
SPAM: A SPARQL Analysis and Manipulation Tool

Andrés Letelier Jorge Pérez Reinhard Pichler Sebastian Skritek
Dept. of Computer Science Dept. of Computer Science Faculty of Informatics

PUC Chile Universidad de Chile Technische Universität Wien
aileteli@uc.cl jperez@dcc.uchile.cl [pichler,skritek]@dbai.tuwien.ac.at

ABSTRACT

SQL developers are used to having elaborate tools which
help them in writing queries. In contrast, the creation of
tools to assist users in the development of SPARQL queries
is still in its infancy. In this system demo, we present the
SPARQL Analysis and Manipulation (SPAM) tool, which
provides help for the development of SPARQL queries. The
main features of the SPAM tool comprise an editor with
both text and graphical interface, as well as various func-
tions for the static and dynamic analysis of SPARQL queries.

1. INTRODUCTION
The RDF data model and the SPARQL query language

are two of the core technologies of the data layer of the
Semantic Web. Both languages have gone through W3C
standardization processes and are nowadays widely adopted
and used in several areas, as diverse as bio-informatics, so-
cial networks, and data integration. Moreover, the study
of these two standards has also gained momentum in the
database community, as can be witnessed by the number of
publications on these topics in some major database venues
during the last years [1, 11, 9, 7, 10, 2, 3, 6, 4, 5].

Although RDF repositories and SPARQL query engines
have reached some level of maturity, there is still a lack of
tools to support SPARQL query developers. Contrast this
with a typical relational DB engine, in which tools support-
ing SQL query creation, analysis and optimization are an
integral part of any developer environment. This lack of sup-
port can be explained in several terms. First, we are in the
presence of a new scenario in which previous DB knowledge
is not always directly applicable. Second, as was expected
for a new data model, the main research and development ef-
forts have been pursued towards efficient storing and query-
ing of RDF data [1, 11, 9, 3]. Moreover, compared with
the amount of research on the analysis of relational queries,
much less attention has been devoted to the analysis, ma-
nipulation and optimization of SPARQL queries.

In this paper we attempt to partially fill the aforemen-
tioned gap by presenting the SPARQL Analysis and Manip-
ulation (SPAM) tool, which was created as a specific system
to help the SPARQL developer in creating, manipulating
and optimizing SPARQL queries.

Our system focuses on the optional matching feature of
SPARQL which has also been the focus of most of the the-
oretical work regarding this language [7, 10, 2, 6]. The idea
behind optional matching, realized in SPARQL by the OPT
operator, is to allow information to be added if the informa-
tion is available in the data source instead of just failing to
give an answer whenever some part of the query does not
match. Recent experimental works [8] show that the use of
the OPT operator in practice is substantial. Moreover, the
importance of the OPT operator has also been recognized
from a database theory point of view. It has been shown
that the combined complexity of SPARQL query evaluation
(i.e., checking if some set of variable bindings is a solution)
raises from PTIME-membership for queries not using OPT,
to PSPACE-completeness when OPT is considered [7, 10].
As a way of coping with this high complexity, the class of
well-designed SPARQL graph patterns was introduced as a
fundamental fragment of OPT queries with good behavior
for query evaluation [7]. Well-designed graph patterns are
obtained by forbidding some unnatural forms of interaction
between optional and non-optional parts in a query by im-
posing simple syntactic restrictions. It was shown that the
complexity of the evaluation problem for the well-designed
fragment is coNP-complete [7]. Moreover, in [7, 2] the au-
thors made the case that non-well-designed SPARQL graph
patterns tend to be unnatural, as they contradict the in-
tended meaning of the OPT operator.

