
Dense Subgraph Maintenance under Streaming Edge
Weight Updates for Realtime Story Identification

Albert Angel
University of Toronto

albert@cs.toronto.edu

Nick Koudas
University of Toronto

koudas@cs.toronto.edu

Nikos Sarkas
University of Toronto

nsarkas@cs.toronto.edu

Divesh Srivastava
AT&T LabsResearch

divesh@research.att.com

ABSTRACT

Recent years have witnessed an unprecedented proliferation of so-

cial media. People around the globe author, every day, millions

of blog posts, micro-blog posts, social network status updates, etc.

This rich stream of information can be used to identify, on an ongo-

ing basis, emerging stories, and events that capture popular atten-

tion. Stories can be identified via groups of tightly-coupled real-

world entities, namely the people, locations, products, etc., that are

involved in the story. The sheer scale, and rapid evolution of the

data involved necessitate highly efficient techniques for identifying

important stories at every point of time.

The main challenge in real-time story identification is the main-

tenance of dense subgraphs (corresponding to groups of tightly-

coupled entities) under streaming edge weight updates (resulting

from a stream of user-generated content). This is the first work

to study the efficient maintenance of dense subgraphs under such

streaming edge weight updates. For a wide range of definitions

of density, we derive theoretical results regarding the magnitude

of change that a single edge weight update can cause. Based on

these, we propose a novel algorithm, DYNDENS, which outper-

forms adaptations of existing techniques to this setting, and yields

meaningful results. Our approach is validated by a thorough exper-

imental evaluation on large-scale real and synthetic datasets.

1. INTRODUCTION
Recent years have witnessed an unprecedented proliferation of

social media. Millions of people around the globe author on a daily

basis millions of blog posts, micro-blog posts and social network

status updates. This content offers an uncensored window into cur-

rent events, and emerging stories capturing popular attention.

For instance, consider the U.S. military strike in Abbottabad,

Pakistan in early May 2011, which resulted in the death of Osama

bin Laden. This event was extensively covered on Twitter, the pop-

ular micro-blogging service, significantly in advance of traditional

media, starting with the live coverage of the operation by an (unwit-

ting) local witness, to millions of tweets around the world providing

Figure 1: Real-time identification of “bin Laden raid” story,

and connection to ENGAGEMENT

a multifaceted commentary on every aspect of the story. Similar, if

fewer, online discussions cover important events on an everyday

basis, from politics and sports, to the economy and culture (no-

table examples from recent years range from the death of Michael

Jackson, to revolutions in the Middle East and the economic re-

cession). In all cases, stories have a strong temporal component,

making timeliness a prime concern in their identification.

Interestingly, such stories can be identified by leveraging the

real-world entities involved in them (e.g. people, politicians, prod-

ucts and locations) [26]. The key observation is that each post on

the story will tend to mention the same set of entities, around which

the story is centered. In particular, as post length restrictions or

conventions typically limit the number of entities mentioned in a

single post, each post will tend to mention entities corresponding

to a single facet of a story. Thus, by identifying pairs of entities

that are strongly associated (recurrently mentioned together), one

can implicitly detect facets of the underlying event of which they

are the main actors. By piecing together these aspects, the overall

event of interest can be inferred.

For example, in the case of the U.S. military strike mentioned

above, one facet, consisting of people discussing the raid, is cen-

tered around “Abbottabad” where the raid took place, and the in-

volvement of the “C.I.A.”; another thread commenting on the pres-

idential announcement, involves “Barack Obama” and “Osama bin

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 6
Copyright 2012 VLDB Endowment 2150-8097/12/02... $ 10.00.

574

Laden”; and so on. The resulting overall story at some point of

time involves the union of these entities. Such sets of entities can

be then used by users of systems such as Grapevine [3] to enable

the interactive exploration of the story.

Given a measure to quantify the strength of association between

two entities (such as the Log-likelihood ratio [26], the χ2 measure,

or the correlation-coefficient [5], etc.), one can abstract the real-

time stream of posts giving rise to an evolving (weighted) entity

graph, denoting the pairwise entity association strength1. An im-

portant story can then be identified via a cohesive group of strongly

associated entity pairs; i.e. a dense subgraph in the entity graph,

given an appropriate definition of density. Moreover, note that, as

the entities in a story need to be presented to users to facilitate nav-

igation, story cardinality needs to be constrained to moderate sizes;

after all, it would not be very interesting or helpful to present users

with a story centered around 100 main entities. This process is

illustrated in Figure 1.

Every post that is published, results in the weight update of one

or more edges in the entity graph. The high frequency of post

generation, coupled with our need for timely reporting of emerg-

ing stories, necessitates that the identification of dense structures in

the entity graph be highly efficient. This work thus addresses the

problem of dENse subGrAph maintenance for edGE-weight update

streaMs under sizE constraiNTs, or ENGAGEMENT for brevity. Be-

sides being useful as-is for identifying stories from social media in

real-time, solutions to this problem can also be used as building

blocks for more complex computations; e.g. identified dense sub-

graphs can undergo diversification before being presented to the

user [2], or they can be reranked taking their external sparsity into

account, in order to identify (soft) clusters of associated entities.

Addressing ENGAGEMENT at web scales presents several chal-

lenges. Principal among these is that, a change in the weight of

a single edge, can impact the density of many subgraphs, neces-

sitating a potentially unbounded exploration of the entity graph.

Thus, any efficient solution to ENGAGEMENT needs to incremen-

tally maintain dense subgraphs , without recomputing them from

scratch. Moreover, there does not exist a single definition of graph

density suitable for all scenarios; selecting the most appropriate

definition for a given setting depends, for instance, on the perceived

relative importance of having large, versus well-connected, dense

subgraphs. Thus, solutions to ENGAGEMENT need to be applicable

under general notions of density; however, existing techniques are

only applicable to limited subsets of this problem.

In this context, in this work we propose DYNDENS, an efficient

algorithm for ENGAGEMENT. We theoretically quantify the magni-

tude of change in dense subgraphs that a single edge weight update

can cause. Based on this, we show how maintaining some sparse

subgraphs, in addition to dense ones, enables the incremental main-

tenance of dense subgraphs. The resulting algorithm, DYNDENS,

makes use of an efficient index for subgraphs, which decreases

memory consumption and processing effort. It is complemented

by theoretically sound heuristics, that can offer improved perfor-

mance. A comprehensive experimental evaluation on real and syn-

thetic data highlights the effectiveness of our approach.

To summarize, our main contributions in this work are:

i) Motivated by the need to identify emerging stories in real-

time, for a wide range of measures of entity association, we for-

malize the problem of dENse subGrAph maintenance for edGE-

weight update streaMs under sizE constraiNTs (ENGAGEMENT),

for a very broad notion of graph density.

ii) We propose an efficient algorithm DYNDENS, based on a

1The association measure can also incorporate notions of recency
of association, e.g. by including some form of temporal decay.

novel quantification of the maximum possible change caused by

a single edge weight update. By maintaining a small number of

sparse subgraphs, DYNDENS is able to efficiently and incremen-

tally compute dense subgraphs.

iii) We design an efficient dense subgraph index, which decreases

memory consumption and processing effort, and propose theoreti-

cally sound heuristics for DYNDENS that can offer improved per-

formance.

iv) We validate our techniques via a thorough experimental eval-

uation on both real and synthetic datasets.

The remainder of this paper is organized as follows: After pro-

viding a formal problem statement in Section 2, we present our

proposed algorithm DYNDENS in Section 3. We explore the the-

oretical basis for DYNDENS in Section 4, evaluate the proposed

techniques in Section 5, and discuss some improvements to DYN-

DENS in Section 6. Finally, we review related work in Section 7,

and conclude in Section 8.

2. FORMALIZATION
Let us now turn to defining ENGAGEMENT. At a high level, let

us consider a weighted graph, with a constant number of vertices.

At every discrete time interval, the weights of one or more edges

are adjusted (including potentially edge additions and removals).

The goal is to maintain, at each point of time, all subgraphs with

“density” greater than a given threshold.

