
I/O Characteristics of NoSQL Databases

Jiri Schindler
NetApp Inc.

jiri.schindler@netapp.com

ABSTRACT

The advent of the so-called NoSQL databases has brought about a

new model of using storage systems. While traditional relational

database systems took advantage of features offered by centrally-

managed, enterprise-class storage arrays, the new generation of

database systems with weaker data consistency models is content

with using and managing locally attached individual storage de-

vices and providing data reliability and availability through high-

level software features and protocols. This work aims to review the

architecture of several existing NoSQL DBs with an emphasis on

how they organize and access data in the shared-nothing locally-

attached storage model. It shows how these systems operate under

typical workloads (new inserts and point and range queries), what

access characteristics they exhibit to storage systems. Finally, it

examines how several recently developed key/value stores, schema-

free document storage systems, and extensible column stores orga-

nize data on local filesystems on top of directly-attached disks and

what system features they must (re)implement in order to provide

the expected data reliability.

1. INTRODUCTION
The performance of structured data management systems has

always been determined to a large extent by the architecture and

performance of the underlying storage system. The proliferation

of the so-called NoSQL databases in the last few years as well

as the adoption of Flash memory for latency-sensitive I/O oper-

ations has brought about a new model of using storage systems.

Traditional relational database systems relied on high availability

of centrally-managed, enterprise-class storage arrays and utilized

their advanced features such as snapshots and transparent remote

site replication. In contrast, the new generation of database systems

with weaker data consistency models are content with using locally

attached individual storage devices and providing high availability

through their own software features and protocols instead.

The majority of existing scale-out clustered NoSQL systems do

not manage storage devices directly. Instead, they rely on the OS

and file system services to do so and use POSIX files as logical

containers to store their data. The node-local disk file system (e.g.,

Linux ext3 or xfs) determines the performance and the set of fea-

tures available to the database system.

These new data management systems are designed to support

different workloads compared to row-major oriented RDBMS or

vertically-partitioned columnar DBs. The workloads of these new

systems are dominated by high-throughput append-style inserts and

read accesses in support of point or range queries. As a result, the

data access patterns these new systems generate can be quite differ-

ent from traditional DBMSes. This work examines whether these

new workloads and systems also exhibit different I/O behavior.

2. TRADITIONAL RDBMS
Traditional relational databases with well-defined schema and

row-major orientation favor efficient record updates typical for on-

line transactional processing. A single user-visible transaction up-

dating only a few values, can result in dirtying many different pages

including pages of system-maintained structures such as indexes

and materialized views. Databases use write-ahead logging to rec-

ord to stable store the changes caused by the executed transactions.

Periodically, the log is checkpointed by writing out to stable media

dirty pages affected by recent updates. Thus, a checkpoint opera-

tion can amortize the cost of writing out a page across many update

operations. However, it still results in inefficient random disk I/Os.

Another class of systems place vertically partitioned data into

individual columns that are normalized and sometimes compressed

for efficient execution of table scans. In columnar DBs, checkpoint-

ing is more expensive compared to row-oriented RDBMS. Insert-

ing new or updating existing values may cause the entire column

to be updated. This entails reading the uncached pages from the

storage system and writing them out in the new format with large

and efficient disk I/O. Regardless of their internal data organiza-

tion, traditional RDBMSes were built for in-memory data access

through page-based cache and optimized for hard disk drive I/O.

Their architecture is not optimized for flash memory with efficient

random I/O and sub-millisecond access latencies.

3. CLUSTERED NOSQL SYSTEMS
NoSQL DB systems run on a cluster of nodes, each running a

separate OS instance. They typically use directly-attached storage

for storing data on each node. They replicate data across several

nodes to prevent data loss when a node fails. Cluster services create

a single system image, restore the data from the failed node, and

redistribute it to balance load across the cluster.

There are three broad types of NoSQL DBs: key-value stores,

document stores, and extensible large-scale columnar data stores.

All three types have similar logical organization: a fixed key, typ-

ically generated by the system or derived from a user-provided

key, followed by the value. In the most basic form, the value is

2020

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

a variable-length set of bytes opaque to the NoSQL DB system.

The difference between the first type and the second type is that

document stores understand the format of the “values”, which can

be XML documents or a JSON (java-script object notation) object.

Examples of these include MongoDB or CouchDB.

The internal data organization for NoSQL databases reflects their

prevalent use case: point queries with inserts and updates. They

use a distributed hash table or variants of a partitioned B-tree that

spread data across nodes. Even though these DBs do not use query

plan operators like traditional RDBMSes, their access patterns re-

semble index scans. They perform random read I/Os as the system

traverses the structure to locate the queried K/V pair(s). Some also

create secondary indexes on specific document elements for more

efficient execution of range queries.

