
Transaction Log Based Application Error Recovery and

Point In-Time Query
Tomas Talius

Microsoft Corporation
One Microsoft Way

Redmond WA

tomtal@microsoft.com

Robin Dhamankar
Microsoft Corporation
One Microsoft Way

Redmond WA

robindh@microsoft.com

Andrei Dumitrache
Microsoft Corporation
One Microsoft Way

Redmond WA

adumitr@microsoft.com

Hanuma Kodavalla
Microsoft Corporation
One Microsoft Way

Redmond WA

hanumak@microsoft.com

ABSTRACT

Database backups have traditionally been used as the primary

mechanism to recover from hardware and user errors. High

availability solutions maintain redundant copies of data that can

be used to recover from most failures except user or application

errors. Database backups are neither space nor time efficient for

recovering from user errors which typically occur in the recent

past and affect a small portion of the database. Moreover periodic

full backups impact user workload and increase storage costs. In

this paper we present a scheme that can be used for both user and

application error recovery starting from the current state and

rewinding the database back in time using the transaction log.

While we provide a consistent view of the entire database as of a

point in time in the past, the actual prior versions are produced

only for data that is accessed. We make the as of data accessible to

arbitrary point in time queries by integrating with the database

snapshot feature in Microsoft SQL Server.

1. INTRODUCTION
Database backups have traditionally been used as the primary

mechanism to recover from media failures, natural disasters,

hardware errors as well as user or application errors such as

deleting a table by mistake. In cloud database and storage systems

such as SQL Azure [8] and Windows Azure [9], the system

natively provides local high availability by maintaining redundant

copies of data within the cluster. Many of these systems also

maintain geo-replicas for disaster recovery. It is increasingly

common for on-premise database installations to employ out of

the box solutions such as SQL Server log shipping, database

mirroring and AlwaysOn to maintain local and geo replicas for

high availability and disaster recovery. With features such as

automatic page repair [5], these redundant copies provide

protection against hardware corruptions such as bit rot. When

redundant copies of data are maintained, the use of traditional

backups is reduced to recovery from user or application errors.

User or application errors typically occur in the recent past and

affect a very small portion of the database (a table or a small

subset of rows deleted by mistake). The user wants to recover

from the error without losing changes made to data unaffected by

the error. With traditional backup-restore the only way to meet

these requirements is to create a copy by restoring the full

baseline database backup, apply any subsequent incremental log

backups to roll the database forward to a point in time prior to the

mistake, then extract the relevant information and reconcile with

the current contents of the database. The time and the resources

required for the restore operation are proportional to the size of

the database, much larger than the amount of the data that is being

extracted. Moreover we must temporarily make twice the space

available for the restored copy of the database. The restore

sequence above expects the user to provide the point in time to

which the database must be restored to. Determining the correct

point in time which includes all the desired changes prior to the

user error is not trivial. However the cost of choosing an incorrect

point in time is high as it requires starting the restore process from

scratch. Ideally the efficiency of user error recovery should be

proportional to the amount of data that was affected by the user

error and the amount of time passed since then.

Maintaining full database backups incurs high costs. The full

backup is another copy of the database. These backups themselves

generally need to be made highly available thereby doubling the

total storage costs. The process of generating backups of large

databases can impact the user workload, so backups are taken

during a designated backup window. However, due to the

mission-critical nature of database workloads, that window has

shrunk. It is therefore desirable to reduce the frequency of

periodic full database backups.

In this paper we present a novel scheme that allows the database

to be queried as of any time in the past within a specified retention

period. This allows the user to extract the data that must be

recovered and reconcile it with data in the active database.

Here is an example of using our solution to recover a table that

was dropped by mistake:

 Determine the point in time and mount the snapshot: The

user first constructs a snapshot of the database as of an

approximate time when the table was present in the database.

He then queries the metadata to ascertain that the table exists.

If it does not, she drops the current snapshot and repeats the

process by creating a new snapshot as of an earlier point in

time. Although this involves multiple iterations, these

iterations are independent of the size of the database as only

the prior versions of the metadata are generated.

