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ABSTRACT
Graphs are fundamental data structures and have been em-
ployed for centuries to model real-world systems and phe-
nomena. Random walk with restart (RWR) provides a good
proximity score between two nodes in a graph, and it has
been successfully used in many applications such as auto-
matic image captioning, recommender systems, and link pre-
diction. The goal of this work is to find nodes that have top-
k highest proximities for a given node. Previous approaches
to this problem find nodes efficiently at the expense of exact-
ness. The main motivation of this paper is to answer, in the
affirmative, the question, ‘Is it possible to improve the search
time without sacrificing the exactness?’. Our solution, K-
dash, is based on two ideas: (1) It computes the proximity
of a selected node efficiently by sparse matrices, and (2) It
skips unnecessary proximity computations when searching
for the top-k nodes. Theoretical analyses show that K-dash
guarantees result exactness. We perform comprehensive ex-
periments to verify the efficiency of K-dash. The results
show that K-dash can find top-k nodes significantly faster
than the previous approaches while it guarantees exactness.

1. INTRODUCTION
Recent advances in social and information science have

shown that linked data pervade our society and the natu-
ral world around us [24]. Graphs become increasingly im-
portant to represent complicated structures and schema-less
data such as is generated by Wikipedia 1, Freebase 2, and
various social networks [10]. Due to the extensive applica-
tions of graph models, vast amounts of graph data have been
collected and graph databases have attracted significant at-
tention in the database community. In recent years, various
approaches have been proposed to deal with graph-related
research problems such as subgraph search [24], shortest-
path query [4], pattern match [5], and graph clustering [25]
to get insights into graph structures.

1
http://www.wikipedia.org/

2
http://www.freebase.com/

With the rapidly increasing amounts of graph data, search-
ing graph databases to identify high proximity nodes, where
a proximity measure is used to rank nodes in accordance
with relevance to a query node [13], has become an impor-
tant research problem. Many papers in the database com-
munity have addressed node-to-node proximities [20, 1, 13].
For example, Sun et al. proposed a novel proximity mea-
sure called PathSim which produces good similarity qual-
ities given heterogeneous information networks [20]. Sim-
rank++, proposed by Antonellis et al., finds high proximity
nodes effectively for historical click data [1]. One of the
most successful techniques known to the academic commu-
nities is based on random walk with restart (RWR) [19]. This
is because the proximity defined by RWR yields the follow-
ing benefits: (1) it captures the global structure of the graph
[8], and (2) it captures multi-facet relationships between two
nodes unlike traditional graph distances [21].

However, the computation of the proximities by RWR is
computationally expensive. Consider a random particle that
starts from query node q. The particle iteratively moves to
its neighborhood with the probability that is proportional
to their edge weights. Additionally, in each step there is a
probability that it will restart at node q. A node probabil-
ity changes over time during iterations by recursively apply-
ing the above procedures. As the result, the steady-state
probability can be obtained. The proximity of node u with
respect to node q is defined as the steady-state probability
with which the particle stays at node u.

Although RWR has been receiving increasing interests
from many applications [15, 11, 12, 19], its excessive CPU
time led to the introduction of approximate approaches [22,
19]. These approaches have the advantage of speed at the
expense of exactness. However, approximate algorithms are
not well adopted. This is because it is difficult for approxi-
mate algorithms to enhance the quality of real applications.
Therefore, we address the following problem in this paper:

Problem (Top-k search for RWR).

Given: The query node q, and the required number of
answer nodes K.

Find: Top K nodes with the highest proximities with
respect to node q exactly.

To the best of our knowledge, our approach to finding
top-k nodes in RWR is the first solution to achieve both
exactness and efficiency at the same time.

1.1 Contributions
We propose a novel method called K-dash that can effi-

ciently find top-k nodes in RWR. In order to reduce search
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cost, (1) we use sparse matrices to compute the exact prox-
imity of a selected node, and (2) we prune low proximity
nodes by estimating the proximities of those nodes without
computing their exact proximities. K-dash has the following
attractive characteristics based on the above ideas:

• Exact: K-dash does not sacrifice accuracy even though
it exploits an estimation-based approach to prune un-
likely nodes; it returns top-k nodes without error un-
like the previous approximate approaches.

• Efficient: K-dash practically requires O(n+m) time
where n and m are the number of nodes and edges,
respectively. By comparison, solutions based on exist-
ing approximate algorithms are expensive; they need
O(n2) time to find the answer nodes. Note that m ≪
n2 in practice [14].

• Nimble: K-dash practically needs O(n + m) space
while the previous approaches need O(n2) space. The
required memory space of K-dash is smaller than that
of the previous approximate approaches.

• Parameter-free: The previous approaches require
careful setting of the inner-parameter [22], since it
impacts the search results. K-dash, however, is com-
pletely automatic; this means it does not require the
user to set any inner-parameters.

While RWR has been used in many applications, it has
been difficult to utilize it due to its high computational cost.
However, by providing exact solutions in a highly efficient
manner, K-dash will allow many more RWR-based applica-
tions to be developed in the future.
The remainder of this paper is organized as follows. Sec-

tion 2 describes related work. Section 3 overviews the back-
ground of this work. Section 4 introduces the main ideas
of K-dash. Section 5 gives theoretical analyses of K-dash.
Section 6 reviews the results of our experiments. Section 7
provides our brief conclusion.

2. RELATED WORK
Node-to-node proximity is an important property. One of

the most popular proximity measurements is RWR, and re-
searchers of data engineering have published many papers on
RWR and its applications [15, 11, 12, 19, 22]. With our ap-
proach, many applications can be processed more efficiently.

Application. Automatic image captioning is a technique
which automatically assigns caption words to a query im-
age. Pan et al. proposed a graph-based automatic caption
method in which images and caption words are treated as
nodes in a mixed media graph [15]. They utilized RWR to
estimate the correlations between the query image and the
captions. They reported that their method provided 10 per-
cent higher captioning accuracy than a fine-tuned method.
Recommendation systems aim to provide personalized rec-

ommendations of items to a user. One recent recommenda-
tion technique proposed by Konstas et al. is based on RWR
over a graph that connects users to tags and tags to items,
where the probabilities of relevance for items are given by
RWR proximities; high interest items would have high prox-
imities. They incorporate the additional information such

as friendship and social tagging embedded in social knowl-
edge to improve the accuracy of item recommendations [11].
They also applied a standard collaborative filtering method
as a baseline, and showed that their method was superior.

The question of ‘which new interactions among social net-
work members are more likely to occur in the near future?’
is being avidly pursued by many researchers. Schifanella
et al. proposed a metadata based approach for this prob-
lem [17]. Their idea is that members with similar interests
are more likely to be friends, so semantic similarity measures
among members based on their annotation metadata should
be predictive of social links. Liven-Nowell et al. explored
this question by using RWR [12]; the probability of a fu-
ture collaboration between authors is computed from RWR
proximity. Their approach is based on the observation that
the topology of the network can suggest many new collabo-
rations. For example, two researchers who are close in the
network will have many colleagues in common, and thus are
more likely to collaborate in the near future. They took the
RWR-based approach since it can capture the global struc-
ture of the graph. They showed that RWR provides better
link predictions than the random prediction approach.

Approximation method. Even though RWR is very useful,
one problem is its large CPU time. Sun et al. observed that
the distribution of RWR proximities is highly skewed. Based
on this observation, combined with the factor that many real
graphs have block-wise/partition structure, they proposed
an approximation approach for RWR [19]; they performed
RWR only on the partition that contains the query node.
All nodes outside the partition are simply assigned RWR
proximities of 0. In other words, their approach outputs a
local estimation of RWR proximities.