Our tool is heavily based on previous theoretical work
on SPARQL optimization [7, 10, 6], and more specifically
on query rewriting, static analysis, containment and equiv-
alence results provided in [6]. In [6] we introduced a tree
representation of SPARQL queries, called pattern trees, that
captures the well-designed fragment of the language. These
pattern trees are reminiscent of relational query plans and
were introduced as a first step towards an algebra for log-
ical optimization of SPARQL queries, very much like the
relational algebra used in relational database systems to
construct and manipulate query plans. Moreover, in [6]
we proposed several transformation rules that work on the
structural level of pattern trees, and have the potential of
minimizing the number of OPT operators used in SPARQL
queries (for details of the pattern-tree representation and
rule applications, see Section 2).

1958

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.



Among other functionalities, in our system the user can
select or edit a SPARQL query, check if the query is well-
designed, transform it into the pattern-tree representation,
and choose among several applications of transformation
rules available. These rules are used to manipulate the struc-
ture of the pattern tree, which can later be transformed back
into a SPARQL query in the standard syntax. The tool also
allows the user to execute the pattern tree (query) against
sample RDF data previously provided.

Another important functionality of our tool is the test for
containment and equivalence of SPARQL queries. In our
previous work [6], we provided containment and equivalence
checks for SPARQL queries that use the OPT operator. As
in [6], for the containment of queries we consider the sub-
sumption relation: one answer to a query subsumes another
answer if the former extends the latter with more variable
bindings. It has been argued that subsumption is a meaning-
ful way of comparing the result of SPARQL queries contain-
ing the OPT operator [2]. We incorporate the subsumption
check in our tool. Given two queries, our tool can decide
whether one query is subsumed by the other, and if not,
it provides a counterexample that can be further analyzed
by the SPARQL developer. As shown in [6], the subsump-
tion test allows us to also provide an equivalence test for
SPARQL, which we also incorporate in our tool.

The rest of the paper is organized as follows. In Section 2
we provide more details on the theoretical background that
supports our tool. Section 3 briefly describes the architec-
ture of our system. Section 4 provides details of the demon-
stration scenario from the point of view of a SPARQL query
developer. Some conclusions are provided in Section 5.

2. STATIC ANALYSIS AND OPTIMIZATION
Let us briefly recall the basics of RDF and SPARQL (for

details on the formalization of RDF and SPARQL we refer
the reader to [7, 2]). The data model underlying RDF data is
a (directed, arc-labeled) graph. An RDF graph is composed
of RDF triples which are tuples of the form (s, p, o) where
s, p, and o are URIs. The basic constructor of a SPARQL
query is the triple pattern which is an RDF triple that can
have variables, usually named by using a question mark as
prefix, as with ?X. The core of the SPARQL language is
the graph pattern matching facility which is an expression
composed of triple patterns plus some operators. Our tool
supports SPARQL graph patterns that use conjunctions of
triple patterns, realized by the AND operator, plus optional
parts realized by the OPT operator. A graph pattern P is
well-designed if for every subpattern P ′ = (P1 OPT P2) of
P it holds that every variable ?X occurring inside P2 and
outside P ′ also occurs inside P1 [7].

The evaluation of a SPARQL graph pattern results in a set
of variable bindings, obtained by matching the graph pattern
against an RDF graph. Because of the optionality feature,
some variables might be unbound after query evaluation [7].

Pattern trees and optimization rules

In [6] we introduced a tree representation of SPARQL graph
patterns. The tree representation has as nodes conjunctions
of triple patterns, called basic graph patterns (BGPs), with
the structure of the tree representing the optional parts of
the queries (OPT operators). The following example shows
the tree representation in action.

Example 1. Consider a travel website storing informa-
tion on hotels and points of interest (poi). Imagine one is
interested in information helping some art-fan to plan her
next holidays. Then, first of all, one is interested in a list of
the top art-museums and could start with a graph pattern

P1 : (?M, poi, art-museum) AND (?M, rating, top)

Next, one is obviously interested in information on hotels
located in the same city as the museums, e.g. expressed by

P2 : (?M, location, ?L) AND

(?H, location, ?L) AND (?H, category, hotel)

