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ABSTRACT

In many information networks, data items – such as updates
in social networks, news flowing through interconnected RSS
feeds and blogs, measurements in sensor networks, route
updates in ad-hoc networks – propagate in an uncoordi-
nated manner: nodes often relay information they receive
to neighbors, independent of whether or not these neigh-
bors received the same information from other sources. This
uncoordinated data dissemination may result in significant,
yet unnecessary communication and processing overheads,
ultimately reducing the utility of information networks. To
alleviate the negative impacts of this information multiplic-
ity phenomenon, we propose that a subset of nodes (selected
at key positions in the network) carry out additional infor-
mation filtering functionality. Thus, nodes are responsible
for the removal (or significant reduction) of the redundant
data items relayed through them. We refer to such nodes as
filters. We formally define the Filter Placement prob-
lem as a combinatorial optimization problem, and study its
computational complexity for different types of graphs. We
also present polynomial-time approximation algorithms and
scalable heuristics for the problem. Our experimental re-
sults, which we obtained through extensive simulations on
synthetic and real-world information flow networks, suggest
that in many settings a relatively small number of filters
are fairly effective in removing a large fraction of redundant
information.

1. INTRODUCTION
Information networks arise in many applications, includ-

ing social networks, RSS-feed and blog networks, sensor net-
works and ad-hoc networks. In information networks, con-
tent propagates from content creators, i.e., sources, to con-
tent consumers through directed links connecting the vari-
ous nodes in the network. The utility of an information net-
work has been long associated with its ability to facilitate
effective information propagation. A network is considered
highly functional, if all its nodes are up-to-date and aware

of newly-generated content of interest.

Motivation: A common characteristic of many informa-
tion networks is that content propagation is not coordinated:
nodes relay information they receive to their neighbors, in-
dependent of whether these neighbors have received such
information from other sources. This lack of coordination
may be a result of node autonomy (as in social networks),
limited capabilities and lack of local resources (as in sensor
networks), or absence of topological/routing information (as
in ad-hoc networks). As an example consider the users’ feed
in Facebook. The feed displays all content (e.g. videos)
shared by the friends of a particular user U . In cases where
two or more friends of U share the same content, this content
appears multiple times in U ’s feed. Such uncoordinated in-
formation propagation results in receiving the same or simi-
lar content repeatedly, we call this phenomenon information
multiplicity. The redundancy underlying information multi-
plicity results in significant, yet unnecessary, communication
and processing overheads, ultimately reducing the utility of
information networks.

As an illustration of information multiplicity, consider the
toy news network shown in Figure 1, in which branded syn-
dicated content propagates over directed edges. In this ex-
ample, node s is the originator of new information – the
syndicated content – whereas nodes x and y are distributors
(e.g., newspapers) that may add branding or advertisement
to the syndicated content received from s. All nodes other
than s do not generate new content; rather, they utilize their
connections to relay content to other nodes along directed
links.
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Figure 1: Illustration of information multiplicity.

Now assume that a single news item i reaches x and y after
its generation by s. Nodes x and y forward a copy of i to
their neighbors, and as a result, z1, z2 and z3 receive i as
well. In fact, z2 (unnecessarily) receives two copies of i; one
from x and one from y. Even worse, if z1, z2 and z3 forward
whatever they get to w, then w receives (1 + 2 + 1) copies
of i. Clearly, to inform w, one copy of i is enough.

In many network settings we observe propagation of mul-
tiple instances of the same underlying piece of information.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 5
Copyright 2012 VLDB Endowment 2150-8097/12/01... $ 10.00.

418



For example in online media networks information multi-
plicity arises by different news sites posting different articles
about the same topic. In sensor networks information about
the same measurement is propagated by different sensors.

To alleviate the negative implications of information mul-
tiplicity, we propose that a subset of nodes be strategically
selected and equipped with additional “filtering” functional-
ity, namely the removal (or significant reduction) of similar
data items relayed through them. In some cases, filtering
could be an inexpensive process when only exact matching
techniques are used such as in broadcast by flooding scenar-
ios [31]. In this case, all nodes can be equipped with this
functionality. In other cases, filtering may cause significant
overheads to identify similar but not identical content. (e.g.
image [25], video processing [5], time series analysis [3], con-
tent with different branding or presentation). Due to this
overhead, the deployment of such a filtering functionality
cannot be justified, except at a small number of nodes.

We refer to nodes that carry out such special functionali-
ties as filters. We refer to the problem of identifying the set
of filter nodes in a given network as the Filter Placement
problem.

Notice that the placement of filters does not impact the
utility of the network in any other way; filters simply remove
similar content. In the example above, placing two filters at
z2 and w completely alleviates redundancy.

Paper Contributions: To the best of our knowledge, we
are the first to address the issue of network information mul-
tiplicity, and the first to propose a solution based on the
deployment of filtering functionality at strategic locations
in these information networks. We formally define the Fil-
ter Placement problem as a combinatorial optimization
problem, and study its computational complexity for differ-
ent types of graphs. We present polynomial-time constant-
factor approximation algorithms for solving the problem,
which is NP-hard for arbitrary graph topologies. We also
present a set of computational speedups that significantly
improve the running time of our approximation algorithm
without sacrificing its practical utility. Our experimental
results, which we obtained through extensive simulations on
synthetic and real-world information flow networks, suggest
that in many settings a relatively small number of filters are
fairly effective in removing a large fraction of duplicative
information.

2. RELATED WORK
While our work is the first to motivate, formalize, and

study the Filter Placement problem, the literature is
full of other works in various application domains that ad-
dress two related problems: the use of coordinated content
dissemination, and/or the selection of nodes to carry out
special functionalities. In this section, we provide a review
of these works.

Centrality in Networks: Shortest-path distance between
nodes in a network play an important role in many applica-
tions including transportation, protein interaction and so-
cial networks. The importance of a node in such a network
is defined by its betweenness centrality. This measure com-
putes for every node the total number of shortest paths that
node lies on. This measure can be generalized to a subset
of the nodes in the graph; Group betweenness computes the
number of shortest paths, that a set of nodes cover. Bran-

des [2] gives an effective algorithm to compute betweenness
for nodes and sets of nodes in a graph. Potamias et al. [28]
show how nodes with high centrality can be used to give
an effective approximation of the distance between all node
pairs in a network. The main point in these works is to
find nodes which lie on as many shortest paths as possi-
ble. The Filter Placement problem is not related to
betweenness centrality. Content does not only propagate
along shortest paths. The goal of Filter Placement is
rather to cover as many paths as possible. In the example
given in Figure 1, nodes with the highest betweenness cen-
trality are x and y. However, the only node where we can
apply meaningful filtering functionality in this graph, is z2.
This example demonstrates that finding a set of nodes with
high betweenness centrality does not necessarily solve the
Filter Placement problem.

Social Networks: The problem of identifying k key nodes
or agents has been addressed in the context of many different
social-network studies and applications.