1781

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

 Reconcile the deleted table with the current database:

The user first queries the catalogs of the snapshot to extract

schema information about the table and then creates an

empty table with all its dependent objects (indexes,

constraints, etc.) in the current database. He then issues an

“INSERT… SELECT” statement to extract data from the
snapshot database and populate the table in the current

database.

Our scheme comprises of the following:

 We extend the database snapshot capability in SQL Server to

create a replica as of the specified time in the past – bounded

by the retention period.

 We provide the flexibility to run arbitrary queries on this

replica by using the transaction log to undo committed

changes and produce previous versions of the data.

 The undo process undoes each data page independently of

the other data pages in the database. Therefore previous

versions are generated only for the data that is accessed by

queries on the replica.

This paper makes the following contributions:

 An efficient scheme – both in time and in space – for user

and application error recovery.

 A simple yet generalizable architecture –provides a common

mechanism for undoing data and metadata and also maintains

orthogonality with existing as well as future features and

application surface area in the DBMS.

 A fully functional implementation in the Microsoft SQL

Server codebase and a detailed performance evaluation to

substantiate our claims.

The rest of the paper is organized as follows: In section 2, we give

a brief description of SQL Server database engine architecture. In

section 3, we provide an overview of our solution and then in

sections 4 and 5, we discuss the algorithms in detail. In section 6,

we present performance evaluation. In section 7, we review

related work and in section 8, we offer our conclusions.

2. BACKGROUND
We implemented our solution as a prototype system for a future

version of Microsoft SQL Server. The SQL Server architecture is

similar to that of System R. Its storage engine consists of various

managers—index manager, lock manager, buffer manager,

transaction manager, log manager and recovery manager—and

uses ARIES-like [1] algorithm for logging and recovery.

2.1 Query Workflow
To read or update a row, the query processor uses the metadata

catalog to locate the appropriate base tables or indexes that must

be accessed to satisfy the request. The metadata itself is stored in

relational format and accessing metadata involves reading rows

from system tables which follows the same workflow as data.

Having located the indexes, the query processor calls the index

manager to find and optionally update the relevant row in the

index or the base table. The index manager finds the data page on

which the row is located and requests the buffer manager to

retrieve the page for read or write access. If the data page is not

already in memory, the buffer manager invokes the file

management subsystem which retrieves the page from persistent

storage. Once the page is in memory, the buffer manager latches

the page in shared or exclusive mode based on the intended access

and returns the page.

The index manager finds the required row in the page and

acquires shared or exclusive lock on the row. If this is an update,

the index manager generates a log record and applies the change

to the page. If this is a read, the row is copied from the page into

private memory. Then the page is unlatched.

When the transaction commits, the transaction manager generates

a commit log record and requests the log manager to flush the

contents of the log up to and including the commit log record to

disk. Only after those log records are written to disk is the

transaction declared committed and its locks released.

The log manager and the buffer manager use log sequence

numbers (LSNs) to keep track of changes to the pages. Log

records in the log have monotonically increasing LSNs assigned

to them. Whenever a log record is generated for an update to a

page, the log record’s LSN is stored in the page as pageLSN.

2.2 Database Snapshots
Microsoft SQL Server implements the database snapshot feature

which allows users to create a copy (snapshot) of the primary

database that is transactionally consistent as of the creation time.

The lifetime of the snapshot is controlled by the user. Typically

these snapshots are created for running reports and dropped after

the reporting job completes.

Database snapshots use a sparse file for every database file in the

primary database. The sparse files store the prior version of data

pages that have been modified in the primary database since the

snapshot was created (copy-on-write). When a page is about to be

modified in the primary database for the first time after the

snapshot creation, the database engine pushes the current copy of

the page to the sparse file.

When the snapshot is created, the database engine determines the

SplitLSN which represents the point in time to which the snapshot

will be recovered. Then standard crash recovery is run on the

snapshot and all transactions that are active as of the SplitLSN are

undone. Any data pages modified during snapshot recovery are

pushed to the snapshot file with the modifications so that the

reads from the snapshot see consistent data. After the snapshot is

recovered, data pages get pushed to the sparse file by the copy-on-

write mechanism described above.

