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ABSTRACT

There is a growing trend of applications that should handle
big data. However, analyzing big data is a very challeng-
ing problem today. For such applications, the MapReduce
framework has recently attracted a lot of attention. Google’s
MapReduce or its open-source equivalent Hadoop is a pow-
erful tool for building such applications. In this tutorial, we
will introduce the MapReduce framework based on Hadoop,
discuss how to design efficient MapReduce algorithms and
present the state-of-the-art in MapReduce algorithms for
data mining, machine learning and similarity joins. The in-
tended audience of this tutorial is professionals who plan to
design and develop MapReduce algorithms and researchers
who should be aware of the state-of-the-art in MapReduce
algorithms available today for big data analysis.

1. INTRODUCTION
There is a growing trend of applications that should han-

dle big data. However, analyzing big data is a very chal-
lenging problem today. For such data-intensive applications,
the MapReduce [8] framework has recently attracted a lot of
attention. MapReduce is a programming model that allows
easy development of scalable parallel applications to process
big data on large clusters of commodity machines. Google’s
MapReduce or its open-source equivalent Hadoop [2] is a
powerful tool for building such applications.

In the MapReduce framework, a distributed file system
(DFS) initially partitions data in multiple machines and
data is represented as (key, value) pairs. The computa-
tion is carried out using two user defined functions: map
and reduce functions. Both map and reduce functions take
a key-value pair as input and may output key-value pairs.
The map function defined by a user is first called on differ-
ent partitions of input data in parallel. The key-value pairs
output by each map function are next grouped and merged
by each distinct key. Finally, a reduce function is invoked
for each distinct key with the list of all values sharing the

key. The output of each reduce function is written to a
distributed file in the DFS.

The MapReduce framework executes the main function
on a single master machine where we may preprocess the
input data before map functions are called or postprocess
the output of reduce functions. Depending on the applica-
tions, a pair of map and reduce functions may be executed
once or multiple times.

The research area of developing MapReduce algorithms
for analyzing big data has recently received a lot of at-
tentions. In this tutorial, we introduce the MapReduce
framework based on Hadoop, discuss how to design efficient
MapReduce algorithms and present the state-of-the-art al-
gorithms using MapReduce for big data analysis. The algo-
rithms to be covered are data mining, machine learning and
similarity join algorithms.

2. TUTORIAL OUTLINE

2.1 MapReduce Framework
We start our tutorial by introducing the MapReduce frame-

work including the syntax of map and reduce functions. We
provide simple examples of MapReduce algorithms for word
counting and building inverted indexes. We also study how
to use a combine function in MapReduce framework which
can improve the performance of MapReduce algorithms sig-
nificantly. We next discuss how to design efficient MapRe-
duce algorithms and present advanced programming skills
that are basic building blocks of designing efficient MapRe-
duce algorithms. These skills include forcing key distribu-
tions to reduce functions, broadcasting to mappers and re-
ducers[3, 14, 15], overriding group operators[3, 14, 23] and
sharding[7, 14].

2.2 Data Mining
We next focus on MapReduce algorithms including clus-

tering, frequent pattern mining, classification, probabilistic
modeling and graph analysis in the context of data mining.

We first practice how to parallelize well-known data min-
ing algorithms such as K-means, EM and CLIQUE[1]. In
addition, we discuss parallelization of pre-clustering called
Canopy clustering[17]. We then cover MapReduce algo-
rithms for hierarchical clustering[22], density-based cluster-
ing[11] and co-clustering[9, 21].

We next focus on parallelization of frequent pattern min-
ing[16] and classification with tree model learning[20]. Fur-
thermore, parallel graph mining algorithms in [6, 12, 13]
are studied. Finally, we show how EM algorithms for learn-
ing probabilistic model parameters can be parallelized using

2016

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.



MapReduce. The covered parallel algorithms include Proba-
bilistic Latent Semantic Index (PLSI)[7], TWITOBI[14], La-
tent Dirichlet Allocation (LDA)[24, 25] and Hidden Markov
model[5].

2.3 Similarity Joins
We provide an overview of the state-of-the-art in parallel

similarity join algorithms which include [3, 10, 15, 18, 23].
While set data is considered in [18, 23], vector data is con-
sidered in [3, 10, 15]. The similarity measures for joins con-
sidered include Jaccard similarity[18, 23], Ruzicka similar-
ity[18], Cosine similarity[3, 10, 18] and Minkowski distance
(i.e. Lp-distance)[15]. The top-k similarity join algorithms
using MapReduce are also proposed in [15].

Existing algorithms can be classified into horizontal par-

titioning and vertical partitioning methods. Horizontal par-
titioning algorithms first split all pairs of data points into
partitions, next perform similarity joins in each partition
separately and finally merge the join results from all parti-
tions. Some pruning techniques are proposed to distribute
only candidate pairs (i.e., not all pairs) into partitions[15].
Vertical partitioning algorithms first build inverted indexes
and next enumerate every pair to check its similarity in
each inverted index separately[3, 10, 18, 23]. When merg-
ing the join results from all inverted indexes, we may need
de-duplication to generate distinct similar pairs only.

In addition to similarity joins, there are interesting studies
on developing MapReduce algorithms for other types of joins
such as equi-join[4] and θ-join[19]. We give a brief summary
of such studies on parallelizing other types of joins too.

3. THE GOAL OF THE TUTORIAL
This tutorial is aimed to offer researchers and practition-

ers an insight into developing MapReduce algorithms as well
as a survey of the current state-of-the-art in MapReduce al-
gorithms for big data analysis. The intended audience of
this tutorial is professionals who plan to design and develop
MapReduce algorithms and researchers who should be aware
of the state-of-the-art in MapReduce algorithms available
today for big data analysis.
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