The Vertica Analytic Database: C-Store 7 Years Later

Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan
Nga Tran, Ben Vandiver, Lyric Doshi, Chuck Bear
Vertica Systems, An HP Company
Cambridge, MA
{alamb, mfuller, rvaradarajan, ntran, bvandiver, Idoshi, cbear}
@vertica.com

ABSTRACT

This paper describes the system architecture of the Ver-
tica Analytic Database (Vertica), a commercialization of the
design of the C-Store research prototype. Vertica demon-
strates a modern commercial RDBMS system that presents
a classical relational interface while at the same time achiev-
ing the high performance expected from modern “web scale”

analytic systems by making appropriate architectural choices.

Vertica is also an instructive lesson in how academic systems
research can be directly commercialized into a successful
product.

1. INTRODUCTION

The Vertica Analytic Database (Vertica) is a distributed?,
massively parallel RDBMS system that commercializes the
ideas of the C-Store[21] project. It is one of the few new
commercial relational database systems that is widely used
in business critical systems. At the time of this writing,
there are over 500 production deployments of Vertica, at
least three of which are substantially over a petabyte in size.
Despite the recent interest in academia and industry about
so called “NoSQL” systems [13, 19, 12], the C-Store project
anticipated the need for web scale distributed processing and
these new NoSQL systems use many of the same techniques
found in C-Store and other relational systems. Like any
language or system, SQL is not perfect, but it has been
a transformational abstraction for application developers,
freeing them from many implementation details of storing
and finding their data to focus their efforts on using the
information effectively.

Vertica’s experience in the marketplace and the emergence
of other technologies such as Hive [7] and Tenzing [9] validate
that the problem is not SQL. Rather, the unsuitability of
legacy RDBMs systems for massive analytic workloads is

"We use the term distributed database to mean a shared-
nothing, scale-out system as opposed to a set of locally au-
tonomous (own catalog, security settings, etc.) RDBMS sys-
tems.
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that they were designed for transactional workloads on late-
model computer hardware 40 years ago. Vertica is designed
for analytic workloads on modern hardware and its success
proves the commercial and technical viability of large scale
distributed databases which offer fully ACID transactions
yet efficiently process petabytes of structured data.

This main contributions of this paper are:

1. An overview of the architecture of the Vertica Analytic

Database, focusing on deviations from C-Store.

Implementation and deployment lessons that led to
those differences.

Observations on real-world experiences that can in-
form future research directions for large scale analytic
systems.

‘We hope that this paper contributes a perspective on com-
mercializing research projects and emphasizes the contribu-
tions of the database research community towards large scale
distributed computing.

2. BACKGROUND

Vertica was the direct result of commercializing the C-
Store research system. Vertica Systems was founded in 2005
by several of the C-Store authors and was acquired in 2011
by Hewlett-Packard (HP) after several years of commercial
development. [2]. Significant research and development ef-
forts continue on the Vertica Analytic Database.

2.1 Design Overview

2.1.1 Design Goals

Vertica utilizes many (but not all) of the ideas of C-Store,
but none of the code from the research prototype. Vertica
was explicitly designed for analytic workloads rather than
for transactional workloads.

Transactional workloads are characterized by a large
number of transactions per second (e.g. thousands) where
each transaction involves a handful of tuples. Most of the
transactions take the form of single row insertions or modifi-
cations to existing rows. Examples are inserting a new sales
record and updating a bank account balance.

Analytic workloads are characterized by smaller trans-
action volume (e.g. tens per second), but each transaction
examines a significant fraction of the tuples in a table. Ex-
amples are aggregating sales data across time and geography
dimensions and analyzing the behavior of distinct users on
a web site.



As typical table sizes, even for small companies, have
grown to millions and billions of rows, the difference be-
tween the transactional and analytic workloads has been
increasing. As others have pointed out [26], it is possible to
exceed the performance of existing one-size-fits-all systems
by orders of magnitudes by focusing specifically on analytic
workloads.

Vertica is a distributed system designed for modern com-
modity hardware. In 2012, this means x86_64 servers, Linux
and commodity gigabit Ethernet interconnects. Like C-
Store, Vertica is designed from the ground up to be a dis-
tributed database. When nodes are added to the database,
the system’s performance should scale linearly. To achieve
such scaling, using a shared disk (often referred to as network-
attached storage) is not acceptable as it almost immediately
becomes a bottleneck. Also, the storage system’s data place-
ment, the optimizer and execution engine should avoid con-
suming large amounts of network bandwidth to prevent the
interconnect from becoming the bottleneck.

In analytic workloads, while transactions per second is rel-
atively low by Online-Transaction-Processing (OLTP) stan-
dards, rows processed per second is incredibly high. This
applies not only to querying but also to loading the data
into the database. Special care must be taken to support
high ingest rates. If it takes days to load your data, a super-
fast analytic query engine will be of limited use. Bulk load
must be fast and must not prevent or unduly slow down
queries ongoing in parallel.

For a real production system, all operations must be “on-
line”. Vertica can not require stopping or suspending queries
for storage management or maintenance tasks. Vertica also
aims to ease the management burden by making ease of use
an explicit goal. We trade CPU cycles (which are cheap) for
human wizard cycles (which are expensive) whenever pos-
sible. This takes many forms such as minimizing complex
networking and disk setup, limiting performance tuning re-
quired, and automating physical design and management.
All vendors claim management ease, though success in the
real world is mixed.

Vertica was written entirely from scratch with the fol-
lowing exceptions, which are based on the PostgreSQL [5]
implementation:

The SQL parser, semantic analyzer, and standard SQL
rewrites.

. Early versions of the standard client libraries, such as
JDBC and ODBC and the command line interface.

All other components were custom written from the ground
up. While this choice required significant engineering effort
and delayed the initial introduction of Vertica to the mar-
ket, it means Vertica is positioned to take full advantage of
its architecture.

3. DATA MODEL

Like all SQL based systems, Vertica models user data as
tables of columns (attributes), though the data is not phys-
ically arranged in this manner. Vertica supports the full
range of standard INSERT, UPDATE, DELETE constructs
for logically inserting and modifying data as well as a bulk
loader and full SQL support for querying.
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3.1 Projections

Like C-Store, Vertica physically organizes table data into
projections, which are sorted subsets of the attributes of a
table. Any number of projections with different sort orders
and subsets of the table columns are allowed. Because Ver-
tica is a column store and has been optimized so heavily for
performance, it is NOT required to have one projection for
each predicate that a user might restrict. In practice, most
customers have one super projection (described below) and
between zero and three narrow, non-super projections.