Maintaining the copy-on-write data and re-directing page reads to

the sparse files are managed entirely in the database file

management subsystem. All the other components in the database

engine (metadata subsystem, access methods, query processor

etc.) are oblivious to this indirection. To them snapshot database

appears like a regular read-only database. In the workflow

described in section 2.1, when the buffer manager requests a page

from the file management subsystem, the page is read from the

sparse file if found in it otherwise from the active database. The

rest of the workflow remains unchanged.

3. OVERVIEW OF THE SOLUTION
SQL Server allows users to creating database snapshots as of the

time of creation. We have extended the database snapshot feature

to create a replica as of a time in the past as long as the time lies

within a user specified retention period. This as-of snapshot is

1782

presented to the user as a transactionally consistent read-only

database that supports arbitrary queries. When the user issues

queries against the snapshot, the data and metadata that is

accessed, is unwound to produce its version as of the snapshot

time.

We retain transaction logs for the specified period and use

information in the transaction log to undo committed changes

producing previous versions of the data. In the ARIES recovery

scheme, each modification to a data page is logged as a separate

log record. This facilitates the undo mechanism to process each

data page independently of the other data pages in the database.

We generate previous page versions as arbitrary queries are run.

Only the pages that are required to process the queries get

unwound.

Logical metadata (such as object catalog) itself is stored in

relational format and updates to it are logged similar to updates to

data. Allocation maps are also stored in data pages and updates

are logged as regular page modifications. Unwinding the metadata

and allocation maps relies on the same physical undo mechanism

described above.

In Sections 4 and 5, we will discuss the undo mechanism and as-

of snapshots in detail.

4. TRANSACTION LOG BASED UNDO
As the transaction log is used to undo incomplete transactions, it

already contains most of the undo information necessary to

generate prior versions of the data; therefore it is attractive to use

the log to go back in time starting from the current database state.

4.1 Logical vs. Physical Undo
We considered two approaches to use transaction log to generate

prior versions:

A) Transaction-oriented (Logical) Undo:

Here we undo complete transactions as if they never committed,

by running standard logical undo that is used during rollback.

This approach has two main drawbacks:

1. Individual transactions cannot be undone independent of

each other; those with data dependencies must be undone in

reverse order of their completion. Hence selectively undoing

transactions that are relevant to the data being retrieved is

non-trivial.

2. Even within a transaction, logical undo must sequentially

undo log records in reverse chronological order. Therefore

we cannot restrict undo only to specific portions of the data

that may be accessed by the user.

B) Page-oriented (Physical) Undo:

The second approach is to undo database pages physically. As

described in the previous section, data pages are modified and the

changes are logged under an exclusive latch establishing complete

order among modifications to the same page. The sequence of log

records of a specific page are back linked using a prevPageLSN.

The data page contains the pageLSN which is the last log record

that modified the page. Through this chain, page log records can

be traversed backwards undoing the changes to the page till the

desired point in time.

This approach has several advantages over transaction-oriented

undo:

1. Pages are undone independently of each other; there is no

need for dependence tracking.

2. All pages in the database (data or metadata) can be undone

using a single mechanism.

3. Since individual pages are undone independently, it is

straightforward to limit the undo to data and metadata pages

that were accessed by the user.

Because of these desirable properties, we chose page oriented

undo.

Conceptually, the undo mechanism provides the primitive:

PreparePageAsOf (page, asOfLSN)

It reads the current copy of page from the source database and

applies the transaction log to undo modifications up to the

asOfLSN.

Section 4.2 describes how this primitive is realized in the system.

The subsequent sections describe how the rest of the system uses

this primitive to produce prior versions of the data accessed by the

user.

4.2 Extensions to the Transaction Log
While the transaction log already contains most of the undo

information necessary, we make the following enhancements for

the page-oriented undo to work:

1. Page Re-allocation:

Upon allocation, a page is formatted with a format log record.