However, one does not want the list of museums be reduced
to those museums where there is also information about ho-
tels in the same city available. The resulting query looks
like (P1 OPT P2), that is, we are optionally retrieving data
about hotels if the information is present. Next, even if the
main goal of the trip is to see the museum, also a list of
further points of interest located in the same city is obvi-
ously desirable. Hence consider P3 : (?A, location, ?L) AND
(?A, poi, ?P ). Again, this is additional information which
would be nice to have, but if it is not available the previous
results should be returned nevertheless. Hence, the result-
ing query looks like ((P1 OPT P2) OPT P3). In addition,
for all hotels that are actually located close to the museum,
the query should return the price of a room, and available
reviews of other guests of the hotel also as optional informa-
tion. According to the formalization in [6], the whole graph
pattern can be represented as the pattern tree shown below.

{(?M, poi, art-museum), (?M, rating, top)}

{(?M, location, ?L), (?H, category, hotel),
(?H, location, ?L)}

{(?A, location, ?L), (?A, poi, ?P )} {(?H, nearby, ?M)}

{(?H, price, ?C)} {(?H, review, ?R)}

In [6] we introduced a top-down evaluation for pattern
trees and showed that for every well-designed SPARQL
graph pattern the evaluation of the original query coincides
with the top-down evaluation of its corresponding pattern
tree. We further showed that several transformation rules
can be applied to pattern trees in order to minimize the
number of nodes, and thus, minimizing the number of OPT
operators in the query. We name rules as R1, R2, and R3,
with the following intuitive description:

R1 If a triple pattern t belongs to node n and to a descen-
dant n′ of n, then delete t from n′.

R2 If node n does not introduce any new variable w.r.t. its
ancestors, then push copies of n into its children.

R3 If there is a homomorphism from node n to the branch
from the root to n, then merge node n with its parent.

Example 2. While the query in Example 1 is a natu-
ral translation of the user intention into a SPARQL pat-
tern, it has some potential for optimization. First, by the
homomorphism h defined as h(?A) =?M , h(?L) =?L and
h(?P ) = ’art-museum’ we can apply rule R3 to the node
with BGP {(?A, location, ?L), (?A, poi, ?P )}. Further, the
node {(?H, nearby, ?M)} does not introduce any new vari-
ables, which allows us to apply R2. Hence the above pattern
tree can be reduced to the much smaller pattern tree:

1959



{(?M, poi, art-museum), (?M, rating, top)}

{(?M, location, ?L), (?H, category, hotel),
(?H, location, ?L), (?A, location, ?L), (?A, poi, ?P )}

{(?H, nearby, ?M),
(?H, price, ?C)}

{(?H, nearby, ?M),
(?H, review, ?R)}

Subsumption and equivalence

In [6] we use the tree representation to provide containment
and equivalence tests for SPARQL graph patterns. For the
containment of queries we consider the subsumption rela-
tion [2]. As mentioned above, solutions for queries contain-
ing the OPT operator may bind only a subset of the variables
in the query, and it has thus been argued that subsumption
is a meaningful way to compare SPARQL queries [2]: a solu-
tion µ1 subsumes another solution µ2, if µ1 extends µ2 with
more variable bindings. More generally, a SPARQL query
T1 subsumes another SPARQL query T2 if, for every RDF
graph G, every solution of T2 is subsumed by some solution
of T1. In [6] we provided a subsumption test for SPARQL
pattern trees based on homomorphism checks.

3. SYSTEM OVERVIEW
The system is written in Java in a 3-tier design (Figure 1).

The bottom layer consists of the Jena framework and the
ARQ query engine (http://jena.sourceforge.net/ARQ), both
used as a black box for parsing queries and RDF graphs.
Our system currently uses the native Jena functionalities to
load RDF data, but the Jena framework allows to use any
relational engine as backend. On top of this layer, we have
built the main functionalities, namely, building the pattern
tree, checking for rule applicability, testing for equivalence
and subsumption, and evaluating pattern trees over a given
RDF dataset. The core functionality is also supported by
the RDF engine. For example, homomorphisms between
nodes are found by evaluating special queries constructed by
our system. A GUI to provide access to these functionalities
has been implemented using the Swing toolkit. The main
functionalities and the interaction between the user and the
GUI are described in the following section.