For example, a number of studies focused on the identi-
fication of k influential nodes such that information seeded
(e.g., advertisements) at these nodes would be maximally
spread out throughout the network [7, 11, 13, 30]. All ex-
isting variants of this influence-maximization problem are
concerned with improving the extent of information spread
in the network, even if such maximization results in signif-
icant information redundancy. Our work is complementary
in that it does not aim to change or improve information
spread. Rather, our work aims to identify the placement of
k filter nodes so as to minimize redundant communication
and processing of information without changing the original
extent of information spread.

Another line of work focuses on the identification of k
nodes that need to be monitored (and/or immunized) in or-
der to detect contamination (prevent epidemics) [1, 14, 18,
27]. Here, the goal from selecting these key nodes is to in-
hibit as much as possible the spread of harmful information
content (e.g., viruses) by insuring that the selected nodes
act as barriers that stop/terminate the flow of such content.
In our model, filters do not terminate or inhibit the prop-
agation of information. Rather, they remove redundancy
in order to propagate a streamlined/sanitized (“cleaner”)
version of the information content. As a result, the under-
lying combinatorial problem we encounter when solving the
Filter Placement problem is different from the combi-
natorial problems addressed before.

Sensor Networks: At a high level, our work is related to
mechanisms for information flow management in sensor net-
works. In sensor networks, nodes are impoverished devices
– with limited battery life, storage capacity, and process-
ing capabilities – necessitating the use of in-network data
aggregation to preserve resources, and/or the use of coor-
dination of node operations for effective routing and query
processing. In-network aggregation is not aimed at removal
of redundant data, but at the extraction of aggregate statis-
tics from data (e.g., sum, average, etc). Therefore, studies
along these lines focus on the design of data-aggregation
strategies [6, 10, 12, 19] as well as associated routing of
queries and query results [15] in order to allow for reduced
communication costs. Here we note that there is an implicit
tradeoff between resource consumption and the quality of
information flow. An aggregate is effectively a caricature
(an approximation) of the information; aggressive aggrega-
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tion implies a reduction in the quality (and hence utility) of
information flow.

Coordinated communication of sensory data is exemplified
by recent work that went beyond standard aggregation and
focused on minimizing the communication cost required for
the evaluation of multi-predicate queries scheduled across
network nodes [4]. In that work, a dynamic-programming
algorithm is used to determine an optimal execution order
of queries. Examples of other studies that proposed coor-
dination strategies include techniques that ensure efficient
storage, caching, and exchange of spatio-temporal data [22,
23] or aggregates thereof [21].

In addition to their focus on balancing information fidelity
and resource consumption, there is an implicit assumption
in all of these studies that all nodes in the network are un-
der the same administrative domain, and hence could be
expected to coordinate their actions (e.g., as it relates to
routing or wake-sleep cycles). In our work, we consider set-
tings in which coordination of node operation is not justified
(since nodes are autonomous). Instead, we focus on reduc-
ing overheads by adding functionality to a subset of nodes,
without concern to resource or energy constraints.

Finally, broadcast by flooding in ad-hoc networks is an
active topic of research. A good comparison of suggested
methods is done by Williams and Camp [31]. In its basic
model, a node propagates the broadcast message it receives
to all of its neighbors. The goal is to devise propagation
heuristics, such that all nodes in the network receive the
content, but at the same time the number of exact messages
propagated in the network is minimized to avoid network
congestion. In this setup, the propagated items are exactly
the same, thus comparison of items, by storing a fingerprint
of the received content, is a relatively cheap operation for
nodes. The emphasis of existing research in this area is more
on effective ways of information spreading. Our work is
applicable in a different domain of problems, namely where
spread of information is given, but comparison of content
is expensive and not every node can be equipped with this
functionality.

Content Networks: A common challenge in large-scale
access and distribution networks is the optimal placement
of servers to optimize some objective (e.g., minimize average
distance or delay between end-points and the closest content
server) – namely, the classical facility location and k-median
problems [20], for which a large number of centralized [20, 8]
and distributed [24, 9] solutions have been developed. Con-
ceptually, the Filter Placement problem could be seen
as a facility location problem, wherein filters constitute the
facilities to be acquired. However, in terms of its objective,
the Filter Placement problem is fundamentally different
since there is no notion of local measures of “distance” or
“cost” between installed facilities and end-points. Rather, in
our setting, the subject of the optimization is a global mea-
sure of the impact of all facilities (and not just the closest)
on the utility that end-points derive from the network.

3. THE FILTER PLACEMENT PROBLEM
Propagation model: In this paper, we consider networks
consisting of an interconnected set of entities (e.g., users,
software agents) who relay information items (e.g., links,
ideas, articles, news) to one another. We represent such a
network as a directed graph G(V, E), which we call the com-

munication graph (c-graph). Participants in the network
correspond to the nodeset V . A directed edge (u, v) ∈ E in
the graph represents a link, along which node v can prop-
agate items to u. Some nodes of G generate new items by
virtue of access to some information origin; we call these
nodes sources. Sources generate distinct items – i.e., any
two items generated by the same source are distinct. Once
an item is generated, it is propagated through G as follows:
every node that receives an item blindly propagates copies of
it to its outgoing neighbors. Since the propagation is blind,
a node might receive many copies of a single item, leading
to information multiplicity.

Our information propagation model is deterministic in the
sense that every item reaching a node is relayed to all neigh-
bors of that node. In reality, links are associated with prob-
abilities that capture the tendency of a node to propagate
messages to its neighbors. Although our results (both the-
oretical and experimental) continue to hold under a proba-
bilistic information propagation mode, for ease of presenta-
tion and without loss of generality we adopt a deterministic
propagation model in this paper. Moreover, even though the
propagation model defined by G could be used to communi-
cate multiple items, in this paper we focus on a single item
i. The technical results are identical for the multiple-item
version of the problem.

Filters: Consider the production of a new item i by source
s. In order for node v to receive this item, i has to travel
along a directed path from s to v. Since there are several
paths from s to v, node v will receive multiple copies of i.
Moreover if v has children, then v propagates every copy
of i it receives to each one of its children. To reduce the
amount of redundancy (underlying information multiplic-
ity), our goal is to add a filtering functionality to some of
the nodes in G. We use filters to refer to nodes augmented
with such filtering functionality.

A filter can be viewed as a function that takes as input a
multiset of items I and outputs a set of items I ′, such that
the cardinality of I ′ is less than the cardinality of I. The
specific filtering function depends on the application. We
emphasize, that for many applications such filtering may be
costly to implement (for example resource-intensive). For
ease of exposition, we will fix the filter function to be the
function that eliminates all duplicate content:1 for every
item the filter node receives, it will perform a check to de-
termine if it has relayed an item with similar content before.
If not, it propagates the item to all of its neighbors. A filter
node never propagates already propagated content.