Each projection has a specific sort order on which the data
is totally sorted as shown in Figure 1. Projections may be
thought of as a restricted form of materialized view [11, 25].
They differ from standard materialized views because they
are the only physical data structure in Vertica, rather than
auxiliary indexes. Classical materialized views also contain
aggregation, joins and other query constructs that Vertica
projections do not. Experience has shown that the main-
tenance cost and additional implementation complexity of
maintaining materialized views with aggregation and filter-
ing is not practical in real world distributed systems. Vertica
does support a special case to physically denormalize certain
joins within prejoin projections as described below.

3.2 Join Indexes

C-Store uses a data structure called a join index to recon-
stitute tuples from the original table using different partial
projections. While the authors expected only a few join in-
dices in practice, Vertica does not implement join indices
at all, instead requiring at least one super projection con-
taining every column of the anchoring table. In practice
and experiments with early prototypes, we found that the
costs of using join indices far outweighed their benefits. Join
indices were complex to implement and the runtime cost of
reconstructing full tuples during distributed query execution
was very high. In addition, explicitly storing row ids con-
sumed significant disk space for large tables. The excellent
compression achieved by our columnar design helped keep
the cost of super projections to a minimum and we have no
plans to lift the super projection requirement.

3.3 Prejoin Projections

Like C-Store, Vertica supports prejoin projections which
permit joining the projection’s anchor table with any num-
ber of dimension tables via N:1 joins. This permits a normal-
ized logical schema, while allowing the physical storage to be
denormalized. The cost of storing physically denormalized
data is much less than in traditional systems because of the
available encoding and compression. Prejoin projections are
not used as often in practice as we expected. This is because
Vertica’s execution engine handles joins with small dimen-
sion tables very well (using highly optimized hash and merge
join algorithms), so the benefits of a prejoin for query exe-
cution are not as significant as we initially predicted. In the
case of joins involving a fact and a large dimension table or
two large fact tables where the join cost is high, most cus-
tomers are unwilling to slow down bulk loads to optimize
such joins. In addition, joins during load offer fewer opti-
mization opportunities than joins during query because the
database knows nothing apriori about the data in the load
stream.



Original Data

sale_id cid cust date price
1 11 Andrew 01/01/06  $100
2 17 Chuck 01/05/06  $98
3 27 Nga 01/02/06  $90
4 28 Matt 01/03/06  $101
5 89 Ben 01/01/06  $103
1000 89 Ben 01/02/06  $103
1001 11 Andrew 01/03/06  $95
Split in two

projections

R (e (e N oo
oot ([picel)

Segmented on
several nodes

date price cid cust sale_id
01/02/06 $90.00 27 Nga 3
01/03/06 $95.00 1 Andrew 1001
01/03/06 $101.00 28 Matt 4
cust price
Andrew $95.00
Andrew $100.00 Node 1
Chuck $98.00
Nga $90.00
date price cid cust sale_id
01/01/06 $100.00 11 Andrew 1
01/01/06 $103.00 89 Ben 5
01/02/06 $103.00 89 Ben 1000
01/05/06 $98.00 17  Chuck 2
cust  price
Ben $103.00 Node 2
Ben $103.00
Matt $101.00
Figure 1: Relationship between tables and pro-
jections. The sales tables has 2 projections: (1)

A super projection, sorted by date, segmented by
HASH ((sale_id) and (2) A non-super projection con-
taining only (cust,price) attributes, sorted by cust,
segmented by HASH (cust).
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3.4 Encoding and Compression

Each column in each projection has a specific encoding
scheme. Vertica implements a different set of encoding sch-
emes than C-store, some of which are enumerated in Section
3.4.1. Different columns in a projection may have different
encodings, and the same column may have a different encod-
ing in each projection in which it appears. The same encod-
ing schemes in Vertica are often far more effective than in
other systems because of Vertica’s sorted physical storage.
A comparative illustration can be found in Section 8.2.

3.4.1 Encoding Types

1. Auto: The system automatically picks the most ad-
vantageous encoding type based on properties of the
data itself. This type is the default and is used when
insufficient usage examples are known.

RLE: Replaces sequences of identical values with a
single pair that contains the value and number of oc-
currences. This type is best for low cardinality columns
that are sorted.

Delta Value: Data is recorded as a difference from
the smallest value in a data block. This type is best
used for many-valued, unsorted integer or integer-based
columns.

Block Dictionary: Within a data block, distinct col-
umn values are stored in a dictionary and actual values
are replaced with references to the dictionary. This
type is best for few-valued, unsorted columns such as
stock prices.

Compressed Delta Range: Stores each value as a
delta from the previous one. This type is ideal for
many-valued float columns that are either sorted or
confined to a range.

Compressed Common Delta: Builds a dictionary
of all the deltas in the block and then stores indexes
into the dictionary using entropy coding. This type
is best for sorted data with predictable sequences and
occasional sequence breaks. For example, timestamps
recorded at periodic intervals or primary keys.

3.5 Partitioning

C-Store mentions intra-node “Horizontal Partitioning” as
a way to improve performance by increasing parallelism with-
in a single node. In contrast, Vertica’s execution engine, as
described in Section 6.1, obtains intra-node parallelism with-
out requiring separation of the on-disk physical structures.
It does so by dividing each on-disk structure into logical
regions at runtime and processing the regions in parallel.
Despite the automatic parallelization, Vertica does provide
a way to keep data segregated in physical structures based
on value through a simple syntax:
CREATE TABLE ... PARTITION BY <expr>.
This instructs Vertica to maintain physical storage so that
all tuples within a ROS container? evaluate to the same dis-
tinct value of the partition expression. Partition expressions
are most often date related such as extracting the month and
year from a timestamp.

2ROS and ROS containers are explained in section 3.7



The first reason for partitioning, as in other RDBMS sys-
tems, is fast bulk deletion. It is common to keep data sepa-
rated into files based on a combination of month and year,
so removing a specific month of data from the system is as
simple as deleting files from a filesystem. This arrangement
is very fast and reclaims storage immediately. The alter-
native, if the data is not pre-separated, requires searching
all physical files for rows matching the delete predicate and
adding delete vectors (further explained in Section 3.7.1)
for deleted records. It is much slower to find and mark
deleted records than deleting files, and this procedure actu-
ally increases storage requirements and degrades query per-
formance until the tuple mover’s next merge-out operation
is performed (see Section 4). Because bulk deletion is only
fast if all projections are partitioned the same way, parti-
tioning is specified at the table level and not the projection
level.