Tong et al. proposed a fast approximation solution for
RWR. They designed B LIN and its derivative, NB LIN
[22]. These methods take advantages of the block-wise struc-
ture and linear correlations in the adjacency matrix of real
graphs, using the Sherman-Morrison Lemma [16] and the
singular value decomposition (SVD). Especially for NB LIN,
they showed the proof of an error bound. The experimental
results showed that their methods outperformed the approx-
imation method of Sun et al. [19]. Their methods require
O(n2) space and O(n2) time. This is because their meth-
ods utilize O(n2) size matrices to approximate the adjacency
matrix for proximity computation.

3. PRELIMINARY
In this section, we formally define the notations and in-

troduce the background of this paper. Table 1 lists the main
symbols and their definitions.

Measuring the proximity of two nodes in a graph can be
achieved using RWR. Starting from a node, a RWR is per-
formed by iteratively following an edge to another node at
each step. Additionally, at every step, there is a non-zero
probability, c, of returning to the start node. Let p be a col-
umn vector where pu denotes the probability that the ran-
dom walk is at node u. q is a column vector of zeros with
the element corresponding to the starting node q set to 1,
i.e. qq = 1. Also let A be the column normalized adjacency
matrix of the graph. In other words, A is the transition
probability table where its element Auv gives the probabil-
ity of node u being the next state given that the current
state is node v. The steady-state, or stationary probabili-
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Table 1: Definition of main symbols.
Symbol Definition

q query node
K Number of answer nodes
n Number of nodes
m Number of edges
c the restart probability
p n×1 vector, pu is the proximity of node u
q n×1 vector, the q-th element 1 and 0 for others
A the column normalized adjacent matrix

ties for each node can be obtained by recursively applying
the following equation until convergence:

p = (1− c)Ap+ cq (1)

where the convergence of the equation is guaranteed [18].
The steady-state probabilities give us the long term visit rate
of each node given a bias toward query node q. Therefore,
pu can be considered as a measure of proximity of node u
with respect to node q.
This method needs O(mt) time where t is the number of

iteration steps. This incurs excessive CPU time for large
graphs, and a fast solution is demanded as illustrated by
the statement ‘its on-line response time is not acceptable in
real life situations’ made in a previous study [11]. It should
be emphasized that shortening response time is critical to
enhancing business success in real web applications 3.

4. PROPOSED METHOD
In this section, we explain the two main ideas underlying

K-dash. The main advantage of our approach is to exactly
and efficiently find top-k highest proximity nodes for RWR.
First, we give an overview of each idea and then a full de-
scription. Proofs of lemmas or theorems in this section are
shown in Appendix A.

4.1 Ideas behind Kdash
Our solution is based on the following two approaches:

Sparse matrices computation. The proximities for a query
node are the steady-state probabilities which are computed
by recursive procedures as described in Section 3. This ap-
proach requires high computation time because it computes
the proximities of all the nodes in the graph. Our idea is
simple; we compute the proximities of only selected nodes
enough to find the top-k nodes, instead of computing the
proximities of all nodes.
As described in Section 4.2.1, the proximities of selected

nodes are naively computed by the inverse matrix that can
be directly obtained from Equation (1). Therefore, if we
precompute and store this inverse matrix, we can get the
proximities efficiently. However, this approach is impractical
when the dataset is large, because it requires quadratic space
to hold the inverse matrix.
We introduce an efficient approach that can compute the

proximities from sparse matrices. In the precomputing pro-
cess, we reorder nodes and compute the inverse matrices
of the lower/upper triangulars obtained by LU decomposi-
tion as described in Section 4.2.2. A lower/upper triangular
matrix is a matrix where all the elements above/below the

3
http://www.keynote.com/downloads/Zona Need For Speed.pdf

main diagonal are zero. As a result, the inverse matrices
are sparse, and we can compute the proximities of the se-
lected nodes with low memory consumption by using the
adjacency-list representation [6].

This new idea has the following two major advantages be-
sides the one described above. First we can compute the
proximities exactly. This is because LU decomposition, un-
like SVD which is used in the previous methods [22], is not
an approximation method. The second advantage is that we
can compute the proximities efficiently. This is because we
use sparse matrices to compute the proximities.

Tree estimation. Although our sparse matrices approach
is able to compute the proximities of selected nodes, we
have the following two questions to find the top-k nodes: (1)
‘What nodes should be selected to compute the proximities
in the search process?’, and (2) ‘Can we avoid computing
the proximities of unselected nodes?’. The second approach
is designed to answer these two questions.

These questions can be answered by estimating what nodes
can be expected to have high/low proximities. Our pro-
posal exploits the following observations: the proximity of
a node declines as the number of hops from the query node
increases, and proximities of unselected nodes can be esti-
mated from computed proximities. Our search algorithm
first constructs a single breadth-first search tree rooted at
the query node. We compute the proximities of the top-k
nearest nodes from the root node to discover answer can-
didate nodes. We then estimate the proximities of unse-
lected nodes from the proximities of already selected nodes
to obtain the upper proximity bound. The time incurred
to estimate node proximity is O(1) for each node. In the
search process, if the upper proximity bound of a node gives
a score lower than the K-th highest proximity of the can-
didates nodes, the node cannot be one of the top-k highest
proximity nodes. Accordingly, unnecessary proximity com-
putations can be skipped.

This estimation allows us to find the top-k nodes exactly
while we prune unselected nodes. This means we can safely
discard unlikely nodes at low CPU cost. This estimation ap-
proach also allows us to automatically determine the nodes
for which we compute the proximities. This implies our ap-
proach avoids to have user-defined inner-parameters.

4.2 Sparse matrices computation
Our first approach is to obtain sparse inverse matrices to

compute the proximities of selected nodes efficiently. In this
section, we first describe how to compute the proximities
by inverse matrices. We then describe that obtaining the
sparse inverse matrices is an NP-complete problem, and we
then show our approximate approach for the problem.

4.2.1 Proximity computation
From Equation (1), we can obtain the following equation:

p = c{I− (1− c)A}−1q = cW−1q (2)

where I represents the identity matrix and W = I−(1−c)A.
This equation implies that we can compute the proximities
of selected nodes by obtaining the corresponding elements
in the inverse matrix W−1. However, this approach requires
high memory consumption. This is because the inverse ma-
trix W−1 would be dense even though the matrix W itself
is sparse [16] (In many real graphs, the number of edges is
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much smaller than the squared number of nodes [14]). That
is, this approach requires O(n2) space.
We utilize the inverse matrices of lower/upper triangu-

lars to compute the proximities in our approach. Formally,
the following equation gives the proximities for the query
node, where the matrix W is decomposed to LU by the LU
decomposition (i.e. W = LU).

p = cU−1L−1q (3)

Note that the matrices L−1 and U−1 are lower and upper
triangular, respectively.

4.2.2 Inverse matrices problem
As shown in Equation (3), if we precompute the matri-

ces L−1 and U−1, we can compute proximities of selected
nodes. However, this raises the following question: ‘Can the
matrices L−1 and U−1 be sparse if matrix W−1 is dense?’.
Our answer to this question is to compute the sparse ma-
trices L−1 and U−1 by reordering the columns and rows of
the sparse matrix A. But finding the node order in matrix
A that yields the sparse matrices is NP-complete.

Theorem 1 (Inverse matrices problem).
Determining the node order that minimizes non-zero ele-
ments in matrices L−1 and U−1 is NP-complete.