This log record marks the beginning of the chain of the

modifications to this page. However, this chain is interrupted

when a page is de-allocated and subsequently re-allocated to store

new content. The re-allocation logs a format log record which

marks the beginning of the new chain as illustrated in Figure 1.

The broken chain presents two problems:

a. The traversal during undo cannot get to the log records from

the previous incarnation of the page.

b. The format log record during re-allocation erases the

contents of the de-allocated page, so the previous page

content cannot be used for as-of query.

Figure 1: Re-allocation breaking the chain of modifications

Format

Format

Modify

y

Modify

Modify
Modify

…Modif

…

Format

Format

Previous Page

LSNPrevious Page

Modify

1783

We have introduced a special “preformat” page log record that
links the two chains together and stores the previous content of

the page as shown in Figure 2.

Instead of logging pro-actively during de-allocation, the preformat

page log record is logged when the page is reallocated. This

eliminates overhead in the path of dropping or truncating a table

but may require an IO at reallocation; this is an acceptable trade-

off because this cost amortized across all modifications to the

page between successive re-allocations.

We maintain metadata in the allocation map to differentiate

between the first allocation of a data page and subsequent re-

allocations. This eliminates unnecessary logging during the initial

data loading as a data page does not contain useful information if

it has never been allocated before.

2. Compensation Log Records:

In the ARIES, compensation log records (CLRs) are considered

redo-only – they do not contain undo information. We extend the

CLRs to include pertinent undo information. Theoretically the

undo information we record in the CLRs can be derived from the

log record that the CLR compensates for. In our experience,

increasing the log record size does not impact performance as

long as we do not increase the number of distinct log records

generated. Therefore we choose simplicity over optimizing the

size of CLRs.

3. B-Tree Structure Modification Operations:

Structure modification operations move rows between data pages

of a B-Tree. The moves are logged as inserts followed by deletes.

Only inserts contain undo information. In order to facilitate page

oriented undo, we include the undo information in the delete log

records. The deleted rows could have been derived from the

corresponding insert log records; however as in the case of CLRs,

we choose to keep the implementation simple. As we show in the

performance evaluation, this additional logging does not have any

noticeable impact on the throughput.

With the minor extensions to the log described above, we have all

the information necessary to implement PreparePageAsOf

(page, asOfLSN) which will allow us to reconstruct any page

in the database to an arbitrary point in-time within the retention

period. PreparePageAsOf has a very simple algorithm as

illustrated by the pseudo code in Figure 3.

4.3 Retention period
Since page oriented undo requires retaining the transaction log for

long duration, we provide the user the ability to specify a

retention period by extending the ALTER DATABASE statement

as follows:

This retains the log up to 24 hours allowing undoing up to a day’s
worth of changes.

5. AS-OF DATABASE SNAPSHOTS
Database snapshots have the desirable property of keeping the

changes localized to very few components in the database engine

while letting most components treat the snapshot database as a

regular read-only database. So we extend the database snapshot

functionality to enable creating snapshots as of a previous point

in-time. These new as-of database snapshots are read-only query-

able databases and are backed by NTFS sparse files. Creation,

recovery and accessing data pages on these as-of snapshots work

differently from those of regular database snapshots.

5.1 As-of Snapshot Creation
During as-of database snapshot creation the user specifies the

database to create a snapshot of and the requested point of time

using syntax such as the following:

The initial step of as-of snapshot creation translates the specified

wall-clock time into the SplitLSN by scanning the transaction log

of the primary database. The SplitLSN search is optimized to first

narrow down the transaction log region using checkpoint log

records which store wall-clock time and then by using transaction

commit log records to find the actual SplitLSN. This method is

similar to that used by point in time restore operations where the

user has specified a wall clock time.