The second way Vertica takes advantage of physical stor-
age separation is improving query performance. As de-
scribed here [22], Vertica stores the minimum and maximum
values of the column data in each ROS to quickly prune con-
tainers at plan time that can not possibly pass query pred-
icates. Partitioning makes this technique more effective by
preventing intermixed column values in the same ROS.

3.6 Segmentation: Cluster Distribution

C-Store separates physical storage into segments based
on the first column in the sort order of a projection and
the authors briefly mention their plan to design a storage
allocator for assigning segments to nodes. Vertica has a
fully implemented distributed storage system that assigns
tuples to specific computation nodes. We call this inter-
node (splitting tuples among nodes) horizontal partitioning
segmentation to distinguish it from the intra-node (segre-
gating tuples within nodes) partitioning described in Section
3.5. Segmentation is specified for each projection, which can
be (and most often is) different from the sort order. Projec-
tion segmentation provides a deterministic mapping of tuple
value to node and thus enables many important optimiza-
tions. For example, Vertica uses segmentation to perform
fully local distributed joins and efficient distributed aggre-
gations, which is particularly effective for the computation
of high-cardinality distinct aggregates

Projections can either be replicated or segmented on some
or all cluster nodes. As the name implies, a replicated
projection stores a copy of each tuple on every projection
node. Segmented projections store each tuple on exactly
one specific projection node. The node on which the tuple
is stored is determined by a segmentation clause in the pro-
jection definition: CREATE PROJECTION ... SEGMENTED BY
<expr> where <expr> is an arbitrary ® integral expression.

Nodes are assigned to store ranges of segmentation ex-
pression values, starting with the following mapping where
Cumax is the maximum integral value (25* in Vertica).

0 < expr < % = Node;
71*0%‘“( < expr < 2+Cpax MAX = Nodes
(N—2)}“VCMAX < expr < (N—l);‘VCIWAX = Noden_1
% < expr < Crmax = Noden

3While it is possible to manually specify segmentation, most
users let the Database Designer determine an appropriate
segmentation expression for projections.
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This is a classic ring style segmentation scheme. The most
common choice is HASH(coly..coly,), where col; is some
suitably high cardinality column with relatively even value
distributions, commonly a primary key column. Within each
node, in addition to the specified partitioning, Vertica keeps
tuples physically segregated into “local segments” to facili-
tate online expansion and contractions of the cluster. When
nodes are added or removed, data is quickly transferred by
assigning one or more of the existing local segments to a
new node and transferring the segment data wholesale in
its native format, without any rearrangement or splitting
necessary.

3.7 Read and Write Optimized Stores

Like C-Store, Vertica has a Read Optimized Store (ROS)
and a Write Optimized Store (WOS). Data in the ROS is
physically stored in multiple ROS containers on a standard
file system. Each ROS container logically contains some
number of complete tuples sorted by the projection’s sort
order, stored as a pair of files per column. Vertica is a true
column store — column files may be independently retrieved
as the storage is physically separate. Vertica stores two files
per column within a ROS container: one with the actual col-
umn data, and one with a position inder. Data is identified
within each ROS container by a position which is simply
its ordinal position within the file. Positions are implicit
and are never stored explicitly. The position index is ap-
proximately Tloo the size of the raw column data and stores
metadata per disk block such as start position, minimum
value and maximum value that improve the speed of the ex-
ecution engine and permits fast tuple reconstruction. Unlike
C-Store, this index structure does not utilize a B-Tree as the
ROS containers are never modified. Complete tuples are re-
constructed by fetching values with the same position from
each column file within a ROS container. Vertica also sup-
ports grouping multiple columns together into the same file
when writing to a ROS container. This hybrid row-column
storage mode is very rarely used in practice because of the
performance and compression penalty it exacts.

Data in the WOS is solely in memory, where column or
row orientation doesn’t matter. The WOS’s primary pur-
pose is to buffer small data inserts, deletes and updates so
that writes to physical structures contain a sufficient num-
bers of rows to amortize the cost of the writing. The WOS
has changed over time from row orientation to column ori-
entation and back again. We did not find any significant
performance differences between these approaches and the
changes were driven primarily by software engineering con-
siderations. Data is not encoded or compressed when it is
in the WOS. However, it is segmented according to the pro-
jection’s segmentation expression.

3.7.1 Data Modifications and Delete Vectors

Data in Vertica is never modified in place. When a tuple
is deleted or updated from either the WOS or ROS, Vertica
creates a delete vector. A delete vector is a list of positions of
rows that have been deleted. Delete vectors are stored in the
same format as user data: they are first written toa DVWOS
in memory, then moved to DVROS containers on disk by the
tuple mover (further explained in section 4) and stored using
efficient compression mechanisms. There may be multiple
delete vectors for the WOS and multiple delete vectors for
any particular ROS container. SQL UPDATE is supported by
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Figure 2: Physical storage layout within a node.
This figure illustrates how columns are stored in
projections using files on disk. The table is par-
titioned by EXTRACT MONTH, YEAR FROM TIMESTAMP and
segmented by HASH(cid). There are 14 ROS con-
tainers, each with two columns. Each column’s data
within its ROS container is stored as a single file for
a total of 28 files of user data. The data has four par-
tition keys: 3/2012, 4/2012, 5/2012 and 6/2012. As
the projection is segmented by HASH(cid), this node
is responsible for storing all data that satisfies the
condition Crmin < hash(cid) < Crmaz, for some value
of Crmin and Crmaz. This node has divided the data
into three local segments such that: Local Segment
1 has Chmin < hash(cid) < , Local Segment 2

has L"g""" < hash(cid) < 72*@5’”“” and Local Segment
3 has 2:%min < hash(cid) < Crmas-

Cnmaz
3
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deleting the row being updated and then inserting a row
containing the updated column values.

4. TUPLE MOVER

The tuple mover is an automatic system which oversees
and rearranges the physical data files to increase data stor-
age and ingest efficiency during query processing. Its work
can be grouped into two main functions:

1. Moveout: asynchronously moves data from the WOS
to the ROS

2. Mergeout: merges multiple ROS files together into
larger ones.

As the WOS fills up, the tuple mover automatically exe-
cutes a moveout operation to move data from WOS to ROS.
In the event that the WOS becomes saturated before move-
out is complete, subsequently loaded data is written directly
to new ROS Containers until the WOS regains sufficient ca-
pacity. The tuple mover must balance its moveout work so
that it is not overzealous (creating too many little ROS con-
tainers) but also not too lazy (resulting in WOS overflow
which also creates too many little files).