Connections to real-time story identification: Before fully

formalizing the problem, let us first draw some connections to its

application in real-time story identification. In this context, ver-

tices correspond to real-world entities, and edge weights to their

(current) pairwise association strengths (the choice of association

strength measure will depend on characteristics of the specific prob-

lem instance; in Section 5 we discuss several such choices). We

assume that a procedure exists for processing streams of (entity-

annotated2) posts, and generating the appropriate edge weight up-

dates at each time interval (in Section 5 we discuss such procedures

for a variety of measures of interest).

Data model: We represent the problem domain as i) a complete

weighted graph G = (V, E) with N vertices, where wij is the

weight of edge between nodes i and j; and ii) a stream of edge

weight updates of the form updatei = (a, b, δ), signifying that

at time instant i, the weight of the edge between vertices a and b
changed from wab to wab + δ.

Density: We define subgraph density as follows: for every sub-

graph C ⊆ V , its density is dens(C) = score(C)
S|C|

, where score(C)

=
P

i,j∈C∧i<j
(wij). Sn is a function quantifying the relative im-

portance of a subgraph’s cardinality, n, to its density; with the ap-

propriate choice of Sn, virtually all quantifications of graph density

can be represented.

Note that we do not consider counter-intuitive quantifications of

graph density, such as (but not limited to) a definition of density

where the removal of a vertex from an unweighted clique results in

an increase of its density. To safeguard against such quantifications

of density, we require that Sn have the following intuitive mono-

tonicity properties: n
n−1

≤ Sn

Sn−1

≤ n
n−2

.3 This encompasses

2The precise procedure used for identifying named entities in doc-
uments, e.g. [3], is orthogonal to this work.
3Observe that if Sn

Sn−1

> n
n−2

, the density of an unweighted clique

will increase if vertices are removed . Moreover, observe that if
n

n−1
> Sn

Sn−1

, in an unweighted graph the density of an 3-vertex

clique K3 will increase if it is augmented by a single vertex, con-
nected with a single edge to one of the clique vertices.

575

the full spectrum of choices of density functions commonly used

in the literature; typical choices include Sn = n·(n−1)
2

(thus den-

sity is defined as the average edge weight, favoring small, dense

subgraphs; we term this instantiation AVGWEIGHT), and Sn = n
(thus density represents a generalized average node “degree”, fa-

voring large subgraphs; we term this case AVGDEGREE).

Cardinality constraint: Finally, let Nmax be a (user-specified)

maximum cardinality for subgraphs of interest. (In the context of

real-time story identification, this constraint ensures that any sub-

graphs identified are small enough to be used for navigation / ex-

ploration purposes - cf. Section 1).

ENGAGEMENT: Given the above, the goal of ENGAGEMENT is

to maintain, at every point of time i, the subgraphs (vertex subsets)

with density over a given threshold T , subject to cardinality con-

straints, i.e. {Vj |Vj ⊆ V ∧ dens(Vj) ≥ T ∧ |Vj | ≤ Nmax}. We

term these output-dense subgraphs.

Notation: Before going into the details of our proposed ap-

proach, let us introduce some useful notation.

We denote each vertex by a natural number, so V = {1, · · · , N}
denotes the set of vertices in G.

Let êi be the i’th basis vector (an N -dimensional vector, with

value 1 in its i’th coordinate, and 0 elsewhere). We will denote a

subset C ⊆ V by its corresponding vector ~c =
P

i∈C
êi, and will

sometimes refer to either interchangeably; we will also on occasion

denote the cardinality of subset C as |~c|.

Let ~Γu be the neighborhood vector of vertex u: ~Γu =
(w1u, w2u, · · · , wNu).

For convenience, we will also make use of the following nor-

malized version of Sn: Let gn = Sn

n·(n−1)
. By the monotonicity

properties of Sn, it follows that gn ≤ gn−1.

Unless explicitly stated, we will focus on the time instant where

the weight of the edge between vertices a and b is updated from

wab = w to w + δ. Whenever a quantity X can be affected by

this update, we will denote its value before the update as X - and

its value after the update as X+. We omit this superscript when

it does not affect results in any way. For example, wab
- = w,

wab
+ = w + δ.

3. THE DYNDENS APPROACH
Let us now discuss how our proposed algorithm, DYNDENS,

identifies, at every point of time, all output-dense subgraphs.

Dense subgraphs and growth property: Observe that there is

an inherent tradeoff in the set of subgraphs that DYNDENS will

maintain, which we term “dense” subgraphs. At one extreme, DYN-

DENS could opt to maintain only output-dense subgraphs, with the

other extreme being to maintain all subgraphs. However, neither

of these is desirable: the former because it does not enable incre-

mental computation of output-dense subgraphs, the latter due to

its prohibitive costs. We will subsequently (Section 4.2) formally

quantify this tradeoff. For now, loosely speaking, we will say that

C is a dense subgraph iff it has density greater than a given thresh-

old T|C| (which is a function of the cardinality of C), and cardi-

nality of at most Nmax (for a complete list of density-related terms

used in this work cf. Table 1). Tn is defined in a manner that en-

sures that every dense graph with n vertices has at least one dense

subgraph with n−1 vertices (thus it is possible to identify all dense

subgraphs by “growing” dense subgraphs of smaller cardinalities).

Specifically, Tn is a monotonically increasing function of n with

the property Tn · gn > Tn−1 · gn−1. At a high level, this mono-

tonicity property ensures the desired containment property men-

tioned earlier (see Section 4 for details4). Moreover, we require

4Another way to view dense graphs is the following: Consider the

Table 1: Definitions of density-related properties
Subgraph C is · · · iff

Static properties

dense dens(C) ≥ T|C|

sparse dens(C) < T|C|

output-dense dens(C) ≥ T
too-dense dens(C) ≥ T|C|+1

Dynamic properties

stable-dense dens(C)- ≥ T|C| ∧ dens(C)+ ≥ T|C|

newly-dense dens(C)- < T|C| ∧ dens(C)+ ≥ T|C|

losing-dense dens(C)- ≥ T|C| ∧ dens(C)+ < T|C|

Table 2: Summary of main symbols used
Symbol Description

V Set of vertices in graph
N Number of vertices in graph
wij Weight of edge between vertices i and j
~Γu Neighborhood vector of vertex u
dens(C) Density of C

dens(C) =

P

i,j∈C∧i<j (wij)

S|C|

Sn Quantifies relative importance of subgraph
cardinality n to density

gn Normalized version of Sn: gn = Sn
n·(n−1)

AVGWEIGHT Case where Sn = n(n − 1)/2
SQRTDENS Case where Sn =

√
n(n − 1)

AVGDEGREE Case where Sn = n
Nmax Max. cardinality of subgraph to be returned
T Min. density for a subgraph to be returned
Tn Min. density for subgraph of cardinality n to be dense
δit Tunable parameter of DYNDENS, influences Tn

a, b Vertices that were just updated
x- quantity x before the update
x+ quantity x after the update
w Weight of edge (a, b) before the update, ie. wab

-

w + δ Weight of edge (a, b) after the update, ie. wab
+

that TNmax = T .5 We discuss the concrete instantiation of Tn

used by DYNDENS in Section 4.2.

Edge weight updates: The basic operation of DYNDENS is to

maintain dense subgraphs, following the update of the weight of an

edge (a, b), from w to w+δ. If this impacts the set of output-dense

subgraphs, the latter is updated as well. Handling updates with δ <
0 (i.e. where the weight of an edge decreases) is straightforward:

all dense subgraphs containing both a and b are examined, and their

density is decreased by an appropriate amount. If they are no longer

output-dense, this is reported; if, in addition, they are no longer

dense (losing-dense), they are evicted from the index.

Positive updates: Of greater interest is the case where δ > 0,

i.e. the edge weight update corresponds to an increase in weight.