NoSQL DBs use write-ahead logging even though they provide

much weaker consistency compared to those of traditional RDBMS

with ACID properties, Append-style log writes minimize the I/O

cost by eliminating in-band B-tree update. Asynchronous check-

pointing amortizes the cost of updating the main data store struc-

tures. Some systems employ multi-version concurrency control

(MVCC). In those systems, checkpointing removes older versions

no longer needed for conflict resolution. For those reasons, check-

pointing is generally expensive and I/O intensive operation as it

may involve extensive restructuring of the main store. In that re-

gard, it is similar in terms of cost and complexity to merging differ-

ences to the main store of RDBMSes with columnar organization.

The third type of NoSQL DB systems such as HBase and Cas-

sandra use vertically partition data into column families. They use

MVCC and log changes to the data into an append-only log. Each

column family is partitioned horizontally across different nodes

with each node hosting partitions for all columns. There is no trans-

actional support for atomic updates.

A single partition of a column family contains time-stamped K/V

pairs that are appended at the tail-end of the file. The partition

also includes an index, which sorts the pairs lexicographically and

points to their current versions. This allows for in-order traversal

of the data and efficient location of the most-recent version of the

data. Thus, the access patterns of the third type of NoSQL DBs

are similar to those of document stores: Index scans are used to

execute point queries. The system first locates the node responsible

for the given key range and the node-local index locates the current

version of the K/V pair. Table scans allow for serial I/O through

the column segments; however, invalid K/V pairs must be skipped.

As with columnar DBs, checkpointing can be expensive. Since

updates are appends to the data stores rather than in-place over-

writes, old versions with stale data or deleted values in the column

segments need to be periodically garbage-collected. The process

called compaction is similar to whole-sale rewrite of a column in

columnar RDMBSes as it moves live data from their original lo-

cations into a new segment, updates the index and deletes the old

segment. Even though compaction is similar to checkpointing, the

two activities are typically decoupled; compaction can proceed in

the background on previously-written segments, while new data is

being checkpointed from the log by writing it into a new segment

and updating the index structure on the given column partition.

4. MANAGING STORAGE
With the exception of HBase, which uses a distributed file sys-

tem (HDFS), most NoSQL DBs use locally-attached storage and

file systems for storing both data and logs. Figure 1 illustrates a

typical data organization on an example of a MongoDB. It shows

the structure and file sizes for a single collection (or a database)

with separate directories for logs and data. Variable-length extents

data/
 _tmp/
 [2.0G] 11636476
 journal/
 [256M] j._0
 [115M] j._1
 [88] lsn
 [64M] collection.0
 [128M] collection.1
 [256M] collection.2
 [512M] collection.3
 [1.0G] collection.4
 [16M] collection.ns

Journal

Current extent
(2GB preallocated)

Extents of

one collection

Metadata
(“namespace”)

Checkpoint mark
(log-sequence no.)

Figure 1: Example of MongoDB directory structure with logs

and extents of data store.

comprise a collection with each extent stored in a separate file that

can grow up to 2 GB in size (chosen to work on 32-bit Linux).

MongoDB rotates through two logs; one log is being written to

while the other is checkpointed. It caps the log size at 256 MB.

In the default organization in Figure 1, the same local file system

would share physical resources for both logs and data. It is pos-

sible to configure MongoDB such that logs use a different mount

point/volume just as RDBMSes would typically do.

NoSQL DBs rely on the services and capabilities of the under-

lying storage systems. Since those are in most cases Linux local

file systems they do not include features like snapshots or trans-

parent backup to a remote location. However, as NoSQL DBs are

increasingly deployed for business-critical applications, these fea-

tures will become more important to provide operational continuity

in the face of whole data center unavailability. Similarly, as many

NoSQL DBs can benefit from fast access to local flash memory, it

is likely we will see an adoption of architectures that provide au-

tomatic tiering and movement of data between local storage and

networked storage systems. In short, we envision a gradual in-

troduction of features in NoSQL DBs traditionally associated with

centrally-managed storage systems.

5. SUMMARY
Even though NoSQL DB systems offer different programming

styles and approaches to managing data, their I/O profile does not

differ greatly from those of traditional RDBMSes with row-based

or columnar organization. They include logging writes dominated

by small append-style I/O as well as checkpointing, and index scans

that exhibit random I/O. NoSQL DBs for semi-structured data with

columnar organization may also exhibit large I/O for table scan

reads or column compaction. What differs most is their approach

to managing data. However, as their role in the enterprise shifts,

so will the deployment model and the reliance on advanced data

management features.

BIOGRAPHICAL SKETCH

Jiri Schindler is a member of technical staff at the NetApp Ad-

vanced Technology Group where he works on storage architectures

integrating flash memory and disk drives in support of applications

for management of (semi)structured data. He earned his PhD from

Carnegie Mellon University and M.Eng. and B.S. from MIT. While

getting his PhD, he and his colleagues designed and built the Fates

(Clotho, Atropos, and Lachesis) system for efficient execution of

mixed database workloads with different I/O profiles. Jiri is also an

adjunct professor at the Northeastern University where he teaches

storage systems classes. He actively works with graduate students

and supervises PhD theses.

2021

http://json.org/
http://www.mongodb.org/
http://couchdb.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/

	Introduction
	Traditional RDBMS
	Clustered NoSQL Systems
	Managing Storage
	Summary