Objective Function: Let v ∈ V be an arbitrary node
in the graph. Define Φ(∅, v) as the number of (not neces-
sarily distinct) items that node v receives, when no filters
are placed. Let A ⊆ V be a subset of V . Then Φ(A, v)
denotes the number of items node v receives, when filters
are placed in the nodes in A. For a subset X ⊆ V , let
Φ(A, X) =

P

x∈X
Φ(A, x).

For a given item of information, the total number of mes-
sages that nodes in V receive in the absence of filters is
Φ(∅, V ). For filter set A, the total number of items that
nodes in V receive is Φ(A, V ). Thus, our goal is to find the
set A of k nodes where filters should be placed, such that
the difference between Φ(∅, V ) and Φ(A, V ) is maximized.

1Generalizations that allow for a percentage of duplicates to
make it through a filter are straightforward.
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Problem 1 (Filter Placement–FP). Given directed
c-graph G(V, E) and an integer k, find a subset of nodes
A ⊆ V of size |A| ≤ k, which maximizes the function

F (A) = Φ(∅, V )− Φ(A, V ).

Another choice for an objective function in Problem 1
would be to minimize Φ(A, V ), and by that maximize the
number of items covered. However this function has short-
comings which make it undesirable: as we observed, every
copy of an item corresponds to a directed paths in the graph.
The total number of directed paths in a graph is typically
exponential in the number of nodes. Hence, even covering
an exponential amount of paths may result in a relatively
low level of redundancy elimination. Also, as shown in the
example in Figure 1, not all redundancy can be eliminated.
As a consequence, the number of paths covered is not a good
indicator of the quality of filtering.

The objective function F (A) described in problem 1 over-
comes these shortcomings by measuring the improvement in
redundancy reduction. In addition, it has some nice prop-
erties. It is always positive and monotone, since placing an
additional filter can only reduce the number of items. This
also implies that F is bounded: F (∅) = 0 ≤ F () ≤ F (V ).
Furthermore, function F is submodular, since for every X ⊂
Y ⊂ V and v /∈ Y , it holds that F (X ∪ {v}) − F (x) ≥
F (Y ∪ {v})− F (Y ).

In the definition of Problem 1, there is a bound k on the
size of the filter set A. In the next proposition we show
that when the number of filters is not bounded, finding the
minimal size filter placement that maximizes FP is trivial.
Throughout the paper we use n = |V | to denote the number
of nodes in G.

Proposition 1. Let G(V, E) be a directed c-graph. Find-
ing the minimal sized set of filters A ⊆ V , such that F (A) =
F (V ) takes O(|E|) time.

Proof. Let the filter set A consist of the nodes v ∈ V
that are not sinks and din(v) > 1, i.e., A = {v ∈ V |din(v) >
1 and dout(v) > 0}. With this choice of A, either the node
is a sink, is in A or it has indegree 1. Hence, every node
propagates at most one copy of an item to its children. This
shows the optimality of A. It is easy to see that A is a
minimal optimal set; omitting any node from set A would
result in unnecessary content duplication. Finding set A
needs one traversal of the graph, to determine the nodes with
indegree greater than 1. This has running time proportional
to the number of edges (O(|E|)) in the graph.

Despite this result, FP for a filterset of fixed k-size on
an arbitrary graph is NP-complete. (For the proof see the
appendix.)

Theorem 1. The FP problem on an arbitrary c-graph
G(V, E) is NP-complete.

4. FILTER PLACEMENT ALGORITHMS
In this section, we present algorithms for the FP prob-

lem on different types of c-graphs, namely trees, DAGs and
arbitrary directed graphs.

4.1 Filter Placement in a Tree
While FP is hard on arbitrary graphs, and as we will show

also on DAGs, it can be solved in polynomial time with

dynamic programing on c-trees. We call a graph G(V, E)
a communication tree (c-tree), if in addition to being a c-
graph, G is a tree when removing the source node. The
recursion of the dynamic programming algorithm is done on
the children of every node. Transforming the input c-tree G
into a binary tree makes it computationally more feasible.
This transformation can be done in the following way: for
every node v ∈ V , if dout(v) ≤ 2 then do nothing. Otherwise,
fix an arbitrary ordering v1, v2, . . . vr of the children of v,
where dout(v) = r. Let v1 be the left child of v. Create a
new node u1 and let that be the right child of v. Let the
remaining children of v be the children of u1. Repeat these
steps until ur−1 has only two children: vr−1 and vr. The
edges adjacent to the source will continue to be connected
to the nodes in V . The resulting binary tree is G′. Observe
that the number of nodes in G′ is at most twice as much as
the number of nodes in G. Also notice that if the maximum
out-degree in tree G is ∆ then the height of G′ is at most a
factor of ∆− 1 larger than G.

We apply dynamic programming on G′: Let OPT(v, i, A)
be the function that finds an optimal filter set A of size
|A| ≤ i ≤ k in the subtree rooted in v. Then for every
i = 0 . . . k we can compute OPT(v, i, A) by

OPT(v, i, A) = max{

max
j=0...i

{OPT(vl, j, A) + OPT(vr, i − j, A)},

max
j=0...i−1

{OPT(vl, j, A ∪ {v}) + OPT(vr, i − 1 − j, A ∪ {v})}}.

In the equation above, vl and vr denote the left and right
child of v. The first term of this recursion corresponds to the
case where we do not place a filter in v, hence a total number
of i filters can be placed in the subtrees. The second term
corresponds to the case when we do place a filter in v and
only i−1 can be placed in the subtrees. The optimal solution
for the whole tree is then OPT(r, k, A) where r ∈ V is the
root of the tree. The above recursion does not guarantee
that we do not choose any dump nodes of the binary tree.
For this reason, we omit the second term of the recursion
when v is a dump node. Building the binary tree takes
O(n∆) time. We have to evaluate the recursion O(k) times
for every node. One evaluation takes O(k) computations.
There are O(nlog(∆)) nodes in G′, which makes the total
running time O(n∆ + k2nlog(∆)).

4.2 Filter Placement in DAGs
Consider c-graphs G(V, E), which are directed and acyclic

(DAGs). Although DAGs seem to have simpler structures
than arbitrary graphs, the FP problem is NP-complete even
on DAGs. The proof can be found in the appendix.

Theorem 2. The FP problem is NP-complete when the
c-graph G(V, E) is a DAG.

In the remainder of this section, we propose polynomial-
time algorithms, that result in solutions for the FP problem,
that we prove to be effective in our experiments.

First, we start with a naive approach, Greedy 1 (G 1)(this
name will be meaningful later, when we propose heuris-
tics that can be viewed as extensions of Greedy 1). Con-
sider node v ∈ V ; v will receive items on its incoming
edges and will forward a copy of every item on every one
of its outgoing edges. We can now compute a lower bound
on the number of copies of an item that v is propagating:
m(v) = din(v)× dout(v). Greedy 1 computes m(v) for every

421



v ∈ V and chooses the k nodes with the highest m() values.
Computing m() depends on the way the graph is stored. In
general it takes O(|E|) time, since we need to compute the
in and outdegree of every node. Finding the k largest values
of m() requires O(kn) computations, which makes the total
running time of Greedy 1 O(kn + |E|).