4. DEMONSTRATION SCENARIO
We will showcase the SPAM tool by imitating the work

session of a SPARQL developer. The tool provides an in-
teractive graphical user interface and offers the user several

SPAM Tool

Jena framework

RDF repository

ARQ

Jena

Core functionalities

Rule checker
Subsumption 
test engine

Pattern tree 
query evaluation

GUI

Figure 1: System architecture

Figure 2: The main screen of the SPAM tool,

showing the list of currently opened queries and

databases at the left, the pattern tree and textual

representation of the selected query in the middle,

and the list of possible rule applications at the right.

functionalities for analyzing and manipulating a SPARQL
graph pattern. Below we use the term “SPARQL query”
(or simply “query”) to refer to a “SPARQL graph pattern”.

The SPAM tool allows the user to enter a SPARQL query
in two ways: either input or load a query in standard
SPARQL syntax or use the graphical editor to develop a
new SPARQL query. In either case, the SPARQL query is
presented to the user in the tree representation described
in Section 2. The user may choose to edit the basic graph
pattern (BGP) at any node in this tree representation, add
new nodes or delete existing nodes. The user can trigger
the SPAM tool to check if the current SPARQL query is
well-designed. In case of a negative result, the tool collects
all violations of the well-designedness condition. The cor-
responding paths in the tree representation are highlighted.
At any time, the user may save the current SPARQL query
or directly run it against some RDF graph that can be spec-
ified to the SPAM tool. The screen for the session with the
SPARQL query from Example 1 is shown in Figure 2.

We next illustrate in this system demonstration how the
user can apply the static analysis functionality described
in Section 2 to optimize a SPARQL query: above all, the
user may request the SPAM tool to try to eliminate OPT-
operators via either rule R2 or R3 from [6]. Recall the
SPARQL query from Example 2 where both rules were ap-
plicable. In such a case, the SPAM tool indicates which
OPT-operators can be eliminated. The user has to confirm
for each possible OPT-elimination that this rule application
should indeed be carried out. This setting is depicted in Fig-
ure 2, where the two nodes merged by the rule selected by
the user (at the top-right of the screen) are highlighted. Re-
call that we also introduced a rule R1 in [6] to delete triples
from some BGP if the same triple already occurs in the BGP
of some ancestor node. As explained in [6], this deletion
may lead to a violation of the well-designedness condition.
However, by assuming the top down evaluation of pattern
trees [6], this has no effect on the query result. Since the
SPAM tool ultimately stores well-designed queries in proper
SPARQL syntax, it does not actually delete these redun-
dant triples but only highlights such triples as an item of
information to the user. When the query evaluation is done

1960



Figure 3: Screen showing the result of a subsump-

tion test: since one query is not subsumed by the

other, a counterexample is provided.

by the SPAM tool itself, such redundant triples are safely
excluded from the evaluation process, since the SPAM tool
implements the top-down evaluation shown in [6].

The query evaluation engine of the SPAM tool can also
be used for a dynamic analysis of the current SPARQL
query. By running a query against a given RDF graph, the
SPAM tool may gather statistical information that is dis-
played to the user. This statistical information comprises,
for instance, the total number of variable bindings computed
at each node in the tree representation and the total CPU
time needed for evaluating the BGP at each node. This sta-
tistical data may help the SPARQL developer in identifying
performance bottlenecks of a SPARQL query. In case the
user has no particular RDF graph in mind when developing
a SPARQL query, the SPAM tool also offers the function-
ality of connecting to a benchmark tool to automatically
generate a sample RDF graph. In this demonstration, we
shall use the RDF data generator of the SP2Bench [9] for
this purpose. At any point in the session with the SPAM
tool, the current query can be altered according to the feed-
back received from the tool and the same functionality (like
static and dynamic analysis) can be applied again.