CREATE DATABASE SampleDBAsOfSnap

AS SNAPSHOT OF SampleDB

AS OF '2012-03-22 17:26:25.473'

ALTER DATABASE SampleDB

SET UNDO_INTERVAL = 24 HOURS

PreparePageAsOf (page, asOfLSN)

{

 currLSN = page.pageLSN

 while (currLSN > asOfLSN)

 {

 logRec = GetLogRec (currLSN)

 UndoLogRec (page, logRec)

 currLSN = logRec.PrevPageLSN

 }

}

Format

Format

Modify

y

Modify

Modify

Modify

…Modif

…

Format

Format

Previous Page

LSNPrevious Page

Pre-Format

Modify

Figure 2: Preformat log record

Figure 3: Pseudo code for PreparePageAsOf

1784

Figure 4: Query workflow on as-of snapshots

1785

Once the SplitLSN is established, the system creates NTFS sparse

files and performs a checkpoint to make sure that all pages of the

primary database with LSNs less than or equal to SplitLSN are

made durable to the primary database files.

5.2 As-of Snapshot Recovery
After the database snapshot creation, we run the normal database

recovery passes: analysis, redo and undo:

 The analysis phase starts at the most recent successful

checkpoint prior to the SplitLSN and scans the log up to the

SplitLSN.

 During the redo phase no page reads are done because all

the pages that may need to be redone were flushed to the

primary database files as part of the snapshot creation. This

allows skipping any data page IOs for redo and removes the

tracking of pages in the dirty page table. As is with regular

crash recovery, the redo pass reacquires the locks that were

held by the transactions that were in-flight as of the

SplitLSN.

 The logical undo phase then backs out any incomplete

transactions as of the SplitLSN. It runs in a background thus

opening the as-of database snapshot for queries as soon as

redo pass completes. When the logical undo needs to access

a data page, it uses the PreparePageAsOf primitive to

physically undo changes to the page and generate the redo-

consistent image as of the SplitLSN and then it modifies the

page to undo effects of incomplete transactions. This

modified page is then written back to the side file so that

subsequent accesses to it from the snapshot see the effects of

the logical undo thereby ensuring the data retrieved from the

snapshot is transactionally consistent as of the specified point

in time.

5.3 Data Page Access on As-of Snapshots
Standard SQL Server database snapshots use copy on write

mechanism by persisting previous versions of pages in NTFS

sparse files. As-of database snapshots use the NTFS sparse files to

store cached copies of pages undone to the split LSN.

Pages on the as-of snapshot are read as follows:

a. If the page exists in the sparse file, return that page.

b. Else, read the page from the primary database.

c. Once the read I/O completes and the page is latched for

access, call PreparePageAsOf (page, SplitLSN) to undo the

page as of the split LSN.

d. Write the prepared page to the sparse file.

Once the page is in the buffer pool, its lifetime is managed like

any other data page. If the page is dirtied by the logical undo

phase, undo phase of snapshot recovery, we write the modified

image to the sparse file before it is discarded from the buffer pool.

This protocol preserves the database snapshot transparency to all

the database engine components higher in the stack. By undoing

pages only when they are accessed, we achieve our goal of

making the application error recovery system computational

complexity proportional to the amount of data accessed and to the

time traversed.

Figure 4 illustrates the lifetime of an as-of query issued against an

as-of snapshot. The snapshot is created as of LSN 10 when the B-

Tree is as shown in

Figure 4A. Subsequently there were new records inserted in the

B-Tree and it has undergone a Page Split; the B-Tree after the

page split along with the corresponding log records is shown in

Figure 4B. Let us suppose that the user issues a query to retrieve

all records with key value less than 7 as of the snapshot.

Figure 4C shows the workflow of this query at the B-Tree

manager. First the database snapshot consults the catalog which

will point to the B-Tree root page; the B-Tree manager then tries

to access the Root Page; at this point the root page is read from

the disk and it is undone up to LSN 10. The split that had

propagated to the root after the LSN 10 would now have been

undone and the root no longer points to Page P2 which was added

by the split operation. Now based on the query, the B-Tree

manager accesses page P1; P1 is read from the disk, the two log

records that modified P1 after LSN 10 are undone and P1 is

presented to the B-Tree manager as-of LSN 10. The query iterates

through the records on P1 and correctly returns records R2, R3

and R5 as the result of the query as of LSN 10.