B

A

Figure 2: For k = 1 Greedy 1 places a filter in B while
the optimal solution would be to place a filter in A.

Although Greedy 1 is simple and efficient, for many graphs
it does not yield an optimal solution as exemplified in Fig-
ure 2. Without any filters, the total number of received
items in the graph is 14. Greedy 1 would place a filter in
node B; this is because m(B) = 1 × 4 is the largest m()
value in this graph. However the optimal solution would be
to place a filter in A, for which m(A) = 3 × 1. Placing a
filter in B leaves the number of received items unchanged.
Making node A a filter instead, would yield a total number
of 12 received items.

In light of this illustrative example, we propose Greedy All

(G All), which is an improved extension of Greedy 1. The
main idea behind Greedy All is, to compute for every node
v ∈ V , how many copies of a propagating item i are gener-
ated because of v. The algorithm then greedily chooses the
node with the highest such number to put a filter.

First, we look at the propagation of an item i that is
created by the source s. In order for i to be received by
node v, i has to propagate along at least one path from
s to v. In fact, v will receive as many copies of i as the
number of paths from s to v. We denote the number of dis-
tinct directed paths from any node x to y by #paths(x, y).
Then, the number of copies of i that arrive in v can be ex-
pressed as #paths(s, v). For later clarity we need to make
the distinction between the number of paths between two
nodes and the number of copies of i that v receives. We
denote the latter value by Prefix(v). Observe, that for
now #paths(s, v) = Prefix(v). We denote by Suffix(v)
the number of copies of i, that are generated across the
whole graph, after i has propagated through v. Similarly to
Prefix(v), the Suffix of v is also related to directed paths
in the graph. In this simple case the Suffix is equal to
the total number of distinct directed paths, that start in v:
Suffix(v) =

P

x∈V
#paths(v, x). Observe now, that the

total number of copies of i that propagate through v is the
product Prefix(v)× Suffix(v).

To study the effects of placing a filter in v, observe that
even if node v were a filter, it would still propagate one
copy of i. In other words, placing a filter in v has the same
effect on the number of copies of i, as if Prefix(v) = 1.
Hence, the amount of redundant copies of i generated be-
cause of the propagation through v, can be expressed by
I(v) = (Prefix(v) − 1) × Suffix(v). We call I(v) the im-
pact of v. The impact can also be expressed in terms of the
objective function: F (v) = Φ(∅, V )− Φ({v}, V ) = I(v).

This is the concept underlying our Greedy All algorithm:
The algorithm first chooses the node with the highest im-
pact. Placing a filter at that node might change the impact
of other nodes. Hence, an update of the impact of every node
is required. Then Greedy All chooses again the node with
the highest impact. The algorithm repeats this for k steps.
Observe that Greedy 1 only looks at the immediate neigh-
bors of every node, whereas Greedy All is more exhaustive
and considers all the nodes in the graph.

Algorithm 1 Greedy All algorithm

Input: DAG G(V, E) and integer k.
Output: set of filters A ⊆ V and |A| ≤ k.

1: find topological order σ of nodes
2: for i = 1 . . . k do
3: for j = 1 . . . n do
4: compute I(vj)

5: A← argmaxv∈V I(v)

6: return A

Because of the properties of F (), we can use the well-
known result by Nemhauser et al. [26], which states that for
any maximization problem, where the objective function is a
positive, monotone and submodular set-function, the greedy
approach yields a (1− 1

e
)-approximation.

Theorem 3. The Greedy All algorithm for problem 1 is
an (1− 1

e
)-approximation.

Implementation of Greedy All. In order to compute the
impact, we need to compute the Prefix and Suffix of
every node. We can think of Prefix(v) as the number of
copies of an item i that v receives. Since the copies of i are
propagated through the parents of v, it is easy to see that the
Prefix of a node is the sum of the prefixes of its parents. We
can compute the Prefix of every node recursively, by first
computing the Prefix of its ancestors. We fix a topological
order σ of the nodes. (A topological order of nodes is such
an order, in which every edge is directed from a smaller to
a larger ranked node in the ordering.) This order naturally
implies, that the parents of a node precede it in the ordering.
Traversing the nodes of G in the order of σ the Prefix can
be computed with the recursive formula (1) (Πv denotes the
set of parents of v).

Prefix(v) =
X

x∈Πv

Prefix(x) (1)

Remember, that the Prefix of a node can also be ex-
pressed as #paths(s, v), thus formula (1) is equivalent to

Prefix(v) = #paths(s, v) =
X

x∈Πv

#paths(s, x) (2)

As we established before, Suffix(v) is equivalent to the
total number of directed paths starting in v. This can
be computed effectively by doing some bookkeeping dur-
ing the recursive computation of (1): For every node v we
will maintain a list, plistv that contains for every ances-
tor x of v the number of paths that go from x to v. Thus
plistv[x] = #paths(x, v). Observe now, that for an an-
cestor x of v, plistv[x] can be computed as the sum of the
plist of the parents.

∀x ∈ V : plistv[x] =
X

p∈Πv

plistp[x] (3)
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Observe, that for every node, plistv can be computed dur-
ing the same recursion as (1).

To compute the Suffix of a node v, we need to sum the
number of paths that start in v. This is simply the sum of
the plist entries, that correspond to v.

Suffix(v) = #paths(v, .) =
X

x∈V

plistx[v] (4)

As a technical detail, in order to use this recursive for-
mula, every node’s plist contains itself with value one:
plistv[v] = 1. As a special case, a sources list would contain
only the entry corresponding to itself.

Thus far, we described how to compute the impact of a
node by computing its Prefix and Suffix when there are
no filters in the network. Remember now our earlier obser-
vation, that placing a filter in a node v∗ has the same effect
on the number of copies of an item, as if there was only
one path leading from the source to v∗. We can capture
this effect, by setting plistv∗[v∗] = 1 and all other values
plistv∗(x) = 0, before using this list in the recursion. Ob-
serve that the change in plistv∗ changes the Suffix of all
nodes preceding v∗, and the Prefix of all nodes succeeding
it. For this reason, we need to make a pass over the whole
graph when updating the impact.

Running time of Greedy All. The topological order σ of
the nodes can be computed in linear time. This value will
be evanescent in the total running time of the algorithm.
Formulas (1) and (3) are updated along every edge of the
graph. Formula (1) can be updated in constant time along
an edge, while formula (3) requires O(∆) lookups and ad-
ditions. (Where ∆ corresponds to the maximal degree in
the graph.) To compute Suffix(v) we keep a counter for
every node v and according to formula (4) update that on-
line when the plist entries are computed. This yields a
total running time of O(|E| ·∆) for one iteration of the al-
gorithm. Greedy All has k iterations, which yields a total
running time of O(k ·∆ · |E|). This can be O(k ·n3) in worst
case, but in practice, for most c-graphs |E| < O(n · logn),
which results in a O(k · n · logn) running time.