In this case, additional subgraphs, that were not dense prior to the

update, might now be dense (newly-dense subgraphs). DYNDENS

leverages the growth property to compute these as follows:

measure normDens(C) = dens(C)
T|C|

, consisting of a density mea-

sure, normalized by the threshold function Tn; a graph C is dense
iff it has normDens(C) ≥ 1. While normDens(C) is not a
suitable measure of density per se, it has the following important
growth property: every graph C has a subgraph C′ of cardinality
|C′| = |C| − 1 with normDens(C′) ≥ normDens(C). This
containment/growth property additionally implies that, if there are
no dense subgraphs of cardinality n, there can be no dense sub-
graphs of any cardinality > n.
5Recall that Tn is an increasing function of n, and the set of main-
tained subgraphs needs to include all output-dense subgraphs of
cardinality ≤ Nmax having density ≥ T .

576

Algorithm 1 Algorithm DYNDENS

Input: Updated edge (a, b), magnitude of update δ
1: if δ < 0 then

2: Update the density of all dense subgraphs containing a and

b; evict losing-dense subgraphs from the index; report any

subgraphs that are no longer output-dense

3: return

4: for all dense subgraphs C st. a ∈ C ∨ b ∈ C do {// including

C = {a, b} if it is newly-dense}
5: if a /∈ C or b /∈ C then

6: if C should be cheap-explored and C ∪ {a, b} is newly-

dense then

7: Add C ∪ {a, b} to the index, report it if it is output-

dense

8: explore(C ∪ {a, b}, 2)
9: else

10: Update the density of C, report it if it just became output-

dense

11: explore(C, 1)

Cheap explore: DYNDENS will try to augment all dense sub-

graphs containing either a or b, with b or a, respectively; resulting

newly-dense subgraphs will be inserted into the dense subgraph

index. In some cases, this step alone is sufficient and/or can be ap-

plied only to a subset of these subgraphs (cf. Section 6) for details).

Explore: DYNDENS will try to augment dense subgraphs con-

taining both a and b, with one neighboring vertex; resulting newly-

dense subgraphs will be inserted into the dense subgraph index.

Exploration iterations: The above procedure may need to be

performed iteratively for newly-dense subgraphs discovered via ex-

ploration or cheap exploration. Interestingly, the iteration depth is

upper bounded by a corollary of the growth property. Specifically,

in Section 4.2, we define Tn parametrized by a parameter δit that

indirectly controls the number of dense subgraphs maintained by

DYNDENS. As we show in Section 4, we can guarantee that at

most ⌈ δ
δit

⌉ iterative exploration iterations need to be performed,

in order to identify all newly-dense subgraphs, following an edge

weight update of magnitude δ.

Explore all: In a few cases, the above exploration may need

to be performed on non-neighboring nodes as well, resulting in a

very costly procedure. In most cases, DYNDENS avoids performing

this procedure via a better, implicit representation of some dense

subgraphs in the index (cf. Section 3.2.3).

In one sentence, DYNDENS explores the neighborhood of some

materialized dense subgraphs, using pruning conditions for when

to stop exploring around a subgraph. The remainder of this section

aims to fill in the blanks in the preceding sentence. We discuss

the workings of DYNDENS, and illustrate them with a practical

example in Section 3.1, followed by important technical details in

Section 3.2. We defer the exposition of the theoretical results on

which DYNDENS is based till Section 4.

3.1 The DYNDENS Algorithm
Let us now discuss DYNDENS in greater detail, with reference to

Algorithm 1. At a high level, DYNDENS maintains an in-memory

index of all dense subgraphs (we defer discussing index implemen-

tation details to Section 3.2); at every edge weight update, it out-

puts information regarding subgraphs that became, or stopped be-

ing output-dense. If the edge weight update was negative, only

some index maintenance needs to be done (line 2). Otherwise,

some stable-dense subgraphs containing a and/or b are further ex-

Algorithm 2 Procedure explore(C, i)

Input: Subgraph C. Iteration number i
1: if C was not too-dense before the update and i ≤ ⌈ δ

δit
⌉ and

|C| < Nmax then

2: if C is too-dense then

3: for all y /∈ C do {// Explore-All}
4: Add C ∪{y} to the index; report it if it is output-dense

5: explore(C ∪ {y}, i + 1)
6: else

7: for all neighbors y of C do

8: if C ∪ {y} is newly-dense then

9: Add C ∪ {y} to the index; report it if it is output-

dense

10: explore(C ∪ {y}, i + 1)

amined (lines 4-11). Note that, to ensure correctness, also the sub-

graph {a, b} may be examined, even if it was not present in the

index (base case in line 4). Subgraphs in the index containing only

one of a, b are cheap-explored, if needed6 (line 6).

Subgraphs in the index that contain both a and b, as well as

newly-dense subgraphs previously identified, are subsequently ex-

plored (line 11) - i.e. DYNDENS will try to augment them with a

neighboring node (we defer discussing the precise details on how

this is done efficiently to Section 3.2). This will be recursively re-

peated on any newly-dense subgraphs discovered up to ⌈ δ
δit

⌉ times

(the theoretical results that enable this bounding are discussed in

Section 4). A high-level description of the exploration procedure is

shown in Algorithm 2.

Algorithm 2 will first ensure that the subgraph should be ex-

plored. Specifically, the subgraph should not have been too-dense

before the update (line 1), for otherwise its dense supergraphs would

have been stable-dense, and hence already identified. Moreover, as

previously mentioned, DYNDENS will not explore around any sub-

graph more times than necessary. Finally, in a few cases, explored

subgraphs will need to be augmented with every other vertex, not

just neighboring ones (Explore-All; line 2). As the latter is a costly

procedure, in Section 3.2.3 we will present a way to mitigate the

associated cost.

Execution example. To illustrate the workings of DYNDENS,

let us examine a simple example of its execution. Consider the

sample entity graph of Figure 2(a), and assume an AVGWEIGHT

definition of density (i.e. the density of a subgraph is its average

edge weight), a density threshold of T = 1, and a maximum de-

sired subgraph cardinality of Nmax = 4. Assume that δit has been

set to 0.15, so that the thresholds Tn, for subgraphs of cardinality n
to be considered dense are T2 = 0.9, T3 = 0.975 and T4 = T = 1
(cf. Section 4.2 for details). Thus, the dense subgraphs for this

graph are shown in Figure 2(b) (output-dense subgraphs are em-

phasized). Finally, assume that the weight of edge (1, 2) is updated

from 0.8 to 0.95 (δ = δit = 0.15). Let us examine how DYNDENS

will handle this update; to facilitate this discourse, the newly-dense

subgraphs that are inserted into the index are shown in the bottom

half of Figure 2(b).

At a high level, DYNDENS will examine {1, 2}, as well as all

dense subgraphs containing vertex 1 and/or 2 (Algorithm 1, line 4),

i.e. {1, 3}, {1, 4}, {2, 3}, {2, 4}, {1, 3, 4}, {2, 3, 4}. {1, 2} will

6For instance, subgraphs that were too-dense need not be explored,
as, by definition, their dense supergraphs would have been stable-
dense, and hence already identified. Moreover, this step can also
be skipped in other circumstances, cf. Section 6 for details.

577

(a) Entity graph

Subgraph Density output-

dense?

Dense, before update

1, 3 1.0 Y

1, 4 1.0 Y

2, 3 1.1 Y

2, 4 1.0 Y

3, 4 1.0 Y

1, 3, 4 1.0 Y

2, 3, 4 1.03 Y

newly-dense, after update

1, 2 0.95 N

1, 2, 3 1.016 Y

1, 2, 4 0.983 N

1, 2, 3, 4 1.0083 Y

(b) Dense subgraph index

Figure 2: Execution example

be added to the index (Algorithm 1, line 10), and will be explored

(line 11). Its exploration will entail the addition of newly-dense

subgraphs {1, 2, 3} and {1, 2, 4} to the index (Algorithm 2, line 8);

the former will also be reported as output-dense. Since δ
δit

= 1,

these newly-dense subgraphs will not be further explored (Algo-

rithm 2, line 10 and line 1). Moreover, during this exploration sub-

graph {1, 2, 5} will be examined, but as its density is less than T3,

it will not be added to the index.

DYNDENS will also cheap-explore subgraphs {1, 3}, {1, 4},

{2, 3}, {2, 4} (Algorithm 1, line 6). This will result in subgraphs

{1, 2, 3}, {1, 2, 4} being examined (twice) (Algorithm 1, line 7); as

they are already present in the index, this will not affect anything.