Because the inverse matrices problem is NP-complete,
we introduce an approximation to address this problem. Be-
fore we describe our approaches in detail, we show the ma-
trix elements of L−1 and U−1 can be represented by those of
L and U by forward/backward substitution [16] as follows:

L−1
ij =


0 (i < j)
1/Lij (i = j)

−1/Lii

∑i−1
k=j LikL

−1
kj (i > j)

(4)

U−1
ij =


0 (i > j)
1/Uij (i = j)

−1/Uii

∑j
k=i+1 UikU

−1
kj (i < j)

(5)

where the matrix elements of L and U can be represented
by those of W by Crout’s algorithm [16] as follows:

Lij =


0 (i < j)
1 (i = j)

1/Ujj

(
Wij −

∑j−1
k=1 LikUkj

)
(i > j)

(6)

Uij =


0 (i > j)
Wij (i ≤ j ∩ i = 1)

Wij −
∑i−1

k=1 LikUkj (i ≤ j ∩ i ̸= 1)
(7)

Equation (4), (5), (6), and (7) imply that elements of L−1,
U−1, L, and U are computed from the columns from left to
right, and within each column from top to bottom. For ex-
ample, element L−1

ij can be computed from the correspond-

ing upper/left elements of L and L−1, and element Lij can
be computed from the corresponding upper/left elements of
W, L, and U.
Our approaches are based on the following three observa-

tions in the above four equations: (1) elements L−1
ij and U−1

ij

would be zero if the corresponding upper/left elements of L
and U are zero, (2) upper/left elements of L and U would
be zero if the corresponding upper/left elements of W are
zero, and (3) the upper/left elements of W would be zero
if the corresponding upper/left elements of A are zero since
A = (I − W)/(1 − c). That is, we can effectively compute
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Figure 1: Reordering methods.

the sparse inverse matrices by letting upper/left elements of
matrix A be zero.

We introduce the following three approximation solutions
against the inverse matrices problem:

Degree reordering. In this approach, we arrange nodes of
the given graph in ascending order of degree (the number
of edges incident to a node) and rename them by the order.
Low degree nodes have few edges, and the upper/left ele-
ments of corresponding matrix A are expected to be 0 with
this approach.

Cluster reordering. This approach first divides the given
graph into κ partitions by Louvain Method [3], and it ar-
ranges nodes according to the partitions. Note that the
number of partitions, κ, is automatically determined by Lou-
vain Method. It then creates new empty κ+1-th partition.
Finally, if a node of a partition has an edge to another par-
tition, it rearranges the node to the κ+1-th partition. As a
result, matrix A would be a doubly-bordered block diagonal
matrix [16] as shown in Figure 1-(2); elements correspond
to cross-partitions edges would be 0 for κ partitions 4.

We use the Louvain Method because it is an efficient ap-
proach 5 and it utilizes the modularity [3] as the quality
measure for partitioning. The modularity assesses the fit-
ness of node partitioning, in the sense that there are many
edges within a partition and only a few between them. That
is, Louvain Method reduces the number of cross-partition
edges. As a result, this approach should yield more sparse
inverse matrices.

Hybrid reordering. This approach is a combination of the
degree and the cluster reordering. That is, we arrange nodes
by cluster reordering, and we then sort nodes in each parti-
tion by their degree. This approach makes matrix A have
no cross-partition edges for κ partitions, and the upper/left
elements of each partition are expected to be 0.

Figure 1 illustrates matrix A obtained by above each ap-
proximation approach for the inverse matrices problem,
where zero and non-zero elements are shown in white and
gray, respectively. Algorithm 1, 2, and 3 in Appendix B
show the details of degree reordering, cluster reordering, and
hybrid reordering, respectively.

Owing to these three approaches, we can effectively obtain
sparse matrices L and U, and then sparse matrices L−1 and
U−1. As demonstrated in Section 6, these approaches can
drastically reduce the memory needed to hold matrices L−1

and U−1; they have practically linear space complexity in
the size of edges in the given graph by using the adjacency-
list representation [6].

4
Doubly-bordered block diagonal matrix D is defined by Duv =

0, ∀{(u, v)|P (u) ̸= P (v), P (u) ̸= κ + 1, P (v) ̸= κ + 1} where P (u)
is the partition number of node u.
5
For all data in our experiments, Louvain Method can compute par-

titions in a few seconds.

445



4.3 Tree estimation
We introduce an algorithm for estimating the proximities

of unselected nodes in the search process effectively and ef-
ficiently. In this approach, a node is visited one by one, and
we estimate its proximity. If the estimated proximity is not
lower than the K-th highest proximity of candidate nodes,
then the node is selected to compute the exact proximity.
Otherwise we skip subsequent exact proximity computations
of visited nodes. This approach, based on a single breadth-
first search tree, yields the upper bounding score estimations
of visited nodes. In this section, we first give the notations
for the estimation, next we formally introduce the estima-
tion, and then our approach to incremental estimation in
the search process.

4.3.1 Notation
In the search process, we construct a single breadth-first

search tree that is rooted on the query node; thus it forms
layer 0. The direct neighbors of the root node form layer 1.
All nodes that are i hops from the root node form layer i.
The set of nodes in the graph is defined as V , and the set of

selected (i.e., exact proximity computed) nodes is defined as
Vs. The layer number of node u is denoted as lu. Moreover,
the set of selected nodes prior node u whose layer number is
lu is defined as Vlu(u), that is Vlu(u) = {v : (v ∈ Vs)∩ (lv =
lu)}. Amax is the maximum element in matrix A, that is
Amax = max{Aij : i, j ∈ V }. Amax(u) is the maximum
element from node u, that is Amax(u) = max{Aiu : i ∈ V }.
Note that both Amax and Amax(u) can be precomputed.

It requires O(1) space to hold Amax, and it requires O(n)
space to hold Amax(u) of all n nodes.

4.3.2 Proximity estimation
We describe the definition of the proximity estimation in

this section. We also show that the estimation gives a valid
upper proximity bound. We estimate the proximity of node
u via breadth-first search tree as follows:

Definition 1 (Proximity estimation). If node u is
not the query node (i.e. u ̸= q), the following equation gives
the definition of proximity estimation of node u, p̄u, to skip
proximity computation in the search process:

p̄u = c′

 ∑
v∈Vlu−1(u)

pvAmax(v) +
∑

v∈Vlu (u)

pvAmax(v)

+

(
1−

∑
v∈Vs

pv

)
Amax

} (8)

where c′ = (1− c)/(1−Auu + cAuu).
If node u is the query node (i.e. u = q), p̄u = 1.

It needs O(n) time to compute the estimation for each
node if we compute it according to Definition 1. This is
because Vlu−1(u), Vlu(u), and Vs all have size of O(n). We,
however, compute the estimation in O(1) time as described
in Section 4.3.3.
To show the property of our proximity estimation, we in-

troduce the following lemma:

Lemma 1 (Proximity estimation). p̄u ≥ pu holds
for node u in the given graph.

This lemma enables us to find the answer nodes exactly.

The determination of the root node of the tree and the
selection of proximity computation nodes are important in
achieving efficient pruning. We determine the query node
as the root node, and we visit and select nodes in increas-
ing order of layer number. This is because: (1) a few nodes
which are just a few hops from the query node have high
proximities, and (2) we can estimate the proximities of vis-
ited nodes from those of selected nodes (see Definition 1).
As a result, we can effectively estimate the proximities of
visited nodes.

If the estimated proximity of a visited node is lower than
theK-th highest proximity of the candidate nodes, we termi-
nate the search process without computing the estimations
of other unvisited and unselected nodes. However, this raise
the following question: ‘Can we find the answer nodes ex-
actly if we terminate the search process?’. To answer this
question, we show the following lemma:

Lemma 2 (Layer search). If nodes are visited and
selected in ascending order of layers, p̄u ≥ p̄v holds for node
u and v such that lu ≤ lv and u, v ̸= q.