Observe that Greedy All is optimal for k = 1. For larger
values of k it also yields very good results. In our ex-
periments we found, that there are real-life graphs, where
Greedy All is capable of finding an FP which yields perfect
filtering. However in some cases it does not find the opti-
mal solution. Look at the toy example in Figure 3. When
no filters are placed the total number fo received items is
Φ(∅, V ) = 26. Since for k = 1 the impact values of the nodes
are I(A) = 7, I(B) = 6, I(C) = 6, Greedy All will choose
A as its first filter. Observe now, that the total number
of items has been reduced with the amount of A’s impact:
Φ({A}, V ) = 19. Then, for k = 2 nodes B and C have
updated impact: I(B|A) = 3, I(C|A) = 4. The algorithm
will choose C. This yields a total of Φ({A, C}, V ) = 15
received items in this system. The optimal solution would
be to place filters in nodes B and C, which would result in
Φ({B, C}, V ) = 14 items received.

Computational speedups. Our experimental evaluation
(Section 5) shows, that although Greedy All yields good
results with respect to our objective function, it is rather
inefficient to apply to large datasets. For this reason, we
propose two new heuristics, that along with Greedy 1, yield
much faster and yet effective solutions to FP. Both heuristics

A

B C

S1 S2

Figure 3: For k=2 Greedy All chooses filter set
{A, C}, while the optimal solution is {B, C}.

are inspired by the principles behind Greedy All.

The first algorithm, Greedy Max (G Max) computes the im-
pact of all nodes in the graph, similar to Greedy All. Once
the impacts are calculated, Greedy Max selects the k nodes
with the highest impact as filters, without recomputation
of the impact. As our experiments show, Greedy Max finds
solutions very similar to those found by Greedy All. The
running time of this algorithm is O(n|E|), since the impact
of nodes needs to be computed only once.

Our other heuristic is Greedy L (G L). This algorithm com-
putes a simplified impact for every node: I ′(v) = Prefix(v)×
dout(v). This is the number of items v propagates to its im-
mediate children. Then Greedy L picks the top k nodes with
respect to I ′ as filters. To compute I ′(), we need to compute
Prefix () (Equation (1)) and we need to know the degree of
every node. Both tasks can be accomplished by traversing
the edges once in Greedy L. I ′ is updated in every iteration,
which yields a total running time of O(k|E|).

The three algorithms proposed above are all significantly
faster than Greedy All. This superior running time is due
to the fact that these algorithms choose the filters leveraging
less information about the graph. All three heuristics cap-
ture different characteristics of a good filter set, and hence
their performance is not the same on different datasets.
First observe, that a well connected node in the network
has high in and out degrees and thus, would be ranked high
by Greedy 1. On the other hand, G 1 does not take into ac-
count the location of the node in the network. Greedy Max

computes the full impact of every node, thus it can give a
more accurate estimate of the influence of individual nodes,
than Greedy 1. However, it fails to capture the correlation
between filters placed on the same path and thus, might
choose filters that diminish each other’s impact. Greedy L

overcomes these shortcomings by combining these two meth-
ods. However,this algorithm tends to pick nodes further
away from the source, since the Prefix () of nodes grows
exponentially with the distance from the source. The differ-
ences in performance for various datasets are shown in our
experimental evaluation (Section 5).

Algorithm 2 The Greedy L algorithm on DAGs.

Input: DAG G(V, E), integer k
Output: set of filters A ⊆ V of size k.

1: A = ∅
2: for i = 1 . . . k do
3: compute Prefix()
4: A← argmaxv∈V Prefix(v)

5: return A
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4.3 Filter Placement in General Graphs
Solving FP on general graphs is NP-hard. In this section

we propose a heuristic to choose an acyclic subgraph from
any graph. This allows us to apply the algorithms designed
for DAGs on this subgraph.

Let c-graph G′(V, E′) be a general directed graph. Fix
an arbitrary ordering σ of the nodes in V . We call an edge
(v, u) ∈ E′ a forward edge if σ(v) < σ(u); otherwise it is
a backward edge. A well-known 2-approximation for choos-
ing an acyclic subgraph is the following greedy algorithm:
fix an arbitrary order σ of the nodes. Let F be the set of
forward edges with respect to σ, and let B be the set of
backward edges. If |F | > |B| then choose the DAG G(V, F ),
else choose the edges in B: G(V, B). The drawback of this
algorithm is that it does not guarantee the resulting DAG
to be connected. For this reason we develop our own algo-
rithm, Acyclic (Algorithm 3) to choose a connected acyclic
subgraph.

The Acyclic algorithm finds an acyclic subgraph in two
steps. We can assume that there is only one source s in
G′, otherwise we create a new super-source s, and direct an
edge from s to every source. First, Acyclic performs a DFS
traversal of G′ starting in s. Every edge that is used during
this traversal is added to G. Second every remaining edge
in E′ is considered for addition. An edge e ∈ E′ is added to
E if it does not create a cycle. Observe, that the resulting
acyclic subgraph is maximal, since no edge can be added
without creating a cycle.
Acyclic is built on the observation made in the previous

section; an item i that is generated by s reaches a node v
if there is at least one directed path from s to v. For this
reason, it is clear that every node that receives a copy of i
is visited by the DFS traversal in the first part of Acyclic.
Nodes that are not visited, do not receive copies of i, thus
uninteresting with regard to information propagation in G′.
The edges used during the DFS traversal result in a spanning
tree T of G, thus making G connected.

In the second part of Acyclic edges are added to G in a
greedy fashion: every edge e ∈ E′ is considered and is added
to E if it does not result in a directed cycle. A naive ap-
proach for doing this would be to add the edge e in question
to G, and then run a DFS to determine whether G ∪ {e}
is still acyclic. If not, then remove e. However, this would
require too many computations.

Our approach uses instead a decision mechanism based on
the location of nodes in T . We call the order in which nodes
are first visited during the DFS traversal the nodes discovery
time, and denote it by σ( ). We call a node a junction if it
has more than one child in T . Due to the DFS traversal,
there can be no forward edge with regard to σ( ) in E′, that
is not an edge in T . A backward edge (u, v) can be added to
E if there is no directed path from v to u. This is the case if
v and u are in different branches of the tree. Thus, there is a
junction w, for which paths (w, wu1), (wu1, wu2) . . . (wur, u)
and (w, wv1), (wv1, wv2) . . . (wvl, v) are in T and wu1 and wv1

are different. In order to decide the existence of such a w we
need to keep for every node u a signature: sign(u) contains
a list of pairs {(w, wu1)}. Where the first elements w of the
pairs are the junctions on the path (s → u). Observe that
σ(wu1) is always less or equal to σ(u). Also, for any branch
starting in w either all nodes’ discovery times in that branch
are smaller or all are larger or equal than σ(wu1). When an
edge (u, v) is considered for addition now, we scan sign(u)

and sign(v). We find w with the largest σ(w), such that
(w, wu1) ∈ sign(u) and (w, wv1) ∈ sign(v). u and v are in
different branches (thus edge (u, v) can be added) only if
σ(v) < σ(wu1) ≤ σ(u)).