Moreover, DYNDENS will attempt to explore these subgraphs (Al-

gorithm 1, line 8); however, since δ
δit

= 1, they will not be ex-

plored (Algorithm 2, line 1).

Finally, DYNDENS will cheap-explore subgraphs {1, 3, 4} and

{2, 3, 4}. The first cheap exploration will result in newly-dense

subgraph {1, 2, 3, 4} being added to the index, and reported as

output-dense (Algorithm 1, line 7); the second one will revisit this

subgraph, and do nothing. Moreover, in both cases, since |{1, 2, 3,
4}| = 4 ≥ Nmax, these subgraphs will not be explored (Algo-

rithm 2, line 1).

Observation: From the simplified execution example presented

above, one can observe that DYNDENS (as currently presented)

can end up performing redundant computations; e.g. some sub-

graphs are examined unnecessarily many times. Subsequently, in

Section 3.2.2 and Section 6, we discuss how to reduce such unnec-

essary computations.

3.2 Implementation Considerations
Having presented DYNDENS at a high level, let us now see some

important considerations that arise when implementing it in prac-

tice. We first introduce the underlying indexing structure used by

DYNDENS in Section 3.2.1; this index also enables DYNDENS to

avoid redundant computations (Section 3.2.2) as well as the costly

operation of explore-all (Algorithm 2, line 2 cf. Section 3.2.3).

3.2.1 Index

DYNDENS requires an efficient index for both the evolving graph

itself, as well as for dense subgraphs. For the graph index, main-

taining node adjacency lists is sufficient (i.e. a mapping ∀u ∈ V :

u → ~Γu); this also enables the efficient exploration of a subgraph

Figure 3: Dense subgraph index

(via merging the relevant adjacency lists7).

The dense subgraph index is more interesting to examine, as it

needs to efficiently support several functionalities. To name a few:

for every dense subgraph, access to its vertices, cardinality and den-

sity; insertion, update and deletion of dense subgraphs from the in-

dex; iteration over all dense subgraphs containing vertices a or b,

where each subgraph must be accessed exactly one time (needed for

positive edge weight updates); and for a given dense subgraph C,

and a given vertex u, access to subgraph C ∪ {u}, and insertion of

C∪{u} into the index if it is not already present (needed for explo-

ration). Moreover, as DYNDENS needs to perform frequent random

accesses on dense subgraphs, the index needs to be in-memory, so

maintaining a low memory footprint is important. As most dense

subgraphs will tend to have high overlap, the dense subgraph index

should minimize the amount of redundant information stored.

To address these requirements posed by DYNDENS, we pro-

pose the following in-memory index. Each subgraph has a unique

id corresponding to its location in memory; it is also represented

by its (sorted) set of vertices. DYNDENS will maintain a pre-

fix tree of dense subgraphs, illustrated in Figure 3. Each node in

the prefix tree contains pointers to its children, indexed by ver-

tex id, a pointer to its parent, as well as information (such as car-

dinality and density) on the dense subgraph it represents, if ap-

plicable. Figure 3 shows a view of the index when subgraphs

{1, 3}, {1, 3, 4}, {1, 3, 5}, {3, 4, 5}, {4, 5} are dense (ignore node

labeled ∗ for now), along with the density of each subgraph.

Additionally, to enable effective iteration over dense subgraphs

containing one or two given vertices, DYNDENS will also maintain

inverted lists, i.e. a mapping from vertices to (pointers to) all sub-

graphs containing a vertex. To decrease the size of inverted lists, the

inverted list of a vertex u will only contain tree nodes where the lex-

icographically largest vertex is u. Thus, in order to iterate over all

subgraphs containing u, DYNDENS will iterate over all subgraphs

in its inverted list, and their tree descendants. Furthermore, to fa-

cilitate inverted list maintenance, inverted lists are implemented as

linked lists of prefix tree nodes (shown in Figure 3 as dashed ar-

rows). Inverted lists are updated whenever a new node is created ,

or when a leaf node is deleted. Moreover, if the deletion of a leaf

node results in its parent having no children, and representing no

dense subgraph, the parent will be recursively deleted.

Our proposed dense subgraph index efficiently addresses the re-

quirements of DYNDENS. Specifically, the prefix tree enables DYN-

DENS to reduce its memory footprint, by not storing redundantly

many overlapping dense subgraphs. Moreover, looking up C∪{u}

7Specifically, when exploring subgraph C, DYNDENS will com-

pute ~ΓC =
P

v∈C
~Γv; for every vertex u /∈ C, the score of C∪{u}

can be computed as score(C ∪ {u}) = score(C) + ~ΓC · êu.

578

is O(|C|+1) in all cases (and O(1) if vertex u is lexicographically

greater than any other vertex in C); after a look-up, update or inser-

tion into the index is O(1). Enumerating the vertices in a subgraph

C is O(|C|), via parent pointer traversal. Deleting a subgraph C
from the index is O(number of leaf nodes deleted); this is typically

O(1) and at worst O(|C|), due to the design of the prefix tree with

embedded inverted lists.

3.2.2 Avoiding redundant computation

Besides efficiently providing the requisite functionality for DYN-

DENS, our proposed dense subgraph index can also be used (i) to

ensure that subgraphs that were dense before the update are exam-

ined exactly once (required for the correctness of DYNDENS), and

(ii) to greatly reduce the number of newly-dense subgraphs exam-

ined more than once (without sacrificing correctness).

The former (i) can be guaranteed by fixing the order in which

dense subgraphs are examined. Specifically, if subgraphs contain-

ing vertices a and/or b need to be examined, and assuming a < b
(lexicographically), DYNDENS will traverse the subtrees of all in-

dex nodes on the inverted list corresponding to b. Subsequently, it

will traverse the subtrees of index nodes on the inverted list corre-

sponding to a, stopping the traversal whenever a b node is encoun-

tered. This procedure is aided by flags that are set on a per-index

node basis, to help DYNDENS distinguish newly-dense subgraphs

in the index.

For the latter (ii), we leverage the theoretical result that all newly-

dense subgraphs can be identified in at most ⌈ δ
δit

⌉ exploration it-

erations (Section 4). Upon insertion into the index, dense sub-

graphs are annotated with the exploration iteration at which they

were identified (i in Algorithm 2); these annotations persist until

the end of Algorithm 1. Algorithm 2 will operate as above for sub-

graphs not annotated with an iteration number, or annotated with

an iteration number greater than the current i. Otherwise, the sub-

graph does not need to be further examined.

3.2.3 Implicit representation of toodense subgraphs

Having introduced the dense subgraph index used by DYNDENS,

let us revisit a challenge posed by the presence of too-dense sub-

graphs, and show how the index can be leveraged to overcome it.

Recall that a subgraph is too-dense iff, after adding any other

vertex to it, it is still dense. Thus, when exploring a too-dense

subgraph, DYNDENS needs to consider its cartesian product with

the entire set of vertices V , resulting in |V | dense subgraph inser-

tions into the index (explore-all, Algorithm 2, line 2). This is a

very costly procedure; unsurprisingly, it was experimentally found

to dominate all other processing costs, in cases where too-dense

subgraphs existed (cf. Section 5.1).

To avoid this cost, we propose a modification to the dense sub-

graph index, which we term IMPLICITTOODENSE. At a high level,

it entails the implicit representation of supergraphs of too-dense

subgraphs, so that explore-all will only examine/insert into the in-

dex a small number of dense subgraphs.

Specifically, we introduce a fictitious vertex named ∗, which is

lexicographically larger than all other vertices. For every too-dense

subgraph C, the index will store a subgraph C ∪ {∗}, representing

all C ∪ {y} where y is a vertex disconnected from C; these su-

pergraphs of C will not be explicitly inserted in the index. Given

this convention, DYNDENS will handle the explore-all procedure

of a subgraph C that just became too-dense by normally explor-

ing all neighbors of C (as in Algorithm 2, line 7), and inserting

the subgraph C ∪ {∗} into the index. For instance, revisiting Fig-

ure 3, assume subgraph {1, 3} is too-dense. Rather than explor-

ing, and inserting into the index all its disconnected supergraphs

{1, 3, 6}, {1, 3, 7}, · · · , {1, 3, |V |}, DYNDENS has only inserted

a node representing {1, 3, ∗}.