Mergeout decreases the number of ROS containers on disk.
Numerous small ROS containers decrease compression op-
portunities and slow query processing. Many files require
more file handles, more seeks, and more merges of the sorted
files. The tuple mover merges smaller files together into
larger ones, and it reclaims storage by filtering out tuples
which were deleted prior to the Ancient History Mark (fur-
ther explained in section 5.1) as there is no way a user can
query them. Unlike C-Store, the tuple mover does not in-
termix data from the WOS and ROS in order to strongly
bound the number of times a tuple is (re)merged. When a
tuple is part of a mergeout operation, it is read from disk
once and written to disk once.

The tuple mover periodically quantizes the ROS contain-
ers into several exponential sized strata based on file size.
The output ROS container from a mergeout operation are
planned such that the resulting ROS container is in at least
one strata larger than any of the input ROS containers.
Vertica does not impose any size restrictions on ROS con-
tainers, but the tuple mover will not create ROS contain-
ers greater than some maximum (currently 2TB) so as to
strongly bound the number of strata and thus the number
of merges. The maximum ROS container size is chosen to be
sufficiently large that any per-file overhead is amortized to
irrelevance and yet the files are not too unwieldy to manage.
By choosing strata sizes exponentially, the number of times
any tuple is rewritten is bounded to the number of strata.

The tuple mover takes care to preserve partition and local
segment boundaries when choosing merge candidates. It
has also been tuned to maximize the system’s tuple ingest
rate while preventing an explosion in the number of ROS
containers. An important design point of the tuple mover
is that operations are not centrally coordinated across the
cluster. The specific ROS container layouts are private to
every node, and while two nodes might contain the same
tuples, it is common for them to have a different layout of
ROS containers due to factors such as different patterns of
merging, available resources, node failure and recovery.



Granted Mode Granted Mode
Requested Mode S [ I [ SI [ X [ T [ U [ O Requested Mode || S [ I [ SI [ X [ T [ U [ O
S Yes | No | No | No | Yes | Yes | No S S|SI|SI|X|S|S|O
I No | Yes | No | No | Yes | Yes | No I SI| I |SI|X |1 110
SI No | No | No | No | Yes | Yes | No SI SI|SI|SI|X|SI|SI|O
X No | No | No | No | No | Yes | No X XXX | X|X|X]|O
T Yes | Yes | Yes | No | Yes | Yes | No T S I |SI|X|T|T|O
U Yes | Yes | Yes | Yes | Yes | Yes | No U S I |SI|X|T|U|O
@) No | No | No | No | No | No | No O OlO0O|lO0O|]O|O|O]|O

Table 1: Lock Compatibility Matrix

S. UPDATES AND TRANSACTIONS

Every tuple in Vertica is timestamped with the logical
time at which it was committed. Each delete marker is
paired with the logical time the row was deleted. These log-
ical timestamps are called epochs and are implemented as
implicit 64-bit integral columns on the projection or delete
vector. All nodes agree on the epoch in which each trans-
action commits, thus an epoch boundary represents a glob-
ally consistent snapshot. In concert with Vertica’s policy
of never modifying storage, a query executing in the recent
past needs no locks and is assured of a consistent snapshot.
The default transaction isolation in Vertica is READ COM-
MITTED, where each query targets the latest epoch (the
current epoch - 1).

Because most queries, as explained above, do not require
any locks, Vertica has an analytic-workload appropriate ta-
ble locking model. Lock compatibility and conversion ma-
trices are shown in Table 1 and Table 2 respectively, both
adapted from [15].

Shared lock: while held, prevents concurrent modifica-
tion of the table. Used to implement SERIALIZABLE
isolation.

Insert lock: required to insert data into a table. An
Insert lock is compatible with itself, enabling multiple
inserts and bulk loads to occur simultaneously which
is critical to maintain high ingest rates and parallel
loads yet still offer transactional semantics.

SharedInsert lock: required for read and insert, but
not update or delete.

EXclusive lock: required for deletes and updates.

Tuple mover lock: required for certain tuple mover
operations. This lock is compatible with every lock
except X and is used by the tuple mover during certain
short operations on delete vectors.

Usage lock: required for parts of moveout and merge-
out operations.

Owner lock: required for significant DDL such as drop-
ping partitions and adding columns.

Vertica employs a distributed agreement and group mem-
bership protocol to coordinate actions between nodes in the
cluster. The messaging protocol uses broadcast and point-
to-point delivery to ensure that any control message is suc-
cessfully received by every node. Failure to receive a message
will cause a node to be ejected from the cluster and the re-
maining nodes will be informed of the loss. Like C-Store,
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Table 2: Lock Conversion Matrix

Vertica does not employ traditional two-phase commit[15].
Rather, once a cluster transaction commit message is sent,
nodes either successfully complete the commit or are ejected
from the cluster. A commit succeeds on the cluster if it suc-
ceeds on a quorum of nodes. Any ROS or WOS created by
the committing transaction becomes visible to other trans-
actions when the commit completes. Nodes that fail during
the commit process leave the cluster and rejoin the cluster in
a consistent state via the recovery mechanism described in
section 5.2. Transaction rollback simply entails discarding
any ROS container or WOS data created by the transaction.

5.1 Epoch Management

Originally, Vertica followed the C-store epoch model: epo-
chs contained all transactions committed in a given time
window. However, users running in READ COMMITTED
were often confused because their commits did not become
“visible” until the epoch advanced. Now Vertica automati-
cally advances the epoch as part of commit when the com-
mitting transaction includes DML or certain data-modifying
DDL. In addition to reducing user confusion, automatic
epoch advancement simplifies many of the internal manage-
ment processes (like the tuple mover).

Vertica tracks two epoch values worthy of mention: the
Last Good Epoch (LGE) and the Ancient History Mark
(AHM). The LGE for a node is the epoch for which all data
has been successfully moved out of the WOS and into ROS
containers on disk. The LGE is tracked per projection be-
cause data that exists only in the WOS is lost in the event of
a node failure. The AHM is an analogue of C-store’s low wa-
ter mark where Vertica discards historical information prior
to the AHM when data reorganization occurs. Whenever
the tuple mover observes a row deleted prior to the AHM, it
elides the row from the output of the operation. The AHM
advances automatically according to a user-specified policy.
The AHM normally does not advance when nodes are down
so as to preserve the history necessary to incrementally re-
play DML operations during recovery (described in Section
5.2).

