Developing and Analyzing XSDs through BonXai"

Wim Martens
Universitat Bayreuth

wim.martens@uni-bayreuth.de

Matthias Niewerth
TU Dortmund University

matthias.niewerth@udo.edu

ABSTRACT

BonXai is a versatile schema specification language expres-
sively equivalent to XML Schema. It is not intended as a
replacement for XML Schema but it can serve as an addi-
tional, user-friendly front-end. It offers a simple way and a
lightweight syntax to specify the context of elements based
on regular expressions rather than on types. In this demo we
show the front-end capabilities of BonXai and exemplify its
potential to offer a novel way to view existing XML Schema
Definitions. In particular, we present several usage scenarios
specifically targeted to showcase the ease of specifying, mod-
ifying, and understanding XML Schema Definitions through
BonXai.

1. INTRODUCTION

Through its endorsement by the W3C, XML Schema [14]
is nowadays adopted as the industry wide standard for the
specification of XML schema languages. XML Schema can
be considered as the replacement of DTDs with added ex-
pressivity and flexibility. Unfortunately, the latter has also
a negative impact on usability. Indeed, while DTDs are
praised for their simplicity, XML Schema is notoriously dif-
ficult. It is designed to be machine-readable rather than
human-readable and its specification alone (i.e., Part 1) al-
ready consists of 100 pages of intricate text. Studies re-
veal that XML Schemas (henceforth, XSDs) used in prac-
tice hardly take advantage of the additional structural ex-
pressivity over DTDs [2]. Two possible explanations come
to mind. First, it could be that users have only a limited
understanding of the possibilities of XML Schema; and, sec-
ondly, maybe not much additional expressiveness is needed.

*We acknowledge the financial support of the Future and
Emerging Technologies (FET) programme within the Sev-
enth Framework Programme for Research of the European
Commission, under the FET-Open grant agreement FOX,
number FP7-1CT-233599

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.

Proceedings of the VLDB Endowment, Vol. 5, No. 12

Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

1994

Frank Neven
Hasselt University and
Transnational University of Limburg

frank.neven@uhasselt.be

Thomas Schwentick
TU Dortmund University

thomas.schwentick@udo.edu

BonXai is an attempt to answer both concerns, as is ex-
plained next.

BonXai is an XML schema specification language which
possesses all features of XSDs, including its expressivity,
while retaining the simplicity of DTDs [9]. To this end,
BonXai allows users to express contexts for elements by sim-
ple patterns without the need to explicitly specify complex
types.! The objective of BonXai is by no means to replace
XML Schema, but rather to provide a simple adds as much
additional complication beyond DTDs as needed. Therefore,
BonXai can also be seen as a practical front-end for XML
Schema, i.e., “XML Schema for human beings”. Indeed, the
automatic translation into (and from) XML Schema is an
important feature which distinguishes BonXai from other
schema languages for XML. While several good alternatives
for XML Schema exist, most notably DSD, Schematron and
Relax NG [5, 13, 4], each with their own user base, they
cannot be directly compiled into XML Schema for the sim-
ple reason that they can define schemas that are not repre-
sentable as XSDs where never intended to be, a front-end
for XML Schema. An additional strength of BonXai is its
solid foundation which is rooted in pattern-based DTDs [10,
11] and which facilitates reasoning and transformation algo-
rithms [6, 8].

In this demo, we focus on the capabilities of BonXai as
a front-end for XML Schema. Specifically, we exhibit Bon-
Xai as a vehicle to facilitate the specification, modification,
and analysis of XML Schema Definitions. Especially its use
as an analysis tool distinguishes BonXai from other schema
languages and constitutes the main novelty of the system.

A detailed overview of the demo is given in Section 4.
In Section 2, we discuss the specification language BonXai
itself. In Section 3, we discuss the different system compo-
nents underlying BonXai.

2. BONXAI BY ONE EXAMPLE

Due to page limit restrictions, we illustrate BonXai by
means of only one (toy) example, which is adapted from [12].
Figure 1 represents a BonXai-schema in compact syntaz?
defining a shop selling new as well as used cars. Figure 2
displays a matching XMIL-document. Like a DTD, a BonXai
schema is a collection of rules. The right-hand side of a rule
denotes a content model as usual. A left-hand side is not

! Although, when desired, types can still be used.
2 A BonXai XML syntax and a DTD-like syntax are available
as well.

default namespace http://myshop.com/namespace
namespace xs = http://www.w3.org/2001/XMLSchema

grammar {
roots { shop }
shop { element used, element new }
used = { element cars }
new = { element cars }
cars = { (element car)* }
//used//car = { attribute make {xs:string},
element year, element mileage }
//new//car = { attribute make {xs:string},
element warranty }
year = { type xs:integer }
warranty = { type xs:integer }
mileage = { type xs:integer }
}