The DFS traversal in the first phase of Acyclic takes
O(n · logn) time. To create the signatures we need to tra-
verse T once. Every node w passes on its signature list to
its children. Every child uw of w adds w to the list, if w
is a junction, otherwise it uses sign(w) unchanged. This
introduces an additional O(n) steps to the algorithm. For
an edge (u, v) the comparison of sign(u) and sign(v) takes
O(logn) time. This needs to be repeated for every edge
in E′, yielding a total running time of O(n2 · logn) for the
Acyclic algorithm.

Algorithm 3 Acyclic algorithm to find maximal acyclic
subgraph.

Input: directed graph G′(V, E′) with source s
Output: acyclic directed graph G(V, E)

1: DFS traversal starting in s
2: E ← T
3: compute signatures
4: for (u, v) ∈ E′ do
5: if σ(v) < σ(wu1) ≤ σ(u) then
6: E ← (u, v)

5. EXPERIMENTAL EVALUATION
We present here a comparative experimental evaluation

of the various Filter Placement algorithms, using syn-
thetic data and real datasets. These datasets capture the
propagation of information in real-life scenarios. We report
the performance of the various algorithms with regard to
the objective function as well as the running time.
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Figure 4: CDF of indegrees for synthetic graphs

Performance Metric: To measure and compare the effec-
tiveness of various algorithms, we define the Filter Ratio

(FR) as the ratio between the objective function using fil-
ters deployed in a subset of nodes (A) and the maximum
value of the objective function –i.e., the level of redundancy
reduction delivered by installing filters at the nodes in A. A
FR of 1 underscores complete elimination of redundancy.

FR(A) =
F (A)

F (V )

Baseline Algorithms: We compare our algorithms to a
set of random heuristics that serve as baseline.
Random k (Rand K): chooses k filters from V uniformly at
random.
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Figure 5: FR for synthetic graphs

Random Independent (Rand I): Every node becomes a filter
independently of other nodes, with probability k

n
.

Random Weighted (Rand W): Every node v is assigned a weight
w(v) =

P

u∈Cv

1
din(u)

, where Cv = {u ∈ V |(v, u) ∈ E} is the

set of children of v. Then, every node becomes a filter with
probability w(v)× k

n
. The intuition behind this is, that the

influence of node v on the number of items that its child u
receives, is inversely proportional to the indegree of u.

Note that while we cannot guarantee that the number of
filters for randomized algorithms is k, they are designed so
that the expected number of filters is k. We run the ran-
domized algorithms 25 times and then average the results.

Results using synthetic datasets: To test some basic
properties of our algorithms we generate synthetic graphs.
First, we assign nodes to 10 levels randomly, so that the ex-
pected number of nodes per level is 100. Next, we generate
directed edges from every node v in level i to every node u in
level j > i with probability p(v, u) = x

yj−i . The choice of x

and y influences the density of the graph. The exponent of y
is designed in such a way, that nodes in nearby classes have
higher probability of being connected, than nodes that are
far apart. We choose to experiment with the combinations
(x, y) = (1, 4) and (x, y) = (3, 4). For x

y
= 1

4
we generate

a graph with 1026 nodes and 32427 edges. For x
y

= 3
4

we
generate 1069 nodes and 101226 edges. The CDFs of the
indegree are shown in Figure 4. The CDFs of the outdegree
are quite similar, and thus omitted due to space limitations.
Observe that nodes on the same level have similar proper-
ties; the expected number and length of paths going through
them is the same.

Figures 5(a) and 5(b) reveal a gradual increase in FR as
a function of the number of filters. This shows that the cho-
sen filters are nodes that cover roughly equal-sized, distinct
portions of all the paths in the graphs.

Results using the Quote dataset: The Quote dataset by
Leskovec et al. [17] contains the link network of mainstream
media sites ranging from large news distributors to personal
blogs, along with timestamped data, indicating the adop-
tion of topics or different phrases by the sites. We utilize
monthly traces from August 2008 to April 2009 to generate
a c-graph G Phrase. Since the Quote graph, which has over
400K edges, is very large, in our experiments we select a

subgraph. The subgraph we chose contains the nodes and
adjacent edges, corresponding to sites that use the phrase
“lipstick on a pig”. Sites may freely link to each other, which
might result in cycles. We run Acyclic to find a maximal
acyclic subgraph in this graph. There is no clear initiator of
the phrase in the blogosphere, since it was used by a candi-
date during the 2008 presidential campaign. For this reason,
we run Acyclic initiated from every node in the graph, and
then choose the largest resulting DAG. This DAG has a sin-
gle source: the node Acyclic was started from. It contains
932 nodes and 2,703 edges.
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Figure 6: CDF of node indegree for G Phrase

Figure 6 shows the CDF of the nodes’ in-degree in G Phrase.
We found that almost 70% of the nodes are sinks and almost
50% of the nodes have in-degree one. There are a number
of nodes, which have both high in- and out-degrees. These
are potentially good candidates to become filters. The steep
curve of FR for G Phrase in Figure 7 confirms our intuition:
as few as four nodes achieve perfect redundancy elimination
for this dataset. As expected, Greedy All performs the best
with regard to the FR. Greedy Max picks a different node
for k = 2, but for k ≥ 3 it picks the same filter set and
hence performs as good as Greedy All. The two heuristics,
Greedy 1 and Greedy L are just a little bit less effective.
We tracked the connection between the node chosen first by
Greedy All (node A), and the node chosen first by Greedy L

(node B). These nodes were connected by a path of length
2. The impact of A is larger than the impact of B, since A
also influences all of B’s children. However B is chosen over
A by Greedy L, since the prefix of B is much larger than
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that of A. The four central nodes chosen by Greedy All

also explain why Random Weighted performs so well: nodes
with large weights (and thus high probability of becoming
filters) are those nodes with a large number of children. The
randomized algorithms Random k and Random Independent

perform significantly worse than all others because of the
high fraction of sink nodes in the graphs.
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Figure 7: FR for G Phrase on the Quote dataset; x-
axis corresponds to the number of filters, y-axis cor-
responds to the FR for different algorithms

Results using the Twitter dataset: The Twitter dataset
was collected by Kwak et al. [16]2. The dataset contains user
ids and links between users, directed from the user to his fol-
lowers. The complete dataset contains over 41 million user
profiles. In order to select a subgraph of feasible size for our
experiments, we first ran a breadth-first search up until six
levels, starting from the user “sigcomm09”. Our goal was to
find a subnetwork of users related to the computer science
community. For this, we created a list of keywords related to
computer science, technology and academia and filtered the
user profiles of the followers according to that. The resulting
network is an acyclic graph with a single root “sigcomm09”,
which we consider the source of information in this sub-
network. The graph contains about 90K nodes and 120K
edges. The number of out-going edges from the different
levels of the graph show an exponential growth: 2, 16, 194,
43993 and 80639 for levels 1,2,. . . , 5. We had to remove
a small number of edges, in order to maintain an acyclic
graph. Observe that this graph is quite sparse compared to
the other datasets. Figure 8 shows that Greedy All can re-
move all redundancy with placing as few as six filters. Our
other heuristics also perform well. Greedy Max, Greedy 1

and Greedy L all achieve complete filtering with at most ten
filters. The convergence of FR to one for Greedy L is slower,
as for the other algorithms, because of its tendency to choose
nodes further away from the source.