6. PERFROMANCE EVALUATION
To evaluate the performance of our system, we used a scaled-

down version of the TPC-C benchmark we use internally to test

Microsoft SQL Server. The machine had two quad-core 2.4GHz

Intel Xeon L5520 processors (i.e. total of eight cores), 24GB

DRAM, 8 146GB 2.5” 10K RPM SAS disks and 8 32GB SLC

SSD disks.

The scaled down TPC-C benchmark uses an initial database size

of 40GB size, with 800 warehouses, 10 districts per warehouse

with 8 clients simulating 25 users each. The benchmark normally

runs for about 50 minutes in the steady state.

6.1 Logging Overhead
As described in section 4, we have extended the transaction log to

include additional information to undo pages physically starting

from the current state. In addition to the extensions described in

section 4, we optionally emit preformat log records containing the

complete image of the data page after every Nth modification to

the page. These log records allow us to skip over regions of the

log during undo as we only need to undo individual modifications

staring from the first complete image of the page after the

SplitLSN.

The first experiment we ran was to compare the benchmark

throughput on the system without checkpointing. Although this is

not representative of production workload it measures the

overhead of the logging extensions.

The second set of experiments we conducted used checkpoint

settings with a target recovery interval of 30 seconds. This setting

is more representative of normal database usage where some form

of periodic checkpoints is used to bound crash recovery time.

Periodic checkpoints also ensure that the as-of database snapshots

can recover in a reasonable amount of time as their recovery starts

from the checkpoint nearest to the SplitLSN.

Two sets of experiments are shown Figure 5 and Figure 6; the first

graph compares throughput (in transactions per minute) for

various values of N (the frequency at which full page images are

1786

logged) and the second graph compares transaction log space

usage for the same values of N.

Based on these results, we conclude that the additional logging

has little impact to the transaction throughput; however it does

increase the transaction log space usage. We know from past

experience that the throughput is not affected by the size of log

records as much as by the total number of log records produced.

This is due to the synchronization in log manager on every log

record generation. We sustain the sequential IO needed for the

additional information on modern rotating media (it consumes

about 100MB/sec of sequential IO bandwidth at the peak) and it is

easily sustainable on SSD based media.

Figure 5: Space overhead of additional logging

Figure 6: Throughput impact of additional logging

6.2 As of Query Time
The next set of experiments we ran was to measure the cost of

going back in time. There are two costs associated with this – the

creation of the as-of database snapshot (including its recovery)

and the cost of the actual query itself which needs to prepare the

data accessed as of snapshot time.

The cost of database snapshot creation depends on the amount of

log scanned as part of recovery for analysis and redo passes. After

the redo pass is complete, we start allowing the queries against the

database snapshot. The undo pass is running in the background

and its cost is bound by the number of active transactions and the

number of page modifications in these active transactions.

The cost of the query is bound by the number of pages that are

being touched by the query and the number of modifications that

affected these pages since the time the query is targeting. For each

modification we need to read the corresponding log record and

undo the modifications to the page. Each log IO is a potential stall

if the log is not present in the cache.

We measured the cost of the as-of query by running a TPC-C

stock level stored procedure against a fixed district/warehouse

with linear increase of the time we are going backwards. We used

a database generated by our TPC-C like benchmark, which

produced about 100GB of log in about 50 minutes.

We also compared the cost of the query to the amount of time

needed to restore a database backup and replaying transaction logs

as this is the cost we are trying to eliminate.

Figure 7: Comparison of restore and as-of query on SSDs

The two logarithmic scale charts in Figure 7 and Figure 8 show

the comparison of end to end times which include getting access

to the stock level data in the past for SSD and SAS media.

The as-of database snapshot query time ranges from 5 to 18

seconds on SSD and 34 seconds to 300 seconds on SAS media.