In the unlikely event C ∪ {∗} needs to be explored at any time

(corresponding to the exploration of all supergraphs of C augmented

with one disconnected vertex), DYNDENS will try instead to aug-

ment C with all edges in the graph that are not incident on C.

Because every vertex a is potentially contained in C∪{∗}, when-

ever an iteration is performed on the index (Algorithm 1, line 4),

the inverted list corresponding to ∗ needs to be examined as well.

This inverted list also needs to be maintained during negative edge

weight updates, if a subgraph stops being too-dense. Finally, note

that whenever dealing with a subgraph represented by a ∗ index

entry, DYNDENS also needs to ensure that the subgraph is not ex-

plicitly represented elsewhere in the index, which is, however, a

very efficient operation.

As we verify experimentally (Section 5.1), the above IMPLICIT-

TOODENSE modification to the index offers significant performance

benefits to DYNDENS.

4. THEORETICAL RESULTS
Having introduced our proposed DYNDENS algorithm, in this

section we elaborate on its theoretical underpinnings. We first prove

its correctness, by deriving a bound on the number of exploration

iterations that are required, as a function of the magnitude of the

edge weight update performed (this is the basis of DYNDENS, cf.

Algorithm 2, line 1). Specifically, Section 4.1 presents a general

result, on when a single exploration iteration per stable-dense sub-

graph is sufficient. Section 4.2 provides a concrete instantiation for

Tn (recall that Tn determines the relationship between dense and

output-dense subgraphs), based on which the desired bound is then

obtained in Section 4.3. Due to space constraints, detailed proofs,

and results pertaining to the complexity of DYNDENS are omitted;

these can be found in [4].

Formalization :The notion of exploration iterations performed

by DYNDENS has been used throughout its description; before pre-

senting theoretical results on them, this would be a good opportu-

nity to formalize this notion.

Let CA = {C∪{b}|C ⊆ V ∧a ∈ C∧b /∈ C∧C is stable-dense}
be the set of graphs consisting of a stable-dense subgraph contain-

ing a, augmented with b (similarly, let CB = {C ∪ {a}|C ⊆
V ∧ b ∈ C ∧ a /∈ C ∧ C is stable-dense}). Let C0 = CA ∪ CB ;

this is the set of all subgraphs that will be examined via cheap-

exploration only.

Let CAB = {C∪{y}|C ⊆ V ∧a, b ∈ C∧C is stable-dense∧y
is a neighbor of some node in C} be the set of graphs consisting of

a stable-dense subgraph containing a and b, augmented with some

other node; this is the set of all subgraphs that will be examined via

a single exploration iteration.

Let C1 = C0 ∪CAB; this is the set of graphs containing a and b
that consist of a stable-dense subgraph, augmented with one node.

For i > 1, let Ci = {C ∪{y}|C ∈ Ci−1 ∧C is newly-dense∧y
is a neighbor of some node in C}. Ci is the set of graphs containing

a newly-dense subgraph that contains a, b, and is discoverable after

i exploration iterations.

4.1 When is a Single Exploration Sufficient ?
Let us now provide a sufficient condition for all newly-dense

subgraphs C of cardinality |C| = n ≥ 3 to contain a stable-dense

subgraph of cardinality n − 1. Specifically, it is sufficient that:

δ ≤ (n − 2)(n − 1)(gn · Tn − gn−1 · Tn−1) (1)

579

(recall that gn = Sn

n·(n−1)
, and that the properties of Tn guaran-

tee that the above bound on δ is strictly positive)

Proof sketch: (pigeonhole argument) If all n − 1 subgraphs

of C were sparse before the update, then the contributions of each

vertex in C to dens-(C) should be large. Hence, C must be very

dense. However, C was sparse before the update. Thus, the update

must have been very large. If the update is not very large, then there

will exist an n − 1 subgraph that was dense before the update.

Corollary: The n − 1 subgraph of C that was dense before

the update will either not contain one of a or b (so augmenting

it with that vertex will yield C), or it will contain both a and b.

Consequently, for values of n where Equation 1 holds, all newly-

dense subgraphs of cardinality n will be contained in CA ∪ CB ∪
CAB = C1.

4.2 Instantiating Tn

Based on the form of Equation 1, let us now propose a con-

venient instantiation for Tn, that will satisfy the requisite mono-

tonicity properties, while greatly simplifying the bounds we sub-

sequently derive, thus providing additional intuitions. Specifically,

the instantiation of Tn that will be used throughout this work is:

Tn =
1

gn

„

gNmax · T + δit ·

„

n − 2

n − 1
−

Nmax − 2

Nmax − 1

««

(2)

where δit is a tunable parameter. Note that this is a reasonable

value for Tn from a maintenance perspective ; for instance, if Sn =
n, then Tn = (n−1)T2 +(n−2)δit = n−1

Nmax−1
(T +δit)−δit =

O(n), while if Sn = n(n − 1), then Tn = T2 + (1 − 1
n−1

)δit =

T − δit(
1

n−1
− 1

Nmax−1
) = O(1).

Importantly, this instantiation results in a much simplified form

of Equation 1, specifically δ < δit. In the following, we will lever-

age this fact, to obtain a bound on the number of exploration itera-

tions that DYNDENS needs to perform.

Moreover, for our proposed techniques to be meaningful, it must

be the case that Tn >> 0 ∀n ∈ {2, · · · , Nmax}. This, along with

the above simplified form of Equation 1, leads to the following va-

lidity range for δit: δit ∈ (0,
SNmax T

Nmax(Nmax−2)
). The lower bound

would correspond to maintaining the smallest possible number of

subgraphs, and the upper bound to maintaining most subgraphs

(specifically, all subgraphs of cardinality Nmax, and most sub-

graphs of lower cardinalities) - realistically speaking, one should

not set δit to any value close to its upper bound.

4.3 Bounding the Number of Iterations
We are now able to extend Equation 1, to cases where δ > δit.

Specifically, we will show that all newly-dense subgraphs of car-

dinality n are contained in C0 ∪ C1 · · · ∪ C⌈ δ
δit

⌉ , thus in or-

der to compute all newly-dense subgraphs, it is sufficient to ex-

plore around stable-dense and newly-dense subgraphs contained in

C0 ∪ C1 ∪ · · · ∪ C⌈ δ
δit

⌉.

Proof sketch: An update of magnitude δ is equivalent to ⌈ δ
δit

⌉

updates of magnitude up to δit; furthermore, re-exploring stable-

dense subgraphs will not yield any new dense subgraphs, thus only

newly-dense subgraphs will need to be explored subsequently.

Discussion: As witnessed from the above result, the magnitude

of δ is directly correlated with the impact on dense subgraphs. A

useful analogy is that of an edge weight update as a perturbation:

the greater its magnitude δ, the further away in the graph its effects

can be potentially felt (i.e. the further away dense subgraphs will

need to be explored).

In this context, parameter δit offers a tunable space-time trade-

off. By setting it to higher values, more dense subgraphs will be

maintained, but fewer exploration iterations will be required per

edge update. By setting it to lower values, the space overhead

(i.e. the number of dense subgraphs maintained that are not output-

dense) can be made minimal: nearly 0 for AVGWEIGHT, and com-

parable to an offline approach otherwise8. Consequently, selecting

an optimal good value for δit is data-dependent; in practice, we ob-

serve that DYNDENS performs well for a wide range of δit values.

5. EVALUATION
Let us now discuss the experimental validation of our techniques.

We will first briefly go over the experimental setup. In Section 5.1

we will present experimental evidence for the feasibility of real-

time story identification via ENGAGEMENT, as well as the scala-

bility of our proposed approach. We will also examine the main

factors that contribute to the efficiency of DYNDENS.

As we have seen throughout this work, there is a lack of existing

techniques for efficiently addressing ENGAGEMENT. Nevertheless,

in Section 5.2 we evaluate adaptations of relevant techniques to this

problem, so as to have a basis for comparison.

Finally, although efficiency has been our main focus in this work,

in Section 5.3 we present some qualitative results that highlight the

effectiveness of our approach.