Results using APS research dataset: The APS research
dataset3 contains of the citation network of over 450,000 ar-
ticles from Physical Review Letters, Physical Review, and
Reviews of Modern Physics, dating back to 1893. The dataset
consists of pairs of APS articles – one citing the other. This
can be viewed as a graph with a directed edge from node
A to B if B cites A. We select article [29], published in

2Available at http://an.kaist.ac.kr/traces/WWW2010.
html
3Available at https://publish.aps.org/datasets

Physical Review as the source node, and take the subgraph
of nodes that can be reached from this node through di-
rected paths. In this case only the node corresponding to
paper [29] is connected to the source. The resulting sub-
graph is intended to portray the propagation of an original
concept or finding in this paper through the physics com-
munity: a filter in this setting can be seen as an opportune
point in the knowledge transfer process to purge potentially
redundant citations of the primary source (e.g., derivative
work).4 The resulting citation graph G Citation is acyclic
and contains 9,982 nodes and 36,070 edges. As for G Phrase

and the Twitter graph, G Citation has a power-law distri-
bution of in and out degrees. (Plot omitted due to space
constraints.)
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Figure 8: FR for the Twitter graph. x-axis corre-
sponds to the number of filters, y-axis corresponds
to the FR for different algorithms
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Figure 9: FR for G Citation in the APS dataset; x-axis
corresponds to the number of filters, y-axis corre-
sponds to the FR for different algorithms

While Greedy 1, Greedy L or Greedy Max all converge to a
high level of removing redundant items with less, than fifteen
filters, it is evident from Figure 9, that Greedy All performs
here better than the alternatives. The G Citation graph
is a good illustration of the potential shortcomings of our
heuristics. As sketched in Figure 10, the graph has a set of

4In a live corpora of interconnected documents and cita-
tions, filters can be seen as the key documents in which to
consolidate references to a specific source.
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Figure 10: Sketch of APS graph

nine nodes, interconnected by a path, that all have indegree
one. All paths from the upper to the lower half of the graph
traverse through these nodes, which makes them all high-
impact. However, placing a filter in the first node highly
diminishes the impact of the remaining nodes. This remains
unobserved by Greedy Max resulting in the long range over
which G Max is constant.

Summary of comparative performance: Comparing
the results for the synthetic data sets (Figures 5(a) and
5(b)) to the results for the real datasets (Figures 7, 8 and 9)
reveals a significant difference in the marginal utility from
added filters (the steepness of the performance curve). For
the synthetic data sets, there is a slow gradual improvement
in performance for all algorithms as the number of filters
increases, suggesting a fairly constant marginal utility of
additional filters throughout. In contrast, for the Quote and
Twitter datasets, almost all redundancy can be filtered out
with at most ten filters, implying no marginal utility from
added filters beyond that point. For the APS data set, there
is more of a spread in the performance of the algorithms,
but the best algorithms have very steep performance curves
as well.

This disparity between the results on synthetic and real
data sets can be explained by the structure of the underlying
c-graph. The synthetic graphs are densely connected, and
as a result paths cannot be covered with a small number of
filters. On the other hand, the real data sets have a small
set of “key” nodes that cover all paths in the graph. In
conclusion, while our methods can be used effectively on
all types of graphs, placing filters is more effective when
operating over sparse graphs (which are more prevalent in
many information networks).

Running times: Although all our algorithms have running
time polynomial in the number of nodes in the dataset, we
also investigate their efficiency in practice. For that, we
report here their actual running times in one of our datasets.
Note that the conclusions we draw are identical for other
datasets and thus we omit the results due to lack of space.

We implemented our algorithms in Python, and although
our implementation uses clever data structures and other
necessary optimizations, our code is not focused on optimiz-
ing performance. Therefore, our efficiency study should be
seen as an evaluation of the relative efficiency of the differ-
ent algorithms. For our experiments we used a machine with
4GHz AMD Opteron with 256GB of RAM, running a 64-bit
Linux CentOS distribution.

Figure 11 reports the running times of the different algo-
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Figure 11: Execution times for the placement of ten
filters in the case of the Twitter dataset.

rithms for the Twitter dataset in seconds for k = 10 fil-
ters. Obviously, Greedy 1 (with worst-case running time of
O(|E|)) is our fastest algorithm with running time less than
a minute. Greedy All is the most computationally intensive
method, with a running time of 83 minutes. Since it requires
the recomputation of the impact of every node in every it-
eration. Finally, Greedy Max and Greedy L appear to have
similar running times, approximately 60 minutes. Despite
the fact, that Greedy Max does the computation of the im-
pact only once. As we have seen, the tendency of Greedy L

is to pick nodes at the end of the topological order (away
from the source). After selecting such a node v as filter, the
modified impact I ′ of most of the nodes remains the same;
the only nodes whose value of I ′ changes are those that are
after v in the topological order. Since there is small number
of such nodes, clever bookkeeping allows us to make this
updates in, practically, constant time.

Overall, our algorithms Greedy 1, Greedy Max and Greedy L

are much more efficient than Greedy All and can be applied
to larger datasets. This observation, combined with the fact
that these algorithms have high-quality results make them
appropriate to solve the FP problem in practice.

6. CONCLUSIONS
Networks in which nodes indiscriminately disseminate in-

formation to their neighbors are susceptible to information
multiplicity – i.e., a prevalence of duplicate content com-
municated over a multitude of paths. In this paper, we pro-
posed a particular strategy to mitigate the negative implica-
tions from information multiplicity. Our approach relies on
the installation of filters at key positions in the information
network, and accordingly defined the Filter Placement
problem. In addition to characterizing the computational
complexity of Filter Placement (polynomial for trees,
but NP-hard for DAGs and arbitrary graphs), we devised
a bounded-factor approximation as well as other scalable
heuristic algorithms. We evaluated our methods experimen-
tally using synthetic and real data sets. Our results sug-
gest that in practice, our Filter Placement algorithms
scale well on fairly large graphs, and that typically a small
number of filters is sufficient for purposes of removal of re-
dundant content in real-world (typically sparse) information
networks.