Figure 1: A BonXai-example in compact syntax.

merely a label, but can be a linear XPath expression or even
an arbitrary regular expression. The semantics is that for an
XML-document to match the schema, the children of nodes
in the document selected by a left-hand side expression when
evaluated from the root, should match the content model
denoted in the right-hand side of the rule. For instance, the
rule

//used//car = { element year, element mileage }

stipulates that car-elements occurring below a used-element
should have a left child labeled year and a right child labeled
mileage, while the rule

//new//car

= { element warranty }

says that car-elements occurring below a new-element should
have a warranty as a child element. As a shorthand, we
write shop rather than //shop to select arbitrary shop-ele-
ments.

Clearly, DTDs cannot model the schema in Figure 1 as
they cannot distinguish between different kinds of elements
with the same element name (i.e., they can only define one
content model for car, thereby allowing a mileage child for
new cars). However, the BonXai schema is syntactically only
slightly more complicated than a DTD. The distinction be-
tween used cars and new cars can simply be specified by the
contexts of car elements: by properties of the label sequence
from the root node to the element. Indeed, if the car element
occurs below a new element, the car is new, if it occurs below
aused element it is used. In [11], it was shown that the addi-
tional expressivity of XML Schema can always be obtained
in this way, that is, by specifying (regular) conditions on the
path from the root to nodes. The strength of BonXai is that
it makes these regular contexts explicit through concise pat-
terns rather than obscuring them through the use of types.
In particular, it frees users from the burden to specify ex-
plicit types. However, types are not completely abandoned
and it is possible to specify them by simply attaching them to
a rule. In addition to the identification of regular contexts,
BonXai also contains features directly inherited from XML
Schema like simple types, groups, namespaces, constraints
(key/keyref/unique), and schema imports. More details on
BonXai can be found in [9].

1995

<shop>
<used>
<cars>
<car make="audi">
<year>2006</year>
<mileage>12000</mileage>
</car>
<car make="bmw">
<year>2008</year>
<mileage>8000</mileage>
</car>
</cars>
</used>
<new>
<cars>

<car make="mercedes">
<warranty>3</warranty>
</car>
<car make="porsche">
<warranty>4</warranty>
</car>
<car make="opel">
<warranty>5</warranty>
</car>
</cars>
</new>
</shop>

Figure 2: An XML-document
schema in Figure 1.

adhering to the

3. SYSTEM COMPONENTS

Figure 3 presents a general overview of the system. The
system is roughly divided into three parts, the Graphical
User Interface(GUI), the actual BonXai library, and a gen-
eral purpose automaton library.

3.1 User Interface

The GUI is provided through a plugin for the open source
editor JEdit [7]. JEdit provides basic text editing function-
alities, syntax highlighting and a flexible plugin interface.
The BonXai-Plugin provides the connection between the
BonXai library and JEdit. There is also a command line
client, which provides an easy way for batch conversion of
schemas.

3.2 Automaton Library

The automaton library provides a solid automata-theoretic
core which, in addition, allows for an easy integration of ex-
isting automaton based algorithms, like for instance XSD in-
ference algorithms [3] or algorithms for repairing the unique
particle attribution constraint of XML Schema [1].

3.3 BonXai Library

The BonXai library constitutes the heart of the system. It
provides modules for the representation, import and export,
and the conversion between DTD, XSD, and BonXai. It also
supports the conversion of schemas into type-automata and
the validation of XML against type-automata.>

3 A type-automaton representation for XSDs was introduced
in [10].

, I !
JEdit | BonXai |
v : XSD .| Type-
BlglnX.al— OM | | automaton
ugin | ! |
WO aacl
oML | OM |
| |
i < |
! Validator |
BonXai- Automaton-
GUI Library Library

Figure 3: Schematic overview of the system com-
ponents. P/W: Parser/Writer, C: Converter, OM:
Object Model.

Import and Export

The modular structure of the library makes it easy to write
new import and export modules. The system employs im-
port and export modules writing java strings. The actual
loading and storing of files is done by JEdit.

Object Models

Schemas are represented in an abstract way as type-automata.
To facilitate manipulation of schemas, each class of schemas
has its own object model. These object models store addi-
tional information, such as key, foreign key and uniqueness
constraints, identifiers used for namespaces, typenames, etc.

XML Validator

The XML validator validates XML documents against type-
automata and can thus be used to validate XML documents
against BonXai schemas, DTDs, as well as XSDs.