Lemma 2 implies that the estimated proximity of a vis-
ited node can not be lower than that of an unvisited and
unselected node on the same/lower layer. Therefore, if the
estimated proximity of a visited node is lower than the K-th
highest proximity of the candidate nodes, all other unvisited
and unselected nodes have lower proximities than the K-th
highest proximities of the candidate nodes. Thus we can
safely terminate the search process.

4.3.3 Incremental computation
As described in Section 4.3.2, by Definition 1, O(n) time is

required to compute the estimated proximity for each node.
In this section, we show our approach to efficiently compute
the estimated proximity. We assume that node u is visited
and selected immediately after node u′ in the search process.
In other words, we visit and select these nodes in order u′

and u. In this section, let p̄u,1, p̄u,2, and p̄u,3 be first, second,
and third terms in Equation (8), respectively. That is, p̄u =
c′(p̄u,1 + p̄u,2 + p̄u,3).

We compute the estimation of u as follows:

Definition 2 (Incremenatal update). For the given
graph and query node, if u′ ̸= q, we compute the first, sec-
ond, and third terms of the estimation of node u from those
of u′ in the search process as follows:

p̄u,1 =

{
p̄u′,1 if l(u) = l(u′)
p̄u′,2 + pu′Amax(u

′) otherwise

p̄u,2 =

{
p̄u′,2 + pu′Amax(u

′) if l(u) = l(u′)
0 otherwise

p̄u,3 = (p̄u′,3/Amax − pu′)Amax

(9)

If u′ = q, p̄u,1 = pqAmax(q), p̄u,2 = 0, and p̄u,3 = (1 −
pq)Amax(u).

We provide the following lemma for the incremental com-
putation in the search process:

Lemma 3 (Incremenatal update). For node u, the
estimated proximity can be exactly computed at the cost of
O(1) time by Definition 2.

This property enables K-dash to efficiently compute the
estimated proximity in the search process.
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4.4 Search algorithm
Even though a detailed search algorithm of K-dash is de-

scribed in Algorithm 4 in Appendix B.2, we outline our
search algorithm as follows to make the paper self-contained:

1. We construct a breadth-first search tree rooted at the
query node.

2. We visit a node in ascending order of tree layer and
compute its estimated proximity by Definition 2.

3. If the estimated proximity of the visited node is not
lower than the K-th proximity of the candidate nodes,
the node can be an answer node. Therefore, we com-
pute the proximity of the node and return to step 2.

4. Otherwise, we terminate the search process since the
node and other unselected nodes can not be answer
nodes (Lemma 2).

5. THEORETICAL ANALYSIS
This section provides a theoretical analysis that confirms

the accuracy and complexity of K-dash. Let n be the num-
ber of nodes. Proofs of each theorem in this section are
shown in Appendix A.
We show that K-dash finds the top-k highest proximity

nodes accurately (without fail) as follows:

Theorem 2 (Exact search). K-dash guarantees the
exact answer in finding the top-k highest proximity nodes.

We discuss the complexity of the existing approximate
algorithm B LIN and NB LIN [22] and then that of K-dash.

Theorem 3 (The approximate algorithm). B LIN
and NB LIN both require O(n2) space and O(n2) time to find
the top-k highest proximity nodes.

Theorem 4 (Space complexity of K-dash). K-dash
requires O(n2) space to find the top-k highest proximity nodes.

Theorem 5 (Time complexity of K-dash). K-dash
requires O(n2) time to find the top-k highest proximity nodes.

Theorems 3, 4, and 5 show that K-dash has, in the worst
case, the same space and time complexities as the previ-
ous approximate approaches. However, the space and time
complexities of K-dash is, in practice, O(n+m), which are
smaller than those of the previous approximate approaches.
This is because the number of non-zero elements in the in-
verse matrices is O(m) as shown in the next section. In the
next section, we confirm the effectiveness of our approaches
by presenting the results of extensive experiments.

6. EXPERIMENTAL EVALUATION
We performed experiments to demonstrate K-dash’s ef-

fectiveness in a comparison to NB LIN by Tong et al. [22]
and Basic Push Algorithm by Gupta et al. [7]. NB LIN
was selected since, as reported in [22], it outperforms the
iterative approach and the approximation approach by Sun
et al. [19], and it yields similar results to B LIN, which
was also proposed by by Tong et al., in all of our datasets.
NB LIN has one parameter: the target rank of the low-rank
approximation. We used SVD as the low-rank approxima-
tion as proposed by Tong et al. Note that NB LIN can com-
pute proximities quickly at the expense of exactness. Basic
Push Algorithm is an approach that can find top-k nodes

efficiently for Personalized PageRank. The definitions of
RWR and Personalized PageRank are very similar 6. Even
though Avrachenkov et al. also proposed an efficient ap-
proach for Personalized PageRank based top-k search [2],
we compared K-dash to Basic Push Algorithm. This is be-
cause Basic Push Algorithm uses precomputed proximities
of hub nodes to estimate the upper bounding proximities
[7]; this implies Basic Push Algorithm theoretically guar-
antees that the recall of its answer result is always 1 while
the approach of Avrachenkov et al. does not. Basic Push
Algorithm is an approximate approach and the number of
answer nodes yielded by this approach can be more than K.

Our experiments will demonstrate that:

• Efficiency: K-dash can outperform the approximate
approach by several order of magnitude in terms of
search time for the real datasets tested (Section 6.1).

• Exactness: Unlike the approximate approach, which
sacrifices accuracy, K-dash can find the top-k nodes
exactly (Section 6.2).

• Effectiveness: The components of K-dash, sparse ma-
trices computation and tree estimation, are very effec-
tive in identifying top-k nodes (Section 6.3).

The results of the application of K-dash to a real dataset
are reported in Appendix D.

We used the following five public datasets in the exper-
iments: Dictionary, Internet, Citation, Social, and Email.
The details of datasets are reported in Appendix C. In this
section, K-dash represents the results of finding the top five
nodes with the hybrid reordering approach. We set the
restart parameter, c, at 0.95 as in the previous works [22,
8]. We evaluated the search performance through wall clock
time. All experiments were conducted on a Linux quad 3.33
GHz Intel Xeon server with 32GB of main memory. We
implemented our algorithms using GCC.

6.1 Efficiency of Kdash
We assessed the search time needed for K-dash, NB LIN,

and Basic Push Algorithm. Figure 2 shows the results. The
results of K-dash are referred to as K-dash(K), where K
is the number of answer nodes. We set the target rank of
SVD to 100 and 1, 000 (referred to as NB LIN(100) and
NB LIN(1,000)). Note that the number of answer nodes,
K, has no impact in NB LIN since it computes approximate
proximity scores for all nodes. BPA(K) indicates the results
of Basic Push Algorithm where K is the number of answer
nodes and the number of hub nodes is set to 1, 000.

This figure shows that our method is much faster than the
previous approaches under all conditions examined. Specifi-
cally, K-dash is more than 68, 000 times faster than NB LIN
and 690, 000 times faster than Basic Push Algorithm. As
described in Section 5, NB LIN takes O(n2) time to com-
pute proximities. Even though K-dash theoretically requires
O(n2) time as shown in Lemma 5, it does not, in practice,
take O(n2) time to find the answer nodes. This is because
the number of non-zero elements in the inverse matrices is
O(m) in practice as shown in Section 6.3.1. That is, the time
complexity of K-dash is, in practice, O(n + m), because it
takes O(n+m) time for breadth-first tree construction and

6
In Personalized PageRank, a random particle returns to the start

node set, not the start node.
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ordering approaches.

O(m) time for proximity computations. Therefore, our ap-
proach can find the answer nodes more efficiently than the
previous approaches.