Experimental setup: All algorithms evaluated were imple-

mented in Java, and executed on 64-bit Hotspot VM, on a machine

with 8 Intel(R) Xeon(R) CPU E5540 cores clocked at 2.53GHz. In

our experiments, only one core was used, and the memory usage of

the JVM was capped at 25G of RAM (the actual memory consump-

tion was typically lower). Finally, in all performance experiments,

the time reported is the median time of 3 identical runs.

Datasets: Unless otherwise noted, all our experiments were run

using real-world datasets, based on a sample of all tweets for May

1st, 2011 (Our dataset consisted of 13.8M tweets. The sampling

was performed by Twitter itself, as part of the restricted access pro-

vided to its data stream; for details cf. tinyurl.com/twsam).

From these, we removed non-English tweets, and tweets that were

labeled as spam (using an in-house tweet spam filter [24]), resulting

in 3.8M tweets. Subsequently, we used an in-house entity extrac-

tor [3] to identify mentions of real-world entities (such as people,

politicians, products, etc). 76.5% of the tweets did not mention any

entity of interest; 18.3% mentioned one; 4.3% mentioned two, and

under 1% mentioned three or more entities. The entire procedure

took under 1h 20’ (under 350 µsec per tweet on average).

Measuring correlation: Given these sets of co-occurring enti-

ties, there are many ways in which entity association can be mea-

sured; our techniques are equally applicable, irrespective of the

measure used. For our evaluation, we selected two measures from

the literature that we found to yield meaningful results under di-

verse circumstances: a combination of the χ2 measure and the

correlation coefficient inspired by [5] (weighted dataset), that has

been found to be highly effective in identifying stories in the blogo-

sphere, as well as a thresholded variant of the log-likelihood ratio

[26] (unweighted dataset) that has been successfully used to iden-

tify stories in Grapevine over an extended period of time. In gen-

eral, we note that any measure that measures strength of pairwise

association, based on entity occurrences and pairwise co-occurrences

can equally be used by our techniques.

Identifying emerging stories: Since the goal of our techniques

8All exact offline approaches, to the best of our knowledge, utilize
some form of a growth property, hence need to compute as many
subgraphs as DYNDENS with δit ≃ 0

580

is to identify stories in real-time, i.e. “stories happening now”, a

mechanism for discounting older stories is required. To achieve

this, we modify our measures of correlation, by applying exponen-

tial decay to all entity occurrences and co-occurrences; for instance,

in our experiments we used a mean life for a tweet of 2 hours.

Note that our techniques are equally applicable without applying

any decay, but the stories identified would then correspond to “cu-

mulative stories to date” (cf. Table 3 showing stories for the entire

day) as opposed to “current emerging stories” (cf. online demo

www.onthegrapevine.ca/now.jsp).

Approximating complex association measures: Finally, for

many measures of association (e.g. statistical measures, such as

the log-likelihood ratio), the appearance of a document with just

a single entity, can influence the weight of all edges in the graph

(e.g. the log-likelihood ratio of a pair of entities is a function of the

number of documents that have appeared to date). This would pose

a significant challenge to incremental computations; to overcome

it, we make use of the following approximation, that is applicable

to any measure: the weight of an edge connecting entities e1, e2 is

computed by ignoring all documents that have appeared after the

latest time that either e1 or e2 appeared in some document.

Intuitively, this will not significantly affect edges connecting pop-

ular entities; indeed we observed that in practice the resulting drop

in precision entailed by this approximation was fairly low9. Impor-

tantly, this approximation enables us, after observing a document

that mentions entities e1, · · · , ej , to only update the weights of

edges that are incident to at least one of these entities are updated,

i.e. only the weights of edges {(ei, X)|i ∈ {1, · · · , j}, X ∈ V }
will be updated.

Taking the above into account, the precise manner in which our

experimental datasets were created is as follows.

For every tweet where at least one entity was identified, en-

tity occurrences and co-occurrences were updated (taking expo-

nential decay into account, with a mean tweet life of two hours).

Thereafter, in the case of the weighted dataset, the χ2 and corre-

lation coefficient of salient entity pairs was updated; the updated

edge weight was computed as max(correlation coefficient , 0)
if χ2 showed significant correlation (p < 5%), and 0 otherwise.

This procedure resulted in 952K positive and 40.5M negative edge

weight updates (recall that the latter are very cheap to process).

In the case of the unweighted dataset, the log-likelihood ratio

of salient entity pairs was updated. Two entities were connected

with an edge iff each entity appeared in at least 5 tweets, and log-

likelihood showed significant correlation (p < 1%). This proce-

dure resulted in 43K positive edge weight updates (edge additions),

and 41K negative ones (edge removals).

In either case, this step took under 90 seconds for the entire day.

The streams of edge weight updates were loaded to memory be-

fore initiating our experiments, and the updates were provided to

DYNDENS sequentially, and in-memory. This reflects the expected

usage of DYNDENS, as the edge weight updates that constitute its

input will typically be generated by another process in real-time.

All times reported correspond to the time required to process all

edge weight updates resulting from a dataset, while maintaining

output-dense subgraphs after each update. Specifically, they do not

9Specifically, we measured the error entailed by this approxima-
tion, i.e. the absolute difference of the approximated value of each
edge weight, minus the actual value of the correlation measure, for
all edges, at 100 uniformly distributed time instants. The median
error over all edges was invariably 0; the average absolute error
over all edges and all time instants was 0.0003 for the weighted
dataset, and 0.002 for the unweighted one, and the average relative
error was 10% and 6% respectively.

include the time required to preprocess the dataset (e.g. entity ex-

traction, correlation computation), nor do they include the fixed

initialization costs of DYNDENS (such as JVM initialization and

initialization of necessary indexing structures). It is worth noting,

however, that the throughput of DYNDENS can more than match

the stream rate, even after factoring in all preprocessing steps (in

total, the overhead for all preprocessing and execution of DYN-

DENS for our dataset of one day was generally under 90 minutes;

moreover the most costly preprocessing steps - i.e. named entity

extraction- are inherently parallellizable).

5.1 Efficiency and Scalability
Let us now examine some of our experimental findings. Fig-

ures 4(a)-4(d) show the time required to process all updates from

either dataset, for a variety of definitions of density (experiments

involving additional density functions can be found in [4]), and for

a wide range of values of density threshold T , maximum dense

subgraph cardinality Nmax. In these figures, δit has been set to

1% of its maximum value, given the values of the other parameters

(thus the number of maintained dense subgraphs is typically close

to the number of output-dense subgraphs). All runs were capped

at 10 minutes (runs that took longer than that were terminated); all

figures are cropped to exclude such time-outs10.

We observe that DYNDENS is able to very efficiently process

large datasets, across a wide range of useful operating parame-

ters, validating its applicability for efficiently addressing ENGAGE-

MENT. The chosen parameters range from instances with none,

or only a few output-dense subgraphs, to instances with too many

output-dense subgraphs (in the thousands); i.e. the extremal param-

eter values correspond to instances of less practical interest. Inter-

estingly, one can observe a sharp increase in performance beyond

certain values of parameters T and Nmax. This is due to the en-

suing sharp drop in the average number of output-dense subgraphs.

For instance, with reference to Figure 4(c), the average11 number

of output-dense subgraphs of cardinality at most 6, for T = 1 is

3.4K; for T = 0.8 it is 13.4K; while for T = 0.7 it is over 52K.

Similar trends can be observed in the other figures as well; cf. [4].

Having discussed the scalability and efficiency of DYNDENS, let

us now turn to evaluating its inner workings. Firstly, let us examine

the effects of the δit parameter. Recall that, low values of δit cor-

respond to DYNDENS materializing fewer dense subgraphs, and,

correspondingly, having to perform potentially more explorations.

In our experiments, we found our techniques to perform equally

well for a wide range of values of δit; however, selecting a value

for it, based on characteristics of the dataset can be beneficial to

performance. In Figure 4(e), we show the time taken by DYN-

DENS to process the unweighted dataset (note the semilog scale),

for Nmax = 10 and AVGWEIGHT, across all possible values for

δit (shown normalized to its maximum value for each threshold).