Figure 8: Comparison of restore and as-of query on SAS disks

In contrast with the transaction log stored on SAS drives it took

about 44 minutes to do the restores. The cost is the same

regardless of the restore point because of the fixed cost of full

database restore followed by transaction log replay and

initialization for the unused portion of transaction log. With SSD

media, it took between about 12 and 26 minutes to do the

database restore.

1787

The charts in Figure 9 and Figure 10 show the comparison of the

database snapshot creation time vs. the query time on both media

types. The chart in Figure 11 shows the estimated (based on

response time) number of undo log IOs that happened as part of

bringing pages back in time.

The experiment confirmed our analysis of recovery time being

more or less constant as it is bound by amount of log scanned.

This cost is also amortized over potentially multiple queries if

they need to access the same point of time in the past.

Figure 9: Comparison of snapshot creation and query on SSDs

Figure 10: Comparison of snapshot creation and query on SAS

Figure 11: Estimated number of undo IOs

As expected the query time grows linearly based on the amount of

modifications to the pages. It also confirms the fact that storing

transaction log on low latency media is important for as-of query

performance because the system has stalls on transaction log reads

as it traverses the log chain for individual pages. The query times

are also impacted by the recovery undo pass going in the

background. This is a trade-off we make to allow the as-of queries

to start sooner. Overall the performance data confirms that our

approach presents considerable reduction in time needed to get to

the data in the past with less storage needed and no additional IO

resources used to do periodic full database and incremental

transaction log backups.

6.3 Concurrent As-of Query
The final performance experiment we have performed was to

evaluate the impact of the as-of queries while the TPC-C like

benchmark is running. We chose 5 minute back-in time query

running in a loop. This reduced the transaction throughput from

270,000 tpmC to 180,000 tmpC while being able to create an as-

of database snapshot in average of 20 seconds and execute the as-

of stock level operation in average of 30 seconds.

6.4 Combination with Backups
Because the system scales linearly with the number pages

accessed and the amount of modification to those pages, there is a

cross over point where restoring the full database restore will start

performing better, especially for cases where a large amount of

data needs to be accessed or there was a very significant number

of modifications to the as-of data being accessed. It is possible to

build a generalized version of the system that uses either full or

differential database backups taken at predetermined time points.

Those base backups can then be used as starting points for either

rolling forward as with the traditional backup mechanism, or

rolling backwards as with the system described in this paper, thus

choosing the fastest way of accessing the data in the past

7. RELATED WORK
Temporal databases have been actively worked on both in

research and industry for several years. The primary focus

however has been on enabling database for historical queries not

user error recovery.

The current state of the art systems can be roughly classified into

two categories - systems that create a copy-on-write snapshot of

the database as of a specified time and those that modify on-disk

data structures such as B-Trees to more efficiently store and

access historical data.

7.1 Snapshots using Copy-on-Write
Skippy ([4], [2] and [3]) and Microsoft SQL Server’s database
snapshots [5] both provide the ability for long-lived snapshots of

the database as of a point in time in the past. While slightly

different in their implementation and performance characteristics,

both of these systems require snapshots to be created a-priori at

the desired point in time. For reporting queries that must be run

periodically against the database, creating snapshots are pre-

determined points in time is reasonable. However for user error

recovery the desired point in time is not known a-priori. Our

system allows creating a replica as of an arbitrary point in time in

the past to get at the precise point of the user error.

1788

Another key difference is that since the replica is created on-

demand, the overhead of snapshot creation is deferred to the point

when it’s actually necessary as opposed to proactively taking

periodic snapshots. Since user errors are infrequent, periodic

snapshots would mostly be wasted effort as many of them will

never get utilized.

Copy-on-write snapshots maintain the old version of any data that

is changed in the source database regardless of whether this data

will actually be accessed through the snapshot. Most of these

changes are already logged in the transaction log, therefore the

copy-on write versions are an additional overhead. In our

approach, we rely mostly on the undo information that is already

present in the transaction log for regular recovery while

occasionally logging the complete image for frequently updated

data pages. Writing to the log sequentially is more efficient than

writing to copy-on-write media; the overhead introduced by

additional logging is significantly less than copy-on-write

snapshots.