6.2 Exactness of the search results
One major advantage of K-dash is that it guarantees the

exact answer, but this raises the following simple question:
‘How successful are the approximate approaches in providing
the exact answer even though it sacrifices exactness?’.
To answer this question, we conducted comparative exper-

iments. We used precision as the metric of accuracy. Pre-
cision is the fraction of answer nodes among top-k results
by each approach that match those of the original iterative
algorithm. Figure 3 shows the precision and Figure 4 shows
the wall clock time. In this experiment, we used various
target rank setting and various number of hub nodes for
NB LIN and Basic Push Algorithm, respectively. We used
Dictionary as the dataset in these experiments.
As we can see from Figure 3, the precision of K-dash is 1

because it finds the top-k nodes without fail. NB LIN, on
the other hand, has lower precision. Figure 4 shows that
K-dash greatly reduces the computation time while it guar-
antees the exact answer. The efficiency of NB LIN depends
on the parameters used.
And Figure 3 and Figure 4 show that NB LIN forces a

trade-off between speed and accuracy. That is, as the target
rank decreases, the wall clock time decreases but the preci-
sion decreases. NB LIN does not guarantee that the answer
results are accurate, and so can miss the exact top-k nodes.
K-dash also computes estimate proximities, but unlike the
approximate approach, K-dash does not discard any answer
nodes in the search process.
Figure 3 shows that the precision of Basic Push Algo-

rithm is almost constant against the number of hub nodes.
Figure 4 indicates that the search speed of the approach
increases as the number of hub nodes increases. This is
because Basic Push Algorithm utilizes precomputed prox-
imities of hub nodes to estimate the proximities of a query
node. Figures 3 and 4 show that our approach is much faster
than the previous approaches while guaranteeing exactness.

6.3 Effectiveness of each approach
In the following experiments, we examine the effective-

ness of the two core techniques of K-dash: sparse matrices
computation and tree estimation.

6.3.1 Reordering approach
K-dash utilizes the inverse matrices of lower/upper trian-

gulars obtained by LU decomposition to compute the prox-

imities of selected nodes in the search process. The number
of non-zero elements in these inverse matrices is a factor
that influences the search and memory cost. We take three
approaches to reduce the number of non-zero elements as
described in Section 4.2.2. Accordingly, we evaluated the
ratio of the number of non-zero elements to that of edges
in each reordering approach. Figure 5 shows the results.
In this figure, Random represents the results achieved when
nodes are arranged in random order.

As we can see from the figure, our approaches (Degree,
Cluster, and Hybrid reordering) yield many fewer non-zero
elements than random reordering. This figure also indicates
that our approach makes the number of non-zero elements
near to that of the edges of the given graph in all datasets
if we adopt Hybrid reordering approach. That is, the space
complexity of K-dash is O(m). Owing to the small size of
the inverse matrices, K-dash achieves excellent search per-
formance as shown in Figures 2.

6.3.2 Precomputation time
Our approach uses the inverse matrices of lower/upper

triangulars in the search process. That is, these matrices
must be computed in the precomputing process. Figure 6
shows the process time in the precomputing process.

Figure 6 indicates that our reordering approach can en-
hance the process time; it is up to 140 times faster than the
Random reordering approach. There are two reasons for this
result. The first is that the inverse matrices have a sparse
data structure as shown in Figure 5. The second is that
elements of the inverse matrices which correspond to cross
partition edges between 1st to κ-th partition are zero due
to Equation (4), (5), (6), and (7) 7. Therefore we can effec-
tively skip the computations of these elements. As a result,
we can efficiently compute the inverse matrices. Additional
experiments confirmed that our approach needs less precom-
putation time due to its sophisticated sparse data structure
than the other approaches. For example, NB LIN needs
several weeks to compute SVD because SVD requires O(n3)
time, while our approach needs several hours.

6.3.3 Tree estimation
As mentioned in Section 4.3, K-dash skips unnecessary

proximity computations in the search process. To show the
effectiveness of this idea, we removed the pruning technique
from K-dash, and reexamined the wall clock time. Figure 7

7
For Dictionary, the improvement yielded by our approach was

marginal. This is because the Louvain Method divides this dataset
into one large partition and many small partitions which limits the
effectiveness of our approach.
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shows the result. K-dash without the pruning technique is
abbreviated to Without pruning in this figure.
The results show that the pruning technique can provide

efficient search for all datasets used; these results indicate
that our approach is effective for various edge distributions.
K-dash is up to 1, 020 times faster if the pruning method
is used. This is because we can effectively terminate the
search process with the estimation technique. These results
(compare Figure 2 to Figure 7) also show that, by , K-dash
can find the top-k nodes faster than NB LIN even if K-dash
computes the proximities of all nodes. To evaluate the effec-
tiveness of our approach for various proximity distributions,
we subjected it to additional evaluations using various val-
ues of the restart probability c. The results confirmed that
our approach can efficiently find the top-k nodes under all
conditions examined; we can effectively prune unnecessary
proximity computations.

7. CONCLUSIONS
This paper addressed the problem of finding the top-k

nodes for a given node efficiently. As far as we know, this
is the first study to address the top-k node search problem
with the guarantee of exactness. Our proposal, K-dash, is
based on two ideas: (1) It computes the proximities of se-
lected nodes efficiently by use of inverse matrices, and (2)
It skips unnecessary proximity computations in finding the
top-k nodes, which greatly improves overall efficiency. Our
experiments show that K-dash works as expected; it can
find the top-k nodes at high speed; specifically, it is signif-
icantly faster than existing approximate methods. Top-k
search based on RWR is fundamental for many applications
in various domains such as image captioning, recommender
systems, and link prediction. The proposed solution allows
the top-k nodes to be detected exactly and efficiently, and so
will help to improve the effectiveness of future applications.

8. REFERENCES
[1] I. Antonellis, H. Garcia-Molina, and C.-C. Chang.

Simrank++: Query Rewriting through Link Analysis of the
Click Graph. PVLDB, 1(1):408–421, 2008.

[2] K. Avrachenkov, N. Litvak, D. Nemirovsky, E. Smirnova,
and M. Sokol. Quick Detection of Top-k Personalized
PageRank Lists. In WAW, pages 50–61, 2011.

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast Unfolding of Communities in Large
Networks. J. Statistical Mechanics: Theory and
Experiment, 2008(10), 2008.

[4] E. P. F. Chan and H. Lim. Optimization and Evaluation of
Shortest Path Queries. VLDB J., 16(3):343–369, 2007.

[5] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang. Fast
Graph Pattern Matching. In ICDE, pages 913–922, 2008.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 2009.

[7] M. S. Gupta, A. Pathak, and S. Chakrabarti. Fast
Algorithms for Top-k Personalized PageRank Queries. In
WWW, pages 1225–1226, 2008.

[8] J. He, M. Li, H. Zhang, H. Tong, and C. Zhang.
Manifold-Ranking Based Image Retrieval. In ACM
Multimedia, pages 9–16, 2004.

[9] G. Karypis, V. Kumar, and V. Kumar. Multilevel k-way
Partitioning Scheme for Irregular Graphs. Journal of
Parallel and Distributed Computing, 48:96–129, 1998.

[10] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and
S. Tao. Neighborhood Based Fast Graph Search in Large
Networks. In SIGMOD Conference, pages 901–912, 2011.

[11] I. Konstas, V. Stathopoulos, and J. M. Jose. On Social
Networks and Collaborative Recommendation. In SIGIR,
pages 195–202, 2009.

[12] D. Liben-Nowell and J. M. Kleinberg. The Link Prediction
Problem for Social Networks. In CIKM, pages 556–559,
2003.

[13] D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov.
Accuracy Estimate and Optimization Techniques for
SimRank computation. PVLDB, 1(1):422–433, 2008.

[14] M. Newman, A.-L. Barabasi, and D. J. Watts. The
Structure And Dynamics of Networks. Princeton University
Press, 2006.