5.2 Tolerating Failures

Vertica replicates data to provide fault tolerance by em-
ploying the projection segmentation mechanism explained
in section 3.6. Each projection must have at least one buddy
projection containing the same columns and a segmentation
method that ensures that no row is stored on the same node
by both projections. When a node is down, the buddy pro-
jection is employed to source the missing rows from the down
node. Like any distributed database, Vertica must grace-



fully handle failed nodes rejoining the cluster. In Vertica,
this process is called recovery. Vertica has no need of tradi-
tional transaction logs because the data+epoch itself serves
as a log of past system activity. Vertica implements efficient
incremental recovery by utilizing this historical record to re-
play DML the down node has missed. When a node rejoins
the cluster after a failure, it recovers each projection segment
from a corresponding buddy projection segment. First, the
node truncates all tuples that were inserted after its LGE,
ensuring that it starts at a consistent state. Then recovery
proceeds in two phases to minimize operational disruption.

e Historical Phase: recovers committed data from the
LGE to some previous epoch Ej. No locks are held
while data between the recovering node’s LGE and Ej,
is copied from the buddy projection. When complete,
the projection’s LGE is advanced to Ej and either
the historical phase continues or the current phase is
entered, depending on the amount of data between the
new LGE and the current epoch.

Current Phase: recovers committed data from the
LGE until the current epoch. The current phase takes
a Shared lock on the projection’s tables and copies any
remaining data. After the current phase, recovery is
complete and the projection participates in all future
DML transactions.

If the projection and its buddy have matching sort or-
ders, recovery simply copies whole ROS containers and their
delete vectors from one node to another. Otherwise, an ex-
ecution plan similar to INSERT ... SELECT ... is used to
move rows (including deleted rows) to the recovering node.
A separate plan is used to move delete vectors. The re-
fresh and rebalance operations are similar to the recovery
mechanism. Refresh is used to populate new projections
which were created after the table was loaded with data.
Rebalance redistributes segments between nodes to rebal-
ance storage as nodes are added and removed. Both have
a historical phase where older data is copied and a current
phase where a Shared lock is held while any remaining data
is transferred.

Backup is handled completely differently by taking advan-
tage of Vertica’s read-only storage system. A backup oper-
ation takes a snapshot of the database catalog and creates
hard-links for each Vertica data file on the file system. The
hard-links ensure that the data files are not removed while
the backup image is copied off the cluster to the backup
location. Afterwards, the hard-links are removed, ensuring
that storage used by any files artificially preserved by the
backup is reclaimed. The backup mechanism supports both
full and incremental backup.

Recovery, refresh, rebalance and backup are all online op-
erations; Vertica continues to load and query data while
they are running. They impact ongoing operations only to
the extent that they require computational and bandwidth
resources to complete.

5.3 Cluster Integrity

The primary state managed between the nodes is the
metadata catalog, which records information about tables,
users, nodes, epochs, etc. Unlike other databases, the cat-
alog is not stored in database tables, as Vertica’s table de-
sign is inappropriate for catalog access and update. Instead,
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the catalog is implemented using a custom memory resident
data structure and transactionally persisted to disk via its
own mechanism, both of which are beyond the scope of this
paper.

As in C-Store, Vertica provides the notion of K-safety:
With K or fewer nodes down, the cluster is guaranteed to
remain available. To achieve K-Safety, the database projec-
tion design must ensure at least K +1 copies of each segment
are present on different nodes such that a failure of any K
nodes leaves at least one copy available. The failure of K41
nodes does not guarantee a database shutdown. Only when
node failures actually cause data to become unavailable will
the database shutdown until the failures can be repaired and
consistency restored via recovery. A Vertica cluster will also
perform a safety shutdown if % nodes are lost where N is
the number of nodes in the cluster. The agreement protocol
requires a % + 1 quorum to protect against network parti-
tions and avoid a split brain effect where two halves of the
cluster continue to operate independently.

6. QUERY EXECUTION

Vertica supports the standard SQL declarative query lan-
guage along with its own proprietary extensions. Vertica’s
extensions are designed for cases where easily querying time-
series and log style data in SQL was overly cumbersome or
impossible. Users submit SQL queries using an interactive
vsql command prompt or via standard JDBC, ODBC, or
ADO .net drivers. Rather than continuing to add more pro-
prietary extensions, Vertica has chosen to add an SDK with
hooks for users to extend various parts of the execution en-
gine.

6.1 Query Operators and Plan Format

The data processing of the plan is performed by the Ver-
tica Ezecution Engine (EE). A Vertica query plan is a stan-
dard tree of operators where each operator is responsible for
performing a certain algorithm. The output of one operator
serves as the input to the following operator. A simple sin-
gle node plan is illustrated in figure 3. Vertica’s execution
engine is multi-threaded and pipelined: more than one op-
erator can be running at any time and more than one thread
can be executing the code for any individual operator. As
in C-store, the EE is fully vectorized and makes requests for
blocks of rows at a time instead of requesting single rows
at a time. Vertica’s operators use a pull processing model:
the most downstream operator requests rows from the next
operator upstream in the processing pipeline. This operator
does the same until a request is made of an operator that
reads data from disk or the network. The available operator
types in the EE are enumerated below. Each operator can
use one of several possible algorithms which are automati-
cally chosen by the query optimizer.

1. Scan: Reads data from a particular projection’s ROS
containers, and applies predicates in the most advan-
tageous manner possible.

GroupBy: Groups and aggregates data. We have
several different hash based algorithms depending on
what is needed for maximal performance, how much
memory is allotted, and if the operator must produce
unique groups. Vertica also implements classic pipe-
lined (one-pass) aggregates, with a choice to keep the
incoming data encoded or not.
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Figure 3: Plan representing a SQL query. The query
plan contains a scan operator for reading data fol-
lowed by operators for grouping and aggregation fi-
nally followed by a filter operation. The StorageU-
nion dispatches threads for processing data on a set
of ROS containers. The StorageUnion also locally
resegments the data for the above GroupBys. The
ParallelUnion dispatches threads for processing the
GroupBys And Filters in parallel.
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Join: Performs classic relational join. Vertica sup-
ports both hash join and merge join algorithms which
are capable of externalizing if necessary. All flavors
of INNER, LEFT OUTER, RIGHT OUTER, FULL
OUTER, SEMI, and ANTI joins are supported.