We observe an interesting local optimum wrt. δit, arising from the

tradeoff of having to materialize more subgraphs, while enabling

faster updates; i.e. increasing δit improves performance, up to a

point where the additional dense subgraphs that need to be main-

tained make this a performance drain. For instance, this point is

around 0.2 for T = 0.8, around 0.1 for T = 0.9, and around 0.6

for T = 1. It is also interesting to note that this tradeoff comes into

10The only data points that had terminated runs are outside the dis-
played range; these instances had too large a number of output-
dense subgraphs, as a result of unrealistic values for T, Nmax

and/or δit, and were not expected to finish in a reasonable time
11Averaged over all updates, and excluding output-dense subgraphs
that are not represented in the index, e.g. most too-dense subgraphs,
augmented with a non-neighboring node (cf. Section 3.2.3).

581

(a) AVGWEIGHT, weighted (b) AVGDEGREE, weighted (c) AVGWEIGHT, unweighted (d) AVGDEGREE, unweighted

(e) Effects of δit, unweighted (f) Recall of GRASP, unweighted (g) Performance of GRASP rela-
tive to DYNDENS, unweighted

(h) Effect of heuristics, synthetic

Figure 4: Experimental evaluation

play again for T = 1 and high δit.

As we previously saw in Section 3.2.3, IMPLICITTOODENSE

is crucially important for DYNDENS to operate efficiently, in the

presence of too-dense subgraphs. We validated this intuition exper-

imentally, by executing a variant of DYNDENS that did not make

use of IMPLICITTOODENSE, on the weighted dataset, and compar-

ing its runtime to that of DYNDENS. We experimented with exe-

cution parameters (Nmax ∈ {9, 10}, T ∈ [0.44, 0.5] and with δit

between 1% and 50% of its maximum value, given the values of the

other parameters. Invariably, the variant without IMPLICITTOOD-

ENSE took longer than 20 minutes to complete (and was killed after

20 minutes, in the interests of brevity), while DYNDENS took 40-

85 seconds to complete.

5.2 Comparison with Other Techniques
As we have already discussed throughout this work, to the best of

our knowledge, prior to DYNDENS, no techniques have been pro-

posed for efficiently addressing ENGAGEMENT in its general form.

Thus, in order to have a basis for comparison, in this section we

evaluate adaptations of relevant techniques to subsets of ENGAGE-

MENT, namely the dynamic maximal clique algorithm proposed

in [27] (STIX), the Greedy Randomized Adaptive Search Proce-

dure used to identify large quasi-cliques in [1] (GRASP), as well

as a baseline efficient offline procedure that periodically recom-

putes all AVGWEIGHT dense subgraphs (BASELINE). We wish to

stress that, by its very nature, these comparisons are not fair, as the

goals of the aforementioned techniques are entirely different from

those of ENGAGEMENT, while said techniques are not as general

as DYNDENS.

Let us review each comparison in detail. The STIX algorithm

[27] identifies all maximal cliques in dynamic unweighted graphs.

This is similar to ENGAGEMENT for T = 1, AVGWEIGHT and

unweighted graphs, but subtly different, in that ENGAGEMENT re-

quires the identification of all cliques. Recall that the output of

ENGAGEMENT will be used to present stories to a human user, thus

the subgraphs produced cannot be too large. If STIX were used to

address ENGAGEMENT, and a maximal clique of cardinality e.g.

20 were identified, all its subgraphs of cardinality e.g. 5 or less

would need to be enumerated, and provided as output.

Keeping in mind the caveats above, we implemented STIX us-

ing an efficient in-memory hash-based index12, and executed it on

the unweighted dataset, measuring its execution time, and ignor-

ing the time that would be needed for enumerating all subgraphs of

maximal cliques. We compared this runtime to DYNDENS with

AVGWEIGHT, T = 1 (so as to have a basis for comparison),

Nmax = 5,13 and set δit to half its maximum value, given the

values of the other parameters.

Even though a comparison of STIX and DYNDENS is entirely

artificial, the runtime of STIX and DYNDENS were roughly equal:

STIX took 958 seconds to process the dataset, compared to 936

sec for DYNDENS. DYNDENS performed even better for lower

Nmax, and took more time for higher Nmax. Thus, we conclude

that DYNDENS is best suited to applications of ENGAGEMENT,

while STIX is preferable for applications that require identifying

maximal cliques in unweighted subgraphs.

Let us now review the comparison to GRASP, proposed in [1].

This is an approximate randomized algorithm for identifying large

dense subgraphs in unweighted graphs. While [1] has significantly

more general contributions, for the purposes of this discussion,

the algorithm proposed therein can be used to identify subgraphs

with density over a given threshold T , under AVGWEIGHT, in un-

weighted graphs. GRASP will not necessarily identify all dense

subgraphs, but can be executed multiple times per update, to iden-

tify an increasingly larger number of such subgraphs. It is im-

portant to note that, again, the comparison with DYNDENS is not

12[27] does not provide indexing details, so we opted for an efficient
solution, albeit with high memory consumption. We also experi-
mented with an adaptation of STIX that used our proposed index,
which has much lower memory requirements, but this invariably
resulted in increased runtime for STIX.

13Since the goal is story identification, we set Nmax to a low value,
corresponding to story cardinalities suitable for humans.

582

Table 3: Top stories, May 1st 2011
Pres. Obama announces killing of Osama bin Laden involving:

Barack Obama,U.S. House Permanent Select Committee on
Intelligence,Osama bin Laden,NBC News

Commentary on death of bin Laden, comparison to famous

athletes involving14 : Barack Obama,LeBron James,Delonte
West,Osama bin Laden

Discussions on Lady Gaga’s activities involving: Lady Gaga,Galeria

Libya crisis:NATO Airstrike results in death of 3 grandchildren of

Gaddafi involving: NATO,Libya

Discussions on Harry Potter involving: Hermione Granger,Draco
Malfoy,Bella Swan

News on Osama Bin Laden’s Death Spreads On Twitter

involving15 : Clint Eastwood,Barack Obama,U.S. House Permanent
Select Committee on Intelligence,Osama bin Laden,CBS News

straightforward, as GRASP is geared towards identifying a few large

dense subgraphs, as opposed to all dense subgraphs.

Nevertheless, we implemented GRASP, using an efficient hash-

based in-memory index 16. We set the parameter α that controls

its greediness vs. randomness tradeoff to 0.5, after ensuring this

did not result in any significant performance differences17. We ex-

ecuted GRASP on the unweighted dataset, for a varying number of

iterations per edge weight update (more iterations mean higher run-

time, and a higher likelihood of identifying more dense subgraphs),

and measured its runtime, and recall (fraction of output-dense sub-

graphs that it identified, excluding disconnected subgraphs, which

it does not produce). We limited GRASP to searching for subgraphs

of cardinalities up to Nmax = 5, and normalized the runtime of

GRASP to the runtime of DYNDENS for the same parameters18 (i.e.

the normalized runtime of DYNDENS is 1). The normalized run-

time of GRASP is reported in Figure 4(g), and its recall in Fig-

ure 4(f). As we can see, GRASP offers a runtime/recall tradeoff,

and can thus be at times more efficient than DYNDENS (however, in

such cases, it offers recall of under 80%). Moreover, GRASP offers

diminishing returns wrt. recall (i.e. it takes increasingly many iter-

ations to achieve arbitrarily high recall; even though the increase in

runtime is linear wrt. the number of iterations, the increase in recall

is decidedly sublinear). Thus, in this context, GRASP is best suited

to identifying a sample of all dense subgraphs. However, since high

recall is of crucial importance in story identification (missing 20%

of important stories would not generally be acceptable), DYNDENS

is best suited to addressing ENGAGEMENT in this setting.

Finally, we also investigated a simple baseline approach (BASE-

LINE), which periodically recomputes all output-dense subgraphs

wrt. AVGWEIGHT. The aim of this comparison was to validate

the necessity for incremental computation as opposed to periodic

offline recomputation. We implemented BASELINE using an effi-

cient hash-based in-memory index, and executed it on our experi-

mental datasets with varying parameters (T, Nmax), and at varying

uniform sampling intervals (i.e. every X tweets). We measured

14A Cleveland blogger compared Osama bin Laden to athlete Le-
Bron James; the discussion continued on Twitter, resulting in a
sports-related meme around the death of bin Laden.