[15] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu.
Automatic Multimedia Cross-modal Correlation Discovery.
In KDD, pages 653–658, 2004.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes 3rd Edition. Cambridge
University Press, 2007.

[17] R. Schifanella, A. Barrat, C. Cattuto, B. Markines, and
F. Menczer. Folks in Folksonomies: Social Link Prediction
from Shared Metadata. In WSDM, pages 271–280, 2010.

[18] G. Strang. Introduction to Linear Algebra. Wellesley
Cambridge Press, 2009.

[19] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos.
Neighborhood Formation and Anomaly Detection in
Bipartite Graphs. In ICDM, pages 418–425, 2005.

[20] Y. Sun, J. Han, X. Yan, P. Yu, and T. Wu. PathSim: Meta
Path-Based Top-K Similarity Search in Heterogeneous
Information Networks. PVLDB, 4(1), 2011.

[21] H. Tong and C. Faloutsos. Center-Piece Subgraphs:
Problem Definition and Fast Solutions. In KDD, pages
404–413, 2006.

[22] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast Random Walk
with Restart and Its Applications. In ICDM, pages
613–622, 2006.

[23] M. Yannakakis. Computing the Minimum Fill-In is
NP-Complete. SIAM. J. on Algebraic and Discrete
Methods, 2(1):77–79, 1981.

[24] P. Zhao, J. X. Yu, and P. S. Yu. Graph Indexing: Tree +
Delta >= Graph. In VLDB, pages 938–949, 2007.

[25] Y. Zhou, H. Cheng, and J. X. Yu. Graph Clustering Based
on Structural/Attribute Similarities. PVLDB,
2(1):718–729, 2009.

449



APPENDIX
A. PROOFS
In this section, we show the proofs of all lemmas and the-

orems in this paper.

A.1 Theorem 1
Proof. We prove the theorem by a reduction from the

elimination ordering problem [23]. An instance of the
elimination ordering problem consists of a graph, node
elimination ordering, and the chordal graph that can be ob-
tained by the graph and the elimination ordering. Given
the graph, the elimination ordering problem finds the
minimum number of edges whose addition makes the graph
chordal by changing node ordering.
We transform an instance of the elimination ordering

problem to an instance of the inverse matrices problem as
follows: for the graph of the elimination ordering prob-
lem, we create matrix A. That is, we make the adjacency-
list matrix from the graph. For the node elimination order-
ing, we create node ordering, and we create matrix L−1 /
U−1 for the chordal graph.
Given this mapping, it is easy to show that there exists

a solution to the elimination ordering problem with the
minimum number of edge additions if and only if there exists
a solution to the inverse matrices problem with the min-
imum increase of non-zero elements in the inverse matrices.
The inverse matrices problem is trivial in NP. 2

A.2 Lemma 1
Proof. If node u is not the query node, the following

equation holds from Equation (1):

pu = (1− c)(Au1p1 +Au2p2 + . . .+Auupu + . . .+Aunpn)

Since more than two upper/lower layer nodes can not be
directly connected to node u in the breadth-first search tree,
if the set of directly neighboring nodes (adjacent nodes) of
node u is Nu, pu is represented as follows:

pu = c′
∑
v ̸=u

Auvpv = c′
∑

v∈Nu

Auvpv

≤ c′

 ∑
v∈{Vlu−1(u)+Vlu (u)}

Auvpv +
∑

v∈V \Vs

Auvpv


Since pv is probability,

∑
v∈V \Vs

pv = 1 −
∑

v∈Vs
pv holds.

Therefore,

pu ≤ c′

 ∑
v∈Vlu−1(u)

pvAmax(v) +
∑

v∈Vlu (u)

pvAmax(v)

+

(
1−

∑
v∈Vs

pv

)
Amax

}
= p̄u

If node u is the query node, it is obvious p̄u ≥ pu since
p̄u = 1 and 0 ≤ pu ≤ 1. Thus the inequality holds. 2

Example. Let node u1 be a query node in a directed
graph in Figure 8. As described in Section 4.3, node/layer
numbers of all the nodes are assigned by breadth-first search
tree; node u1 forms layer 0, node u2 and u3 form layer 1,
node u4 and u5 form layer 2, and node u6 and u7 form layer
3. And we assume that we visit and select nodes in ascend-
ing order of their node number. For node u5, the following
equation holds from Equation (1) since A51, A53, A57 = 0:

6
u

4
u

3
u

2
u

5
u

1
u

7
u

Figure 8: An example graph.

pu5 = c′(A51p1 +A52p2 +A53p3 +A54p4 +A56p6 +A57p7)

= c′(A52p2 +A54p4 +A56p6)

Since the proximities of node u1, u2, u3 and u4 are already
computed before node u5 and node u6, the following equa-
tion holds:

pu5≤c
′(p2Amax(u2)+p4Amax(u4)+(1−p1−p2−p3−p4)Amax)= p̄u5

Note that our estimation approach takes into account edges
of selected nodes and unvisited nodes as Amax(u) and Amax,
respectively. For example, non-tree edges A54 and A56 are
taken as Amax(u4) and Amax, respectively.

A.3 Lemma 2
Proof. If lu = lv, it is obvious that p̄u = p̄v. If lu = lv−1,

the following inequality holds since Vlv (v) = ∅:

p̄v = c′

 ∑
w∈Vlu (u)

pwAmax(w) +

(
1−

∑
w∈Vs

pw

)
Amax

 ≤ p̄u

And if lu ≥ lv − 2, the following inequality similarly holds
since Vlv (v) = ∅ and Vlv−1(v) = ∅:

p̄v = c′
(
1−

∑
w∈Vs

pw

)
Amax ≤ p̄u

which completes the proof. 2

A.4 Lemma 3
Proof. We first prove that, if u′ = q, p̄u can be exactly

computed from p̄u,1, p̄u,2, and p̄u,3. In this case, Vlu−1(u) =
q, Vlu(u) = 0, and Vs = q. Therefore, it is obvious that
c′(p̄u,1 + p̄u,2 + p̄u,3) = p̄u holds by Definition 2.

We next prove that, if u′ ̸= q, the estimate proximity of
node u can be exactly computed from that of node u′.

If lu = lu′ , Vlu−1(u) = Vlu′−1(u
′) and Vlu(u) = Vl′u(u

′) +

u′. Therefore,

p̄u,1 − p̄u′,1 =
∑

v∈{Vlu−1(u)−Vl
u′−1(u

′)}

pvAmax(v) = 0

and

p̄u,2 − p̄u′,2 =
∑

v∈{Vlu (u)−Vl′u
(u′)}

pvAmax(v) = pu′Amax(u
′)

Otherwise (i.e. lu = lu′ +1), Vlu−1(u) = Vlu′ (u
′)+u′ and

Vlu(u) = ∅. Therefore,

p̄u,1 =
∑

v∈{Vl
u′ (u

′)+u′}

pvAmax(v) = p̄u′,2 + pu′Amax(u
′)

and

p̄u,2 =
∑
v∈∅

pvAmax(v) = 0
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Since node u is visited immediately after node u′,

(p̄u′,3 − p̄u,3)/Amax = pu′

Therefore, p̄u,1, p̄u,2, and p̄u,3 can be exactly computed
from p̄u′,1, p̄u′,2, and p̄u′,3, respectively.
We finally prove that it takes O(1) time to compute p̄u,1,

p̄u,2, and p̄u,3 in the search process. If u′ = q, p̄u,1, p̄u,2,
and p̄u,3 are defined by Definition 2. As described in Sec-
tion 4.3.1, both Amax and Amax(u) can be precomputed.
p̄u′,1, p̄u′,2, p̄u′,3, and pu′ are already computed before com-
puting p̄u in the search process if u′ ̸= q. This completes
the proof. 2