ExprEval: Evaluate an expression
Sort: Sorts incoming data, externalizing if needed.

Analytic: Computes SQL-99 Analytics style windowed
aggregates

Send/Recv: Sends tuples from one node to another.
Both broadcast and sending to nodes based on segmen-
tation expression evaluation is supported. Each Send
and Recv pair is capable of retaining the sortedness of
the input stream.

Vertica’s operators are optimized for the sorted data that
the storage system maintains. Like C-Store, significant care
has been taken and implementation complexity has been
added to ensure operators can operate directly on encoded
data, which is especially important for scans, joins and cer-
tain low level aggregates.

The EE has several techniques to achieve high perfor-
mance. Sideways Information Passing (SIP) has been ef-
fective in improving join performance by filtering data as
early as possible in the plan. It can be thought of as an
advanced variation of predicate push down since the join
is being used to do filtering [27]. For example, consider a
HashJoin that joins two tables using simple equality predi-
cates. The HashJoin will first create a hash table from the
inner input before it starts reading data from the outer input
to do the join. Special SIP filters are built during optimizer
planning and placed in the Scan operator. At run time, the
Scan has access to the Join’s hash table and the SIP filters
are used to evaluate whether the outer key values exist in
the hash table. Rows that do not pass these filters are not
output by the Scan thus increaseing performance since we
are not unnecessarily bringing the data through the plan
only to be filtered away later by the join. Depending on the
join type, we are not always able to push the SIP filter to
the Scan, but we do push the filters down as far as possi-
ble. We can also perform SIP for merge joins with a slightly
different type of SIP filter beyond the scope of this paper.

The EE also switches algorithms during runtime as it ob-
serves data flowing through the system. For example, if
Vertica determines at runtime the hash table for a hash join
will not fit into memory, we will perform a sort-merge join
instead. We also institute several “prepass”’ operators to
compute partial results in parallel but which are not required
for correctness (see Figure 3). The results of prepass opera-
tors are fed into the final operator to compute the complete
result. For example, the query optimizer plans grouping op-
erations in several stages for maximal performance. In the
first stage, it attempts to aggregate immediately after fetch-
ing columns off the disk using an L1 cache sized hash table.
When the hash table fills up, the operator outputs its cur-
rent contents, clears the hash table, and starts aggregating
afresh with the next input. The idea is to cheaply reduce the
amount of data before sending it through other operators in
the pipeline. Since there is still a small, but non-zero cost to
run the prepass operator, the EE will decide at runtime to



stop if it is not actually reducing the number of rows which
pass.

During query compile time, each operator is given a mem-
ory budget based on the resources available given a user de-
fined workload policy and what each operator is going to do.
All operators are capable of handling arbitrary sized inputs,
regardless of the memory allocated, by externalizing their
buffers to disk. This is critical for a production database to
ensure users queries are always answered. One challenge of a
fully pipelined execution engine such as Vertica’s is that all
operators must share common resources, potentially causing
unnecessary spills to disk. In Vertica, the plan is separated
into multiple zones that can not be executing at the same
time*. Downstream operators are able to reclaim resources
previously used by upstream operators, allowing each oper-
ator more memory than if we pessimistically to assumed all
operators would need their resources at the same time.

Many computations are data type dependent and require
the code to branch to type specific implementations at query
runtime. To improve performance and reduce control flow
overhead, Vertica uses just in time compilation of certain
expression evaluations to avoid branching by compiling the
necessary assembly code on the fly.

Although the simplest implementation of a pull execution
engine is a single thread, Vertica uses multiple threads for
processing the same plan. For example, multiple worker
threads are dispatched to fetch data from disk and perform
initial aggregations on non overlapping sections of ROS con-
tainers. The Optimizer and EE work together to combine
the data from each pipeline at the required locations to get
correct answers. It is necessary to combine partial results
because alike values are not co-located in the same pipeline.

The Send and Recv operators ship data to the nodes in
the cluster. The send operator is capable of segmenting the
data in such as way that all alike values are sent to the same
node in the cluster. This allows each node’s operator to
compute the full results independently of the other nodes.
In the same way we fully utilize the cluster of nodes by
dividing the data in advantageous ways, we can divide the
data locally on each node to process data in parallel and
keep the all the cores fully utilized. As shown in Figure 3,
multiple GroupBy operators are run in parallel requesting
data from the StorageUnion which resegments the data such
that the GroupBy is able to compute complete results.

6.2 Query Optimization

C-Store has a minimal optimizer, in which the projections
it reaches first are chosen for tables in the query, and the join
order of the projections is completely random. The Vertica
Optimizer has evolved through three generations: StarOpt,
StarifiedOpt, and V20Opt.

StarOpt, the initial Vertica optimizer, was a Kimball-style
optimizer[18] which assumed that any interesting warehouse
schema could be modeled as a classic star or snowflake. A
star schema classifies attributes of an event into fact tables
and descriptive attributes into dimension tables. Usually, a
fact table is much larger than a dimension table and has a
many-to-one relationship with its associated descriptive di-
mension tables. A snowflake schema is an extension of a star
schema, where one or more dimension tables has many-to-
one relationships with further descriptive dimension tables.
This paper uses the term star to represent both star and

4Separated by operators such as Sort
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snowflake designs. The information of a star schema is of-
ten requested through (star) queries that join fact tables
with their dimensions. Efficient plans for star queries are to
join a fact table with its most highly selective dimensions
first. Thus, the most important process in planning a Ver-
tica StarOpt query is choosing and joining projections with
highly compressed and sorted predicate and join columns,
to make sure that not only fast scans and merge joins on
compressed columns are applied first, but also that the car-
dinality of the data for later joins is reduced.

Besides the described StarOpt and columnar-specific tech-
niques described above, StartOpt and two other Vertica op-
timizers described later also employ other techniques to take
advantage of the specifics of sorted columnar storage and
compression, such as late materialization[8], compression-
aware costing and planning, stream aggregation, sort elimi-
nation, and merge joins.

