared the cost of the query to the amount of time 

needed to restore a database backup and replaying transaction logs 

as this is the cost we are trying to eliminate.  

 

Figure 7: Comparison of restore and as-of query on SSDs 

 

The two logarithmic scale charts in Figure 7 and Figure 8 show 

the comparison of end to end times which include getting access 

to the stock level data in the past for SSD and SAS media. 

The as-of database snapshot query time ranges from 5 to 18 

seconds on SSD and 34 seconds to 300 seconds on SAS media. 

 

 

Figure 8: Comparison of restore and as-of query on SAS disks 

 

In contrast with the transaction log stored on SAS drives it took 

about 44 minutes to do the restores. The cost is the same 

regardless of the restore point because of the fixed cost of full 

database restore followed by transaction log replay and 

initialization for the unused portion of transaction log. With SSD 

media, it took between about 12 and 26 minutes to do the 

database restore. 
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The charts in Figure 9 and Figure 10 show the comparison of the 

database snapshot creation time vs. the query time on both media 

types. The chart in Figure 11 shows the estimated (based on 

response time) number of undo log IOs that happened as part of 

bringing pages back in time. 

The experiment confirmed our analysis of recovery time being 

more or less constant as it is bound by amount of log scanned. 

This cost is also amortized over potentially multiple queries if 

they need to access the same point of time in the past. 

 

Figure 9: Comparison of snapshot creation and query on SSDs 

 

 

Figure 10: Comparison of snapshot creation and query on SAS 

 

 

Figure 11: Estimated number of undo IOs 

 

As expected the query time grows linearly based on the amount of 

modifications to the pages. It also confirms the fact that storing 

transaction log on low latency media is important for as-of query 

performance because the system has stalls on transaction log reads 

as it traverses the log chain for individual pages. The query times 

are also impacted by the recovery undo pass going in the 

background. This is a trade-off we make to allow the as-of queries 

to start sooner. Overall the performance data confirms that our 

approach presents considerable reduction in time needed to get to 

the data in the past with less storage needed and no additional IO 

resources used to do periodic full database and incremental 

transaction log backups. 

6.3 Concurrent As-of Query 
The final performance experiment we have performed was to 

evaluate the impact of the as-of queries while the TPC-C like 

benchmark is running. We chose 5 minute back-in time query 

running in a loop. This reduced the transaction throughput from 

270,000 tpmC to 180,000 tmpC while being able to create an as-

of database snapshot in average of 20 seconds and execute the as-

of stock level operation in average of 30 seconds. 

6.4 Combination with Backups 
Because the system scales linearly with the number pages 

accessed and the amount of modification to those pages, there is a 

cross over point where restoring the full database restore will start 

performing better, especially for cases where a large amount of 

data needs to be accessed or there was a very significant number 

of modifications to the as-of data being accessed. It is possible to 

build a generalized version of the system that uses either full or 

differential database backups taken at predetermined time points. 

Those base backups can then be used as starting points for either 

rolling forward as with the traditional backup mechanism, or 

rolling backwards as with the system described in this paper, thus 

choosing the fastest way of accessing the data in the past 

7. RELATED WORK 
Temporal databases have been actively worked on both in 

research and industry for several years. The primary focus 

however has been on enabling database for historical queries not 

user error recovery. 

The current state of the art systems can be roughly classified into 

two categories - systems that create a copy-on-write snapshot of 

the database as of a specified time and those that modify on-disk 

data structures such as B-Trees to more efficiently store and 

access historical data. 

7.1 Snapshots using Copy-on-Write 
Skippy ([4], [2] and [3]) and Microsoft SQL Server’s database 
snapshots [5] both provide the ability for long-lived snapshots of 

the database as of a point in time in the past. While slightly 

different in their implementation and performance characteristics, 

both of these systems require snapshots to be created a-priori at 

the desired point in time. For reporting queries that must be run 

periodically against the database, creating snapshots are pre-

determined points in time is reasonable. However for user error 

recovery the desired point in time is not known a-priori. Our 

system allows creating a replica as of an arbitrary point in time in 

the past to get at the precise point of the user error. 
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Another key difference is that since the replica is created on-

demand, the overhead of snapshot creation is deferred to the point 

when it’s actually necessary as opposed to proactively taking 

periodic snapshots. Since user errors are infrequent, periodic 

snapshots would mostly be wasted effort as many of them will 

never get utilized.  

Copy-on-write snapshots maintain the old version of any data that 

is changed in the source database regardless of whether this data 

will actually be accessed through the snapshot. Most of these 

changes are already logged in the transaction log, therefore the 

copy-on write versions are an additional overhead. In our 

approach, we rely mostly on the undo information that is already 

present in the transaction log for regular recovery while 

occasionally logging the complete image for frequently updated 

data pages. Writing to the log sequentially is more efficient than 

writing to copy-on-write media; the overhead introduced by 

additional logging is significantly less than copy-on-write 

snapshots.  

7.2 Specialized Data Structures  
The other class of temporal database systems changes the on-disk 

data structures such as B-Trees to suite better to store and access 

historical data. Both ImmortalDB [6] and MultiVersion B-Tree 

[7] fall into this category. While these systems may provide better 

performance on ad hoc historical queries, they introduce 

noticeable overhead during normal processing. Specialized data 

structures introduce additional complexity and require changes to 

several components in the storage engine. They are also limited in 

applicability – heaps and off-row data cannot be supported easily. 

Since all the on-disk data structures B-Trees, heaps, column 

stores, off-row storage use data pages as the unit of allocation and 

logging, our system works seamlessly with all of these data 

structures without need for specialized code. Prior versions of 

metadata are accessed using the same mechanism as data. This 

allows us to recover from errors such as table deletion or 

truncation without separate mechanism for metadata versioning. If 

a multi-versioned B-Tree is deleted, it is not possible to recover 

from such an error. 

To the best of our knowledge; the combination of the mechanism 

for generating prior version of the data using the transaction log 

and using database snapshots to present a transactionally 

consistent copy of the database as of a point in time in the past, is 

unique to our system. A system that may have a similar 

implementation is Oracle Flashback, but the exact workings of the 

system have not been publicly documented in the literature. 

8. CONCLUSIONS AND FUTURE WORK 
We have implemented a fully functional prototype version of a 

transaction log based recovery and point-time query mechanism in 

Microsoft SQL Server code base. The system allows the user to 

extract the data that needs to be recovered and reconcile it with 

data in the active database. Although we provide the flexibility to 

run arbitrary queries as though the entire database were recovered 

point in time, previous versions are generated on demand only for 

the data that is accessed. This ensures that computation is 

proportional to the amount of historical data retrieved and not the 

size of the entire database. In order to generate previous versions, 

we maintain additional transaction log during the retention period. 

Our current scheme requires users to use knowledge about the 

application and select a set of interrelated objects to be retrieved 

as of a point in time and then use application specific logic to 

reconcile this restored data with the current database contents. We 

are working on extending our scheme to undo a specific 

transaction.     
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