A.5 Theorem 2
Proof. Let θ be the K-th highest proximity among the

candidate nodes in the search process. And let θK be the
K-th highest proximity among the answer nodes (i.e. θK is
the lowest proximity among the answer nodes).
We first prove that θ is monotonic non-decreasing in the

search process of K-dash. To find the answer nodes in the
search process, we first set θ at 0 and set the dummy nodes
as the candidates. We maintain the candidate as the best
result; when we find a node with higher proximity, its prox-
imity is greater than θ, the candidate is replaced by the new
node (see Algorithm 4). This makes θ higher. Therefore, θ
keeps increasing in the search process.
In the search process, since θ is monotonic non-decreasing

and θK ≥ θ, the estimate proximities of answer nodes are
never lower than θ (Lemma 1). The algorithm discards a
node if (1) its estimated proximity is lower than θ, or (2) its
upper/same layer unselected node has estimated proximity
lower than θ. Since the estimated proximity of a node can
not be lower than that of a node on the same or lower layer
(Lemma 2), the answer nodes can never be pruned during
the search process. 2

A.6 Theorem 3
Proof. We first prove that B LIN and NB LIN [22] both

need O(n2) space. The off-line process of B LIN first par-
titions the adjacency matrix by METIS [9], and then de-
composes the matrix into the within-partition edge matrix
and the cross-partition edge matrix. It next performs low-
rank approximation for the cross-partition edge matrix and
obtains two orthogonal matrices and one diagonal matrix.
It then computes the product of the within-partition edge
matrix and the orthogonal matrices.
The off-line process of NB LIN first performs low-rank

approximation for the adjacency matrix and obtains two
orthogonal matrices and one diagonal matrix. It then com-
putes the product of these matrices.
Both B LIN and NB LIN hold the matrix product and

two orthogonal matrices to compute the proximities. The
matrix product and orthogonal matrices have size of O(n2).
Therefore, B LIN and NB LIN both require O(n2) space.
Next, we prove that B LIN and NB LIN both need O(n2)

time. They compute the proximities of nodes by multiplying
the vector q, the matrix product, and orthogonal matrices.
Even though the size of the vector q is O(n), that of the ma-
trix product and orthogonal matrices is O(n2). Therefore,
B LIN and NB LIN both require O(n2) time. 2

Algorithm 1 Degree reordering
Input: A, the column normalized adjacent matrix
Output: A′, the reordered matrix of A
1: arrange nodes in ascending order of their degrees;
2: compute matrix A′ by interchanging the rows and columns of

matrix A by the degree order;
3: return A′;

Algorithm 2 Cluster reordering
Input: A, the column normalized adjacent matrix
Output: A′, the reordered matrix of A
1: divide nodes into κ partitions P1, P2, . . . , Pκ by Louvain method;
2: create new partition Pκ+1 = ∅;
3: for i := 1 to κ do
4: remove nodes whose edges cross more than two partitions from

partition Pi;
5: append the removed nodes to Pκ+1;
6: end for
7: compute matrix A′ by interchanging the rows and columns of

matrix A by the partitions;
8: return A′;

A.7 Theorem 4
Proof. To compute the estimation, K-dash holds the

maximum elements of the matrix A, the previous estimated
proximity, and the previous proximity. It needs O(n) space
to hold these values. K-dash keeps the inverse matrices to
compute the proximities. The number of non-zero elements
of these matrices is O(n2) in the worst case. Therefore, it
requires O(n2) space to keep the inverse matrices. There-
fore, our approach requires O(n2) space to find top-k highest
proximity nodes. 2

A.8 Theorem 5
Proof. To find the answer nodes, K-dash first constructs

the breadth-first search tree, and computes the estimated
proximity of the visited node. It next computes the proxim-
ity of the node if the node is not pruned by the estimation.
K-dash needs O(n+m) time to construct the tree and O(n)
time if it can not prune any nodes by the estimation. This
is because it takes O(1) time to compute the estimation for
each node (Lemma 3). K-dash needs O(n2) times to com-
pute the proximities of all nodes since the inverse matrices
have size of O(n2) in the worst case. So K-dash needs O(n2)
time to find the top-k highest proximity nodes. 2

B. ALGORITHMS
In this section, we show the algorithms for reordering ap-

proaches and K-dash.

B.1 Reordering approach
We interchange the rows and columns of matrix A to re-

duce the number of non-zero elements in the inverse matri-
ces. Since the inverse matrices problem is NP-complete,
we take three approximation solutions to the problem: de-
gree reordering, cluster reordering, and hybrid reordering.

Algorithm 1 depicts our degree reordering approach. This
approach reduces non-zero elements by arranging low de-
gree nodes to the upper/left elements in matrix A. It first
computes the degrees of all nodes and arranges the nodes
according to their degrees (line 1). It then computes the
reordered matrix by the degree order (line 2).
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Algorithm 3 Hybrid reordering
Input: A, the column normalized adjacent matrix
Output: A′, the reordered matrix of A
1: divide nodes into κ + 1 partitions P1, P2, . . . , Pκ+1 by cluster

reordering;
2: for i := 1 to κ + 1 do
3: arrange nodes in the i-th partition in ascending order of their

degrees;
4: end for
5: compute matrix A′ by interchanging the rows and columns of

matrix A by the partitions and the degree order;
6: return A′;

Algorithm 4 K-dash
Input: q, the query node

K, the number of answer nodes
L−1, the inverse matrix of L
U−1, the inverse matrix of U

Output: Va, the set of answer nodes
1: θ = 0;
2: Vs = ∅;
3: Va = ∅;
4: append K dummy nodes to Va;
5: compute the breadth-first search tree of node q;
6: while Vs ̸= V do
7: u := argmin(lv|v ∈ V \Vs);
8: compute the estimate proximity of node u, p̄u;
9: if p̄u < θ then
10: return Va;
11: else
12: compute the proximity, pu, by L−1 and U−1;
13: if pu > θ then
14: v := argmin(pw|w ∈ Va);
15: remove node v from Va;
16: append node u to Va;
17: θ := min(pw|w ∈ Va);
18: end if
19: end if
20: append node u to Vs;
21: end while
22: return Va;

We show our cluster reordering approach in Algorithm 2.
It reduces non-zero elements in the inverse matrices by trans-
ferring nodes whose edges cross partitions into the κ+1-th
partition. It first partitions the graph into κ partitions by
Louvain method (line 1). It checks each node as to whether
the node has any cross-partition edges. If the node has cross-
partition edges, it transfers the node to κ + 1-th partition
(lines 3-6). It finally computes the reordered matrix by the
partitions (line 7).
Algorithm 3 shows our hybrid reordering approach. It

combines the above two approaches. It first obtains the
reordered matrix by the cluster reordering approach (line
1). It then arranges nodes in each partition by their degrees
(line 2-4). It finally computes the reordered matrix by the
partitions and the degree order (line 5).

B.2 Search algorithm
Our main approach to finding the answer nodes is to com-

pute the proximities of selected nodes by the inverse matri-
ces, and to use the estimated proximities to skip unnecessary
proximity computations.
Algorithm 4 shows the search algorithm that efficiently

finds K highest proximity nodes for the query node. In this
algorithm, θ and Va indicate the K-th highest proximity
among the candidate nodes and the set of candidate/answer
nodes, respectively.
In the search process, K-dash first sets the candidate nodes

by appending K dummy nodes where the proximities of
the dummy nodes are all 0 (line 4), it then constructs the

breadth-first search tree (line 5). K-dash then visits nodes
according to the tree layer one by one (line 7), and com-
putes the estimated proximity of each node (line 8). If the
estimated proximity of the visited node is lower than θ, the
node cannot be the answer node (Lemma 1), and the prox-
imities of all other unselected nodes cannot be higher than θ
(Lemma 2). Therefore it terminates the search process (lines
9-10). Otherwise, the visited node may be an answer node.
Thus it computes the proximity of the node (line 12). If the
computed proximity is higher than θ, it updates the candi-
date set, Va, and θ (lines 13-18). It returns the candidate
set, Va, as the answer nodes set (line 22).