Although Vertica has been a distributed system since the
beginning, StarOpt was designed only to handle queries whose
tables have data with co-located projections. In other words,
projections of different tables in the query must be either
replicated on all nodes, or segmented on the same range of
data on their join keys, so the plan can be executed locally
on each node and the results sent to to the node that the
client is connected to. Even with this limitation, StarOpt
still works well with star schemas because only the data of
large fact tables needs to be segmented throughout the clus-
ter. Data of small dimension tables can be replicated every-
where without performance degradation. As many Vertica
customers demonstrated their increasing need for non-star
queries, Vertica developed its second generation optimizer,
StarfiedOpt® as a modication to StarOpt. By forcing non-
star queries to look like a star, Vertica could run the StarOpt
algorithm on the query to optimize it. StarifiedOpt is far
more effective for non-star queries than we could have rea-
sonably hoped, but, more importunately, it bridged the gap
to optimize both star and non-star queries while we designed
and implemented the third generation optimizer: the custom
built V20pt.

The distribution aware V20pt®, which allows data to be
transferred on-the-fly between nodes of the cluster during
query execution, is designed from the start as a set of exten-
sible modules. In this way, the brains of the optimizer can
be changed without rewriting lots of the code. In fact, due
to the inherent extensible design, knowledge gleaned from
end-user experiences has already been incorporated into the
V20pt optimizer without a lot of additional engineering ef-
fort. V20pt plans a query by categorizing and classifying
the query’s physical-properties, such as column selectivity,
projection column sort order, projection data segmentation,
prejoin projection availability, and integrity constraint avail-
ability. These physical-property heuristics, combined with a
pruning strategy using a cost-model, based on compression
aware /O, CPU and Network transfer costs, help the opti-
mizer (1) control the explosion in search space while contin-
uing to explore optimal plans and (2) account for data dis-
tribution and bushy plans during the join order enumeration
phase. While innovating on the V20pt core algorithms, we
also incorporated many of the best practices developed over

5US patent 8,086,598, Query Optimizer with Schema Con-
version

5Pending patent, Modular Query Optimizer



the past 30 years of optimizer research such as using equi-
height histograms to calculate selectivity, applying sample-
based estimates of the number of distinct values [16], intro-
ducing transitive predicates based on join keys, converting
outer joins to inner joins, subquery de-correlation, subquery
flattening [17] , view flattening, optimizing queries to favor
co-located joins where possible, and automatically pruning
out unnecessary parts of the query.

The Vertica Database Designer described in Section 6.3
works hand-in-glove with the optimizer to produce a phys-
ical design that takes advantage of the numerous optimiza-
tion techniques available to the optimizer. Furthermore,
when one or more nodes in the database cluster goes down,
the optimizer replans the query by replacing and then re-
costing the projections on unavailable nodes with their cor-
responding buddy projections on working nodes. This can
lead to a new plan with a different join order from the orig-
inal one.

6.3 Automatic Physical Design

Vertica features an automatic physical design tool called
the Database Designer (DBD). The physical design problem
in Vertica is to determine sets of projections that optimize a
representative query workload for a given schema and sam-
ple data while remaining within a certain space budget. The
major tensions to resolve during projection design are opti-
mizing query performance while reducing data load overhead
and minimizing storage footprint.

The DBD design algorithm has two sequential phases:

1. Query Optimization: Chooses projection sort order
and segmentation to optimize the performance of the
query workload. During this phase, the DBD enumer-
ates candidate projections based on heuristics such as
predicates, group by columns, order by columns, ag-
gregate columns, and join predicates. The optimizer
is invoked for each input query and given a choice of
the candidate projections. The resulting plan is used
to choose the best projections from amongst the can-
didates. The DBD’s system to resolve conflicts when
different queries are optimized by different projections
is important, but beyond the scope of this paper. The
DBD’s direct use of the optimizer and cost model guar-
antees that it remains synchronized as the optimizer
evolves over time.

2. Storage Optimization: Finds the best encoding sche-
mes for the designed projections via a series of empiri-
cal encoding experiments on the sample data, given the
sort orders chosen in the query optimization phase.

The DBD provides different design policies so users can
trade off query optimization and storage footprint: (a) load-
optimized, (b) query-optimized and (c) balanced. These
policies indirectly control the number of projections pro-
posed to achieve the desired balance between query per-
formance and storage/load constraints. Other design chal-
lenges include monitoring changes in query workload, schema,
and cluster layout and determining the incremental impact
on the design.

As our user base has expanded, the DBD is now univer-
sally used for a baseline physical design. Users can then
manually modify the proposed design before deployment.
Especially in the case of the largest (and thus most impor-
tant) tables, expert users sometimes make minor changes

to projection-segmentation, select-list or sort-list based on
their specific knowledge of their data or use cases which may
be unavailable to the DBD. It is extremely rare for any user
to override the column encoding choices of the DBD, which
we credit to the empirical measurement during the storage-
optimization phase.

7. USER EXPERIENCE

In this section we highlight some of the features of our
system which have led to its wide adoption and commercial
success, as well as the observations which led us to those
features.

e SQL: First and foremost, standard SQL support was
critical for commercial success as most customer orga-
nizations have large skill and tool investments in the
language. Despite the temptation to invent new lan-
guages or dialects to avoid pet peeves, 7 standard SQL
provides a data management system of much greater
reach than a new language that people must learn.

e Resource Management: Specifying how a cluster’s
resources are to be shared and reporting on the cur-
rent resource allocation with many concurrent users
is critical to real world deployments. We initially un-
der appreciated this point early in Vertica’s lifetime
and we believe it is still an understudied problem in
academic data management research.

e Automated Tuning: Database users by and large
wish to remain ignorant of a database’s inner workings
and focus on their application logic. Legacy RDBMS
systems often require heroic tuning efforts, which Ver-
tica has largely avoided by significant engineering ef-
fort and focus. For example, performance of early beta
versions was a function of the physical storage layout
and required users to learn how to tune and control the
storage system. Automating storage layout manage-
ment required Vertica to make significant and interre-
lated changes to the storage system, execution engine
and tuple mover.

e Predictability vs. Special Case Optimizations:
It was tempting to pick low hanging performance op-
timization fruit that could be delivered quickly, such
as transitive predicate creation for INNER but not
OUTER joins or specialized filter predicates for Hash
joins but not Merge joins. To our surprise, such special
case optimizations caused almost as many problems as
they solved because certain user queries would go su-
per fast and some would not in hard to predict ways,
often due to some incredibly low level implementation
detail. To our surprise, users didn’t accept the ratio-
nale that it was better that some queries got faster
even though not all did.