Conversion Routines

As all conversions pass through the type-automaton repre-
sentation, there are six conversion routines. The translation
to and from XSDs and DTDs is rather direct. Computing
a type-automaton from a BonXai schema, basically reduces
to the construction of a product automaton encompassing
all regular contexts in the schema. The converse direction
requires to compute regular contexts for every state of the
type-automaton. In addition, the conversion routine creates
mappings between automaton states and the correspond-
ing BonXai rules or XML schema types. This information
together with the mappings between XML nodes and au-
tomaton states produced by the XML validator, is used by
the GUI to highlight matching nodes/rules in the editor.
Information about constraints and namespace identifiers is
directly converted between the object models.

4. DEMO OVERVIEW

We will showcase the ability of BonXai to serve as a front-
end for XML Schema through several use cases. In partic-
ular, we will exemplify how BonXai can be used to specify,
modify, and analyze XSDs. Whereas the goal of the first use
case is merely to introduce the language features of BonXai
in support of XSD development, the goal of the remaining
use cases is to show how BonXai opens up new ways to view

1996

and interpret XSDs by showcasing the use of BonXai as a
tool for debugging, schema evolution, and analysis.

4.1 Specifying XSDs

As mentioned above, the purpose of this scenario is to
familiarize users with the BonXai language. We will illus-
trate how BonXai can be used to specify XSDs from scratch.
Thereto, we will create a BonXai schema in JEdit and trans-
late it into an equivalent XSD keeping the features of the
schema language in mind. In particular, this scenario will
address the following issues:

(1) We show how BonXai seamlessly incorporates most
of XML Schema language features (like differentiation be-
tween elements/attributes, simple types, element- and at-
tribute groups, namespaces, schema imports, mixed types,
default values, anytype/anyattribute) and demonstrate the
three syntaxes for BonXai: compact syntax, XML syntax,
and DTD syntax. Furthermore, we discuss how priorities
for bonxai rules work to resolve conflicts. It is possible to
define BonXai rules such that two or more rules match the
same element. For example, both rules

//section = { element title, element paragraph+,
element section* }

//section/section/section = { element title,
element paragraph+ }

are matched by a section element that is below two other
section elements. When such a multiple match occurs,
BonXai gives priority to the rule that occurs lowest in the
schema. So, in this case, the rule for

//section/section/section

would take priority. The rationale is that a developer could
first write down rules that generally apply in the schema
and write down the special cases and exceptions later. So,
the two rules in the above example could be read as: All
sections have a title, a non-empty sequence of paragraphs,
and a sequence of sections. But, we disallow nesting depths
of sections larger than 3. Two alternative ways for dealing
with multiple matches of rules have been studied in the lit-
erature: universal and existential semantics [6, 8]. We do
not adopt them here, since both options would damage the
compatibility between BonXai and XML Schema.

(2) We demonstrate how the GUI aids to understand the
correspondence between BonXai rules and the generated
complex types in the transformed XSD. Although the sim-
plicity of BonXai depends on the absence of complex types,
type names can serve as short descriptions to help the user
understand BonXai rules. In contrast to XML Schema, such
type names have no semantic meaning whatsoever. Type
names in BonXai are written in the (optional) comment
blocks for rules. In the translation to XML Schema, type
names can be helpful to generate names for XSD complex
type definitions.

(3) Finally, we demonstrate advanced functionalities of
our GUI to aid in schema development and -debugging.
In particular, we support to inspect relationships between
an XML document, a BonXai schema, and a corresponding
XSD as follows:

e Highlighting of XML elements matched by a certain
BonXai rule or by an XSD complex type.

Highlighting of the rule/type matching an element in
an XML tree.

Highlighting the rule corresponding to an XSD com-
plex type and vice versa.

Finding nodes in an XML tree violating the schema.

Finding nodes in an XML tree which are unconstrained
by the schema.

e Finding unconstrained parts in a BonXai schema.

4.2 Modifying and Analyzing XSDs

Here, we will show that BonXai is much more than only
a nice syntax for XSDs. We exemplify BonXai as a tool
for debugging, schema evolution, and analysis of XSDs. In
particular, we showcase the following use cases:

Injection of BonXai into an existing XSD. We exem-
plify how an existing XSD can be altered by adding ad-
ditional constraints specified in BonXai. The part of the
XSD which is to be ported to BonXai is specified by high-
lighting the associated complex type that uniquely identifies
the sub-schema of interest. We then add additional BonXai
rules that describe the changes we want to perform in our
schema and we inject the XSD translation of BonXai back
into the original XSD at the right place. The highlighting
features of the system, mapping patterns in BonXai rules to
complex types in the generated XSD fragment, then provide
the developer with control to inspect the induced changes
in the original XSD more rapidly and accurately.