Our current and future work is focusing on extensions to
the information propagation model adopted in this paper
to take into consideration multirate information sources. In
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addition, we are investigating different formulations of the
Filter Placement problem in which the filter functional-
ity goes beyond the deterministic and probabilistic content
filtering considered in this paper.
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APPENDIX

In the appendix we will proof Theorems 1 and 2.

Theorem 1. The FP problem on an arbitrary c-graph
G(V, E) is NP-complete.

Proof. First of all observe that for the communications
graph G the set A ⊆ V maximizes F (.) whenever Φ(A, V )
is minimized. Hence we will prove the hardness of Prob-
lem 1 by showing that finding a placement of k filters A
such that Φ(A, V ) is minimized is NP-complete. We prove
this by showing that finding the smallest integer k, for which
the number of received items in graph G(V, E) is finite, is
equivalent to the SetCover problem. An instance of Set-
Cover consists of the universe U = {u1, u2, . . . , um} and a
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set S = {S1, S2, . . . , Sn}, where ∀i, Si ⊆ U is a subset of U
and k is an integer. The goal is to find a subset S′ ⊆ S such
that |S′| ≤ k and {uj ∈ U : uj ∈ ∪Si∈S′Si} = U . Define the
instance of FPas follows. First, define graph G by creating
a node vi for every set Si ∈ S. Fix an arbitrary cyclic order
σ of the nodes vi. A cyclic order is the same as a linear
order with the additional constraint that σ(n + 1) = σ(1).
For every instance uj ∈ U add an edge vj1 → vj2 whenever
u ∈ Sj1 , u ∈ Sj2 and σ(vj1) < σ(vj2). Observe that this
adds a directed cycle to the graph for every u ∈ U . Also add
a source vs to the graph and add an edge from the source to
all other nodes in the graph. Imagine now that the source
creates one single item and propagates that to its children.
Observe that now infinite number of items will propagate on
every directed cycle. Let k be the integer, specified in the
instance of SetCover and let l be an arbitrary finite inte-
ger. Now for the decision version of the FPproblem if the
answer tot he question “Is there a filter assignment A with
|A| ≤ k, such that Φ(A, v) ≤ l?” is “YES”, then this also
implies a solution with k sets for the SetCover problem.
Since the decision version of SetCover is NP-complete this
reduction shows that FPis also NP-complete.

Theorem 2. The FP problem is NP-complete when the
c-graph G(V, E) is a DAG.

Proof. We reduce the NP-complete VertexCover prob-
lem to the FP problem on DAGs. We say that for an undi-
rected graph G(V, E), a set A ⊆ V is a vertex cover of G, if
every edge in E is incident to at least one node in A. For an
instance of the VertexCover problem, let G(V, E) be an
undirected graph and k an integer. The decision version of
the problem asks for a set A ⊆ V of size k that is a vertex
cover.

Define the DAG G′(V ′, E′) of the corresponding FP prob-
lem as follows. Let V ′ = V ∪ {s, t} contain the nodes in G,
an additional source node s and an additional sink t. Let
E′ contain all edges in E. In addition to that, add an edge
from the source to every node, and from every node to the
sink. Fix an arbitrary order σ of the nodes in V ′, such that
s is the first and t is the last in this ordering. Then direct
every edge (u, v) ∈ E′ from u to v if σ(u) < σ(v), otherwise
from v to u. This will naturally result in a DAG. Let m be
an arbitrary integer such that m > Ω(|V ′|10). We will re-
place every directed edge in E′ (including the edges incident
to s and t) with the following multiplier tool (Figure 12).
For every edge (u, v) we add m new nodes: w1, w2, . . . , wm,
and 2m new directed edges: (u, wi) and (wi, v). Observe,
that by this exchange, the size of the graph only changes by
a polynomial factor of the original size. Now we will proof
that there exists a vertex cover A of size at most k for this
instance of the VertexCover problem if and only if there
exists an FP A′ of size k where Φ(A′, V ′) < O(m3). In ad-
dition we claim that A′ ⊆ V and thus A = A′ is the desired
solution for the VertexCover.

Let us assume A′ is the solution of size k for the FP
problem and Φ(A′, V ′) < Ω(m3). We will show that A′ ⊆ V
and that A is a vertex cover of G. In special we will show
that, if there is an edge (u, v) in E that is not incident
to any node in A, then Φ(A′, V ′) > O(m3). As seen in
Proposition 1, it is more advantageous to put the filter in
the parent of a node with indegree 1, than in the node itself.
For this reason, we can assume that filters are only placed in
the nodes wi of the multiplier tool, if all nodes with indegree
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Figure 12: “Multiplier edge” construction for G′.
When x items leave u, x ·m items arrive at v.

larger than 1 are already filters. In this case, all nodes in
V ⊆ V ′ would be filters, and then A is a trivial vertex
cover. Thus we can assume A′ ⊆ V . Now we will show
that A is a vertex cover. Let us consider the subgraph Guv

depicted in Figure 13, corresponding to the nodes u, v ∈ V
and the adjacent edges. σi depicts the number of incoming
items on that edge. Let Σu = σu
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2 + . . . + σu

u and
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v be the total number of items u and
v receive from other nodes.
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Figure 13: Isolated subgraph Guv = {v, v, s, t} of G′.

Let us assume that for every edge (u, v) ∈ E at least one
{u, v} is in A′. Then we can compute an upper bound on
the number of items propagating in this subgraph, with re-
spect to A′. There are three possible cases:

case u ∈ A′, v ∈ A′: In this case the total number of
items propagating on the edges of Guv is Σu + m + m +
2m + Σv + m + m + m + m, which is O(m2).

case u ∈ A′, v /∈ A′: Then the total number of items
propagating on the edges of Guv is (Σu + m) + 2m + (Σv +
m) + ((m + (Σv + m)) ·m), which is O(m2);

case u /∈ A′, v ∈ A′: Here the total number of items
propagating on the edges of Guv is (Σu + m) + 2 · ((Σu +
m) ·m) + (Σv + m) + m, which is O(m2);

case u /∈ A′, v /∈ A′: The total number of items prop-
agating on the edges of Guv is (Σu + m) + 2 · ((Σu + m) ·
m) + (Σv + m) + ((((Σu + m) ·m) + (Σv + m)) ·m), which
is O(m4) for a worst-case Σu,Σv and O(m3) in the best case;

The total number of subgraphs Guv in G′ is |E|. Thus if
A is a vertex cover in G, then for A′ the number of items
is bounded Φ(A′, V ′) = O(n2 × m2) < m3. On the other
hand let us assume that A = A′ is not a vertex cover in G.
This means that there is at least one edge (u, v) ∈ E for
which u /∈ A′ and v /∈ A′. In this case Φ(A′, V ′) = Ω(m3)
in contradiction with our assumption.

In this proof we showed that there exists a vertex cover
of size k for G(V, E) if and only if there exists an FP A′ of
size k for G′(V ′, E′), with a bounded number of total items
Φ(A′, V ′) = O(m2). This provides a reduction of the Ver-
texCover problem to FP thus making it NP-complete.
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