Finally, we demonstrate how the SPAM tool can be used
to compare two SPARQL queries. The SPAM tool supports
the test of both properties, subsumption and equivalence.
The two queries to be tested for equivalence or subsump-
tion may be entered to the SPAM tool as described above
in the first step of our demonstration, i.e., either read in
from an external file or edited with the SPAM tool. In our
demonstration, we shall illustrate typical use cases of both
tests. A typical use case for the equivalence test arises if
the two queries result from the same SPAM session. In our
demonstration, we shall carry out some manual changes to a
given complex SPARQL query and then check if the result-
ing query is still equivalent to the original one. If this is not
the case, then the SPAM tool outputs a “counterexample”,
i.e., a sample database together with a mapping that is a
solution of one query but not a solution of the other query.

We shall also demonstrate the subsumption test on a typ-
ical use case, which arises when an additional data source
becomes available. A typical goal of the SPARQL developer
is then to extend a query Q1 to a query Q2 in such a way
that it optionally retrieves the additional information thus
provided. This extension should be able to find new variable

bindings but, of course, it should not “lose” any old ones.
This is captured by the subsumption property described in
Section 2. Analogously to the equivalence test, the SPAM
tool outputs a “counterexample” if subsumption is violated,
i.e., a sample database together with a mapping that is a
solution of query Q1 but cannot be extended to a solution
of query Q2. Figure 3 shows the result of such a (negative)
subsumption test between the query from Example 1 and a
slightly modified version of this query.

5. CONCLUSION
In this system demo, we showcase the SPARQL Analysis

and Manipulation (SPAM) tool, which assists the user in
various aspects of the development of SPARQL queries –
building upon the theoretical foundations of static analysis
and optimization of SPARQL laid in [6]. Two main lines
of extensions of the SPAM tool are on top of our agenda
for future work. On the one hand, we want to integrate
additional functionality into the tool such as further hints
to the user for improving a given SPARQL query, e.g., hints
concerning the creation of indexes to speed up the evaluation
of the basic graph patterns at problematical nodes of the tree
representation of a well-designed SPARQL graph pattern.
On the other hand, we are planning to extend the theoretical
underpinning of the SPAM tool. Above all, we thus aim
at an extension of the algebra and algorithms from well-
designed SPARQL patterns to larger fragments of SPARQL
– allowing, e.g., filters, the union-operator, etc.

Acknowledgements

This work was funded in part by Marie Curie action IRSES
under Grant No. 24761 (Net2), and by the Vienna Science
and Technology Fund (WWTF) through project ICT08-032.
Jorge Pérez was supported by Fondecyt grant 11110404 and
by VID grant U-Inicia 11/04 Universidad de Chile.

6. REFERENCES
[1] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach.

Scalable semantic web data management using vertical
partitioning. In VLDB, pages 411–422, 2007.

[2] M. Arenas and J. Pérez. Querying semantic web data with
SPARQL. In PODS, pages 305–316, 2011.

[3] S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea.
Apples and oranges: a comparison of RDF benchmarks and
real RDF datasets. In SIGMOD, pages 145–156, 2011.

[4] W. Le, S. Duan, A. Kementsietsidis, F. Li, and M. Wang.
Rewriting queries on SPARQL views. In WWW, pages
655–664, 2008.

[5] W. Le, A. Kementsietsidis, S. Duan, and F. Li. Scalable
multi-query optimization for SPARQL. In ICDE, 2012. To
appear.

[6] A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static
analysis and optimization of semantic web queries. In
PODS, pages 89–100, 2012.

[7] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and com-
plexity of SPARQL. ACM TODS, 34(3):16:1–16:45, 2009.

[8] F. Picalausa and S. Vansummeren. What are real SPARQL
queries like? In SWIM, page 7, 2011.

[9] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.
SP2Bench: A SPARQL performance benchmark. In ICDE,
pages 222–233, 2009.

[10] M. Schmidt, M. Meier, and G. Lausen. Foundations of
SPARQL query optimization. In ICDT, pages 4–33, 2010.

[11] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple
indexing for semantic web data management. PVLDB,
1(1):1008–1019, 2008.

1961