7.2 Specialized Data Structures
The other class of temporal database systems changes the on-disk

data structures such as B-Trees to suite better to store and access

historical data. Both ImmortalDB [6] and MultiVersion B-Tree

[7] fall into this category. While these systems may provide better

performance on ad hoc historical queries, they introduce

noticeable overhead during normal processing. Specialized data

structures introduce additional complexity and require changes to

several components in the storage engine. They are also limited in

applicability – heaps and off-row data cannot be supported easily.

Since all the on-disk data structures B-Trees, heaps, column

stores, off-row storage use data pages as the unit of allocation and

logging, our system works seamlessly with all of these data

structures without need for specialized code. Prior versions of

metadata are accessed using the same mechanism as data. This

allows us to recover from errors such as table deletion or

truncation without separate mechanism for metadata versioning. If

a multi-versioned B-Tree is deleted, it is not possible to recover

from such an error.

To the best of our knowledge; the combination of the mechanism

for generating prior version of the data using the transaction log

and using database snapshots to present a transactionally

consistent copy of the database as of a point in time in the past, is

unique to our system. A system that may have a similar

implementation is Oracle Flashback, but the exact workings of the

system have not been publicly documented in the literature.

8. CONCLUSIONS AND FUTURE WORK
We have implemented a fully functional prototype version of a

transaction log based recovery and point-time query mechanism in

Microsoft SQL Server code base. The system allows the user to

extract the data that needs to be recovered and reconcile it with

data in the active database. Although we provide the flexibility to

run arbitrary queries as though the entire database were recovered

point in time, previous versions are generated on demand only for

the data that is accessed. This ensures that computation is

proportional to the amount of historical data retrieved and not the

size of the entire database. In order to generate previous versions,

we maintain additional transaction log during the retention period.

Our current scheme requires users to use knowledge about the

application and select a set of interrelated objects to be retrieved

as of a point in time and then use application specific logic to

reconcile this restored data with the current database contents. We

are working on extending our scheme to undo a specific

transaction.

9. ACKNOWLEDGMENTS
We thank our colleagues in the SQL Server RDBMS team and

MSR Database research group for helpful feedback throughout

the project. We also thank the anonymous reviewers for their

insightful comments.

10. REFERENCES
[1] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P.

Schwarz. ARIES: A Transaction Recovery Method

Supporting Fine-Granularity Locking and Partial Rollbacks

Using Write-Ahead Logging. ACM TODS, 17(1):94–162,

1992.

[2] L. Shrira and H. Xu. SNAP: Efficient Snapshots for Back-in-

Time Execution. In Proc. ICDE, pages 434-445, 2005.

[3] L. Shrira and H. Xu. Thresher: An Efficient Storage Manager

for Copy-on-Write Snapshots. In Proc. USENIX Annual

Technical Conference, pages 57-70, 2006.

[4] R. Shaull, L. Shrira, and H. Xu. Skippy: A New Snapshot

Indexing Method for Time Travel in the Storage Manager. In

Proc. SIGMOD, pages 637-648, 2008.

[5] Microsoft SQL Server Books Online,

http://msdn.microsoft.com/en-us/library/ms130214.aspx

[6] D. Lomet, R. Barga, M. F. Mokbel, G. Shegalov, R. Wang,

and Y. Zhu. ImmortalDB: Transaction Time Support for

SQL Server. In Proc. SIGMOD, pages 939-941, 2005.

[7] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and

P.Widmayer. An Asymptotically Optimal Multi-Version B-

Tree. VLDB Journal, 5(4): 264-275, 1996.

[8] P. Bernstein, I. Cseri, N. Dani, N. Ellis, A. Kalhan, G.

Kakivaya, D. Lomet, R. Manne, L. Novik and T. Talius:

Adapting Microsoft SQL Server For Cloud Computing. In

Proc. ICDE, pages 1255-1263, 2011.

[9] Brad Calder et al. Windows Azure Storage: A Highly

Available Cloud Storage Service with Strong Consistency. In

Proc. SOSP, pages 143-157, 2011.

1789