As shown in Algorithm 4, this algorithm automatically
terminates the process if the estimated proximity is lower
than θ. That is, this algorithm does not require any user-
defined inner-parameters.

C. EXPERIMENTAL DATASETS
We used the following five public datasets:

• Dictionary 8: This dataset was taken from word net-
work in FOLDOC 9. FOLDOC is a famous on-line dic-
tionary of computing subjects. An edge from node u to
node v exists in the graph if and only if in the FOLDOC
dictionary term v is used to describe the meaning of
term u. The number of nodes and edges are 13, 356
and 120, 238, respectively.

• Internet 10: We used a snapshot of the structure of
the Internet at the level of autonomous systems. This
graph was constructed from BGP tables posted by the
University of Oregon Route Views Project 11. Ore-
gon Route Views Project allows Internet users to view
global BGP routing information from the perspective
of other locations around the Internet. The number of
nodes and edges are 22, 963 and 48, 436, respectively.

• Citation 12: This graph is weighted network of co-
authorships between scientists posting preprints on the
Condensed Matter E-Print Archive 13. The Condensed
Matter E-Print Archive is the fully automated e-print
archive for condensed matter preprints which is a spe-
cialized field in physics. The number of nodes and edges
are 31, 163 and 120, 029, respectively.

• Social 14: This graph is taken from Epinions.com 15.
Epinions.com is a general consumer review site. Mem-
bers of the site can decide whether to trust each other.
This dataset is who-trust-whom online social network
which has 131, 828 nodes and 841, 372 edges.

• Email 16: The graph was generated using email data
from a large European research institution. In this
graph, each node corresponds to an email address. And
a directed edge between nodes u and v represents user
of address u sent at least one message to address v.
This dataset has 265, 214 nodes and 420, 045 edges.

8
http://vlado.fmf.uni-lj.si/pub/networks/data/dic/foldoc/foldoc.zip

9
http://foldoc.org/

10
http://www-personal.umich.edu/ mejn/netdata/as-22july06.zip

11
http://routeviews.org/

12
http://www-personal.umich.edu/ mejn/netdata/cond-mat-2003.zip

13
http://arxiv.org/archive/cond-mat

14
http://snap.stanford.edu/data/soc-sign-epinions.html

15
http://www.epinions.com/

16
http://snap.stanford.edu/data/email-EuAll.html
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Table 2: Ranked lists by K-dash and NB LIN for company and operating system names.

Term Method
Rank

1 2 3 4 5

Microsoft
K-dash Microsoft MS-DOS IBM PC Microsoft Windows Microsoft Corporation

NB LIN Microsoft microsecond CS-Prolog MICRO SAINT Microsoft Basic

APPLE
K-dash APPLE Apple Attachment

Unit Interface
Apple II Apple Computer, Inc. APPC

NB LIN APPLE APIC Personalized Array
Translator

I-APL CEEMAC+

Microsoft Windows
K-dash Microsoft Windows W2K Windows/386 Windows 3.0 Windows 3.11

NB LIN Microsoft Windows Microsoft Networking Microsoft Network W2K Thumb

Mac OS
K-dash Mac OS Macintosh user inter-

face
Macintosh file system multitasking Macintosh Operating

System

NB LIN Mac OS Rhapsody SORCERER Macintosh Operating
System

PowerOpen Associa-
tion

Linux
K-dash Linux Linux Documentation

Project
Unix lint Linux Network Admin-

istrators’ Guide

NB LIN Linux Linux Documentation
Project

SL5 debianize SLANG

10
0

10
1

10
2

10
3

10
4

10
5

Dictionary Internet Citation Social Email

N
u
m

b
e
r 

o
f 
p
ro

x
im

it
y
 c

o
m

p
u
ta

ti
o
n
s

K-dash
Random

Figure 9: Comparison of root node selection.

D. ADDITIONAL EXPERIMENTS
In this section, we show the result of additional experi-

ment on root node selection and case-studies on two com-
pany names and three operating system names.

D.1 Root node selection
Our estimate algorithm sets the query node as the root

node to find the top-k nodes efficiently. To show the effec-
tiveness of this idea, we show the number of proximity com-
putations in Figure 9. In this figure, Random represents the
case of selecting the root node at random.
Our root node selection method requires fewer proximity

computations than the random methods. In the search pro-
cess, we first compute the breadth-first search tree from the
root nodes. As the query node and its neighboring nodes
have high proximity, we can obtain high proximity nodes
with this approach. As a result, we can more effectively
estimate the proximities of unselected nodes.

D.2 Casestudies
In this section, we show results of experimental case-studies

on two company names and three operating system names
to show the effectiveness of K-dash. In this experiment,
we identified the high proximity terms for ‘Microsoft’, ‘AP-
PLE’, ‘Microsoft Windows’, ‘Mac OS’, and ‘Linux’. We set
the target rank of SVD to 1, 000 for NB LIN. Table 2 shows
the results. We omitted the results of Basic Push Algorithm
due to space limitations.
The results of our method for the two company names

make sense while those of the approximate method do not.
For example, K-dash successfully detected the formal names

of the two companies, ‘Microsoft Corporation’ for ‘Microsoft’
and ‘Apple Computer, Inc.’ for ‘APPLE’. K-dash detected
‘IBM PC’ as the third-relevant term for ‘Microsoft’. This
result may seem strange, however, it is very reasonable if we
consider the close relation of the companies. Microsoft was
founded in 1975 by Bill Gates. In 1980, IBM chose Microsoft
to supply the operating system for the IBM PC. As a result,
Microsoft eventually became the leading vendor. For Apple,
K-dash finds APPLE II as the third-relevant term which is
an 8-bit PC of the company. APPLE II was invented by
Steve Wozniak, who is co-founder of Apple with Steve Jobs,
and was very popular from about 1980 until the first several
years of MS-DOS. However, the approximate approach has
difficulty in obtaining these intuitive results.

The results of K-dash for the three operating system names
reveal that these operating systems have distinctive char-
acteristics. The results of ‘Microsoft Windows’ are ‘Mi-
crosoft Windows’, ‘W2K’, ‘Windows/386’, ‘Windows 3.0’,
and ‘Windows 3.11’. All are Microsoft operating systems.
These results reflect Microsoft’s dominant market position.
On the other hand, the results of ‘Mac OS’ include several
of Apple’s unique technical terms. For example, K-dash de-
tects ‘Macintosh user interface’ as the second-relevant term
for ‘Mac OS’. Macintosh user interface is the graphical user
interface used by Apple Computer’s Macintosh family of
PCs. The original Macintosh was the first successful PC
to use a graphical user interface devoid of a command line.
‘Macintosh file system’, the third-relevant term for ‘Mac
OS’, is Apple’s disk file system adopted only in Mac OS.
These results reflect Apple’s culture of creativity. The re-
sults of ‘Linux’ imply its open culture. Unlike Microsoft
Windows, the development of Linux is an example of free
and open source software collaboration. Therefore, there
are many projects that support the development of Linux.
Linux Documentation Project is an all-volunteer project that
maintains a large collection of GNU and Linux-related doc-
umentation and publishes the collection on-line.

In conclusion, the results of K-dash are strong indicative
of the characteristics of each company and operating system.
The approximate approach is ineffective in finding such high
relevant terms for the two company names and the three
operating system names.
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