e Direct Loading to the ROS: While appealing in
theory, directing all newly-inserted data to the WOS
wastefully consumes memory. Especially while ini-
tially loading a system, the amount of data in a single
bulk load operation was likely to be many tens of giga-
bytes in size and thus not memory resident. Users are

"Which at least one author admits having done in the past



Metric C-Store | Vertica
Q1 30 ms 14 ms
Q2 360 ms 71 ms
Q3 4900 ms | 4833 ms
Q4 2090 ms 280 ms
Q5 310 ms 93 ms
Q6 8500 ms | 4143 ms
Q7 2540 ms 161 ms

Total Query Time 18.7 s 9.6s

| Disk Space Required [ 1,987 MB [ 949 MB ‘

Table 3: Performance of Vertica compared with C-
Store on single node Pentium 4 hardware using the
queries and test harness of the C-Store paper.

more than happy to explicitly tag such loads to target
the ROS in exchange for improved resource usage.

e Bulk Loading and Rejected Records: Handling
input data from the bulk loader that did not conform
to the defined schema in a large distributed system
turned out to be important and complex to implement.

8. PERFORMANCE MEASUREMENTS
8.1 C-Store

One of the early concerns of the Vertica investors was that
the demands of a product-grade feature set would degrade
performance, or that the performance claims of the C-Store
prototype would otherwise not generalize to a full commer-
cial database implementation. In fact, there were many fea-
tures to be added, any of which could have degraded per-
formance such as support for: (1) multiple data types, such
as FLOAT and VARCHAR, where C-Store only supported
INTEGER, (2) processing SQL NULLs, which often have
to be special cased, (3) updating/deleting data, (4) multiple
ROS and WOS stores, (5) ACID transactions, query opti-
mization, resource management, and other overheads, and
(6) 64-bit instead of 32-bit for integral data types.

Vertica reclaims any performance loss using software en-
gineering methods such as vectorized execution and more
sophisticated compression algorithms. Any remaining over-
head is amortized across the query, or across all rows in a
data block, and turns out to be negligible. Hence, Vertica
is roughly twice as fast as C-Store on a single-core machine,
as shown in table 3. 8

8.2 Compression

This section describes experiments that show Vertica’s
storage engine achieves significant compression with both
contrived and real customer data. Table 4 summarizes our
results which were first presented here [6].

8.2.1 IM Random Integers

In this experiment, we took a text file containing a million
random integers between 1 and 10 million. The raw data
is 7.5 MB because each line is on average 7 digits plus a
newline. Applying gzip, the data compresses to about 3.6
MB, because the numbers are made of digits, which are a

8 Comparison on a cluster of modern multicore machines was
deemed unfair, as the C-Store prototype is a single-threaded
program and cannot take advantage of MPP hardware.
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Size (MB) | Comp. | Bytes Per
Ratio Row
Rand. Integers
Raw 7.5 1 7.9
gzip 3.6 2.1 3.7
gzip+sort 2.3 3.3 24
Vertica 0.6 12.5 0.6
Customer Data
Raw CSV 6200 1 32.5
gzip 1050 5.9 5.5
Vertica 418 14.8 2.2

Table 4: Compression achieved in Vertica for 1M
Random Integers and Customer Data.

subset of all byte representations. Sorting the data before
applying gzip makes it much more compressible resulting in
a compressed size of 2.2 MB. However, by avoiding strings
and using a suitable encoding, Vertica stores the same data
in 0.6 MB.

8.2.2 200M Customer Records

Vertica has a customer that collects metrics from some
meters. There are 4 columns in the schema: Metric: There
are a few hundred metrics collected. Meter: There are
a couple of thousand meters. Collection Time Stamp:
Each meter spits out metrics every 5 minutes, 10 minutes,
hour, etc., depending on the metric. Metric Value: A
64-bit floating point value.

A baseline file of 200 million comma separated values
(CSV) of the meter/metric/time/value rows takes 6200 MB,
for 32 bytes per row. Compressing with gzip reduces this to
1050 MB. By sorting the data on metric, meter, and collec-
tion time, Vertica not only optimizes common query predi-
cates (which specify the metric or a time range), but exposes
great compression opportunities for each column. The total
size for all the columns in Vertica is 418MB (slightly over
2 bytes per row). Metric: There aren’t many. With RLE,
it is as if there are only a few hundred rows. Vertica com-
pressed this column to 5 KB. Meter: There are quite a few,
and there is one record for each meter for each metric. With
RLE, Vertica brings this down to a mere 35 MB. Collec-
tion Time Stamp: The regular collection intervals present
a great compression opportunity. Vertica compressed this
column to 20 MB. Metric Value: Some metrics have trends
(like lots of 0 values when nothing happens). Others change
gradually with time. Some are much more random, and less
compressible. However, Vertica compressed the data to only
363MB.

9. RELATED WORK

The contributions of Vertica and C-Store are their unique
combination of previously documented design features ap-
plied to a specific workload. The related work section in [21]
provides a good overview of the research roots of both C-
Store and Vertica prior to 2005. Since 2005, several other re-
search projects have been or are being commercialized such
as InfoBright [3], Brighthouse [24], Vectorwise [1], and Mon-
etDB/X100 [10]. These systems apply techniques similar
to those of Vertica such as column oriented storage, multi-
core execution and automatic storage pruning for analytical
workloads. The SAP HANA [14] system takes a different



approach to analytic workloads and focuses on columnar in-
memory storage and tight integration with other business
applications. Blink [23] also focuses on in-memory execu-
tion as well as being a distributed shared-nothing system.
In addition, the success of Vertica and other native column
stores has led legacy RDBMS vendors to add columnar stor-
age options [20, 4] to their existing engines.

10. CONCLUSIONS

In this paper, we described the system architecture of the
Vertica Analytic Database, pointing out where our design
differs or extends that of C-Store. We have also shown some
quantitative and qualitative advantages afforded by that ar-
chitecture.

Vertica is positive proof that modern RDBMS systems
can continue to present a familiar relational interface yet
still achieve the high performance expected from modern
analytic systems. This performance is achieved with ap-
propriate architectural choices drawing on the rich database
research of the last 30 years.

Vertica would not have been possible except for new in-
novations from the research community since the last major
commercial RBDMs were designed. We emphatically believe
that database research is not and should not be about incre-
mental changes to existing paradigms. Rather, the commu-
nity should focus on transformational and innovative engine
designs to support the ever expanding requirements placed
on such systems. It is an exciting time to be a database
implementer and researcher.
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