Upgrading DTDs to XSDs using BonXai. We illus-
trate how to transition from a simple DTD to a more re-
fined and precise XSD to describe the targeted set of XML
document. Taking advantage of the BonXai DTD-like syn-
tax (which is conservative w.r.t. plain DTDs), we show how
XML Schema features (like, e.g., simple types) and addi-
tional constraints that go beyond the expressiveness of the
DTD language, can be added. The automatic translation to
XSD and the relatively compact DTD-like syntax make this
transition quite effortless.

Debugging invalid XML documents w.r.t. an XSD.
When an XML document is invalid with respect to an XSD,
BonXai can offer a transparent explanation when the mis-
match is caused by a complex type violation. We will show
the functionality of the system to convert the XSD to Bon-
Xai and highlight where an element mismatch occurs. The
left-hand sides of the BonXai rules can offer more insight
in terms of simple patterns for which kinds of elements are
affected than the complex-type names provided by the XSD.
Again, the highlighting features of the system can aid the
developer to understand how changes in patterns affect the
invalid XML document.

Analyzing real-world schemas. We will use a real-world
schema and analyze it using a BonXai-inspector. We can
load a specific part of an XSD into BonXai in order to an-
alyze its structural complexity. Such a BonXai inspection
could, e.g., give an idea of the amount of structural expres-
siveness which goes beyond DTDs and where it sits. In
addition, the selection patterns provided by BonXai pro-
vide direct insight into the definition of elements depending
on their context. As such, the BonXai translation, con-
verting the machine readable syntax of XSDs in the more

1997

human-readable compact syntax of BonXai, and the asso-
ciated highlighting features in our GUI help users to un-
derstand schema definitions more quickly and easily. Fur-
thermore, we will show an additional feature that annotates
complex types in XSDs with its corresponding BonXai selec-
tion pattern. This annotation gives users immediate insight
on where a given complex type is used in an XML docu-
ment. Since such selection patterns are basically specified
in a fragment of XPath, users familiar with XML technol-
ogy can already benefit from this feature without having to
learn yet another standard.

5. REFERENCES

[1] Geert Jan Bex, Wouter Gelade, Wim Martens, and

Frank Neven. Simplifying XML Schema: effortless

handling of nondeterministic regular expressions. In

ACM International Conference on Management of

Data (SIGMOD), pages 731-744, 2009.

Geert Jan Bex, Frank Neven, and Jan Van den

Bussche. DTDs versus XML Schema: A practical

study. In International Workshop on the Web and

Databases (WebDB), pages 79-84, 2004.

Geert Jan Bex, Frank Neven, Thomas Schwentick, and

Stijn Vansummeren. Inference of concise regular

expressions and DTDs. ACM Trans. Database Syst.,

35(2):11:1-11:47, 2010.

James Clark and Makoto Murata. Relax NG

specification.

http://www.relaxng.org/spec-20011203.html,

December 2001.

Document structure description (dsd).

http://www.brics.dk/DSD/.

[6] Wouter Gelade and Frank Neven. Succinctness of
pattern-based schema languages for XML. Journal of
Computer and System Sciences, 77(3):505-519, 2011.

[7] jEdit programmer’s text editor. www.jedit.org.

[8] Gjergji Kasneci and Thomas Schwentick. The
complexity of reasoning about pattern-based XML
schemas. In ACM Symposium on Principles of
Database Systems (PODS), pages 155-164, 2007.

[9] W. Martens, V. Mattick, M. Niewerth, S. Agarwal,
N. Douib, O. Garbe, D. Giinther, D. Oliana,

J. Kroniger, F. Liicke, T. Melikoglu, K. Nordmann,
G. Ozen, T. Schlitt, L. Schmidt, J. Westhoff, and
D. Wolff. Design of the BonXai schema language.
Available at
http://l1sl-www.cs.tu-dortmund.de/cms/bonxai/,
Draft 2011.

[10] Wim Martens, Frank Neven, and Thomas Schwentick.
Simple off the shelf abstractions of XML Schema.
SIGMOD Record, 36(3):15-22, 2007.

[11] Wim Martens, Frank Neven, Thomas Schwentick, and
Geert Jan Bex. Expressiveness and complexity of
XML Schema. ACM Trans. Database Syst.,
31(3):770-813, 2006.

[12] Yannis Papakonstantinou and Victor Vianu. DTD

inference for views of XML data. In ACM Symposium

on Principles of Database Systems (PODS), pages

35-46, 2000.

Schematron. http://www.schematron.com/.

C.M. Sperberg-McQueen and H. Thompson. XML

Schema. http://www.w3.org/XML/Schema, 2005.

[5]