15C.Eastwood was mentioned in conjunction with this story as part
of a humorous meme started by comedian Steve Martin on Twitter.

16The index used in [1] is optimized for secondary storage, hence
not very useful for the purposes of our comparison.

17The average (over the values of all other parameters tested) stan-
dard deviation of varying α ∈ (0, 1) was 4%, and the median stan-
dard deviation was 1%.

18For DYNDENS we selected a reasonable value of δit, given the
values of the rest of the parameters.

the number of recomputations that BASELINE was able to perform,

given the same time as DYNDENS took for the entire dataset

Even given the above restricted problem setting, we observed

that BASELINE was generally not up to the task of realtime story

identification. In our weighted dataset, and for a wide range of

parameters, it was able to perform up to 15-30 recomputations in

the same time that DYNDENS processed the entire dataset (corre-

sponding to identifying new stories every 48-96 minutes19). In the

unweighted dataset (which had on average fewer edges, and was

thus more amenable to reprocessing from scratch), BASELINE did

somewhat better, performing 135-300 recomputations for the pa-

rameters we experimented with (corresponding to identifying new

stories about every 5-10 minutes). More detailed results can be

found in [4]. We conclude that, although periodic recomputation

may be an option in limited scenarios (e.g. unweighted graphs,

AVGWEIGHT, not very strict realtime requirements), in general the

performance benefits of incremental recomputation are needed to

support realtime story identification.

5.3 Qualitative Results
Whereas the focus of this work is to efficiently identify dense

subgraphs in an incremental manner, we also provide evidence of

the effectiveness of our approach. Evaluating the quality of our re-

sults for realtime story identification is both inherently challenging,

due to the lack of a ground truth for what constitutes an important

story for a given medium (e.g. a micro-blogging site vs. a news

agency), as well as beyond the scope of this work. We will thus

present some sample results of utilizing dense subgraphs for story

identification. We have also built a live demo for our techniques,

which we will briefly discuss, and encourage interested readers to

visit so as to view this work in action.

In order to present sample results, we chose to focus on stories

at the granularity of a single day (since presenting stories that were

heavily discussed at a specific date and time would be hard to pro-

cess out of context). We used a dataset similar to the “unweighted”

one from our performance experiments, with the following two

modifications: entity correlations were computed over the entire

dataset, as opposed to using exponential decay; and edge weights

were retained for pairs of entities with log likelihood of over 5%

significance, rather than being thresholded and restricted to {0, 1}.

We computed dense subgraphs of cardinality up to Nmax = 5, us-

ing AVGDEGREE to quantify density, so as to favor larger dense

subgraphs; for presentation purposes these were subsequently re-

ranked in a diversity-aware manner [2] (subgraph overlap was pe-

nalized by multiplying subgraph density by 1 − 0.8 · (fraction of

story entities covered by previous stories)).

Table 3 presents the resulting top stories. We observe that dis-

cussions on bin Laden’s death feature prominently in the list; more-

over, given the typical conversation tone on Twitter, distinct discus-

sions involved comparing the presidential announcement to famous

athletes14, and even the rapid propagation of the news on Twitter.

Other stories cover the evolving crisis in Libya, as well as lighter,

ongoing issues, such as Harry Potter, and Lady Gaga’s antics.

For comparative purposes, we also performed the same proce-

dure on a dataset consisting of all blog posts made on major blog

hosting platforms during the same day; due to space constraints the

results can be found in [4].

Finally, to validate the effectiveness our approach, we have built

a live demo of our techniques, in the context of Grapevine [3]. This

prototype processes millions of blog posts on a daily basis, and

computes important stories in real-time. It consists of a pipeline

19As our dataset corresponds to tweets made in one day.

583

that processes blog posts as they are crawled, rejecting spam and

non-english language posts, extracts named entity mentions, up-

dates the entity graph, and uses DYNDENS to update the set of cur-

rent dense subgraphs, as in the “unweighted” dataset used in our

experiments. It also maintains track of output-dense subgraphs,

which are reported to the user upon request. Besides the entities

involved in each output-dense subgraph/story, a few links to rele-

vant blog posts are provided, as well as a link back to Grapevine

for further exploration of the historical evolution of the story. In-

terested readers are encouraged to explore this prototype, available

at www.onthegrapevine.ca/now.jsp .

6. HEURISTICS
In concluding our exposition of DYNDENS, let us also exam-

ine two additional heuristics that can offer modest performance im-

provements, without affecting the quality of results. Both are re-

lated to limiting the number of explorations, and cheap explorations

performed. Due to space constraints, the full details for these, and

proofs of their correctness, are omitted, and can be found in [4].

MAXEXPLORE: Whereas it serves to prove the correctness of

DYNDENS, the previous bound on exploration iterations that need

to be performed on a subgraph C is overly pessimistic, as it is based

on several worst-case assumptions. To overcome this challenge,

we developed MAXEXPLORE, an improvement over the previous

bound, that takes the graph neighborhood of the updated edge, as

well as the cardinality of the subgraph being explored, into account.

As it is a fairly cheap bound to compute, we can expect MAXEX-

PLORE to lead to performance improvements in the case of dense

subgraphs on which multiple exploration iterations would have oth-

erwise been performed.

DEGREEPRIORITIZE: Another challenge in the basic form of

DYNDENS discussed so far, is that a single graph might be ex-

plored multiple times, by exploration procedures originating from

each of its dense subgraphs. To mitigate the adverse effects this can

have on performance, we developed DEGREEPRIORITIZE, a way to

organize the search space, and thus often avoid performing redun-

dant explorations, inspired by the degree-based criterion proposed

in [28]. At a high level, it guarantees that DYNDENS does not need

to explore (or cheap-explore) a subgraph with vertices having dense

connections to the subgraph. We thus expect DEGREEPRIORITIZE

to offer the greatest benefit to performance in cases of dense sub-

graphs on which redundant, multiple-iteration explorations would

have otherwise been performed.

Evaluation: In our evaluation of DYNDENS, the above heuris-

tics were enabled. Thus, to evaluate their performance benefits, we

also evaluated variants of DYNDENS where either DEGREEPRIOR-

ITIZE and/or MAXEXPLORE were disabled, on both our weighted

and unweighted datasets. We observed that these heuristics were

responsible for very modest performance improvements of up to

4%, and sometimes even resulted in worse performance.

By design, we expect the proposed heuristics to offer perfor-

mance benefits in cases where many explorations would have other-

wise been performed in their absence. To validate this, and further

investigate their potential to improve performance, we evaluated

them on a synthetic dataset that consisted of near-cliques, mixed

with random edges, that was generated as follows: In an initially

empty graph with 100K vertices, 250K updates were generated,

each of magnitude (0, 0.1] (with probability 0.3 the update was

negative). With probability 0.9, the update occurred within one

of 100 predefined sets of 10 vertices each; otherwise, it was uni-

formly randomly distributed to the remainder of the graph. Finally,

in order to evaluate the proposed heuristics in the absence of too-

dense subgraphs, updates that would result in too-dense subgraphs

for T = 0.7 and δit at 40% of its maximum value, were rejected.

Figure 4(h) shows the time taken by each DYNDENS variant (no

heuristics enabled, only DEGREEPRIORITIZE enable, only MAX-

EXPLORE enabled, both heuristics enabled), normalized by the time

taken by the first variant; the operating parameters were T = 0.7,

Nmax ∈ {8, 9, 10}, and δit at 40% of its maximum value (note

that the Y axis does not start at 0). The proposed heuristics are

seen to offer performance improvements of up to over 10%; thus,

while not as crucial as IMPLICITTOODENSE to performance, we

believe that the low effort required to implement these heuristics

make them worthwhile for inclusion in DYNDENS.

7. RELATED WORK
While we are not aware of any work that addresses the main-

tenance of dense subgraphs in weighted graphs, under streaming

edge weight updates, for a broad definition of density, there exists

a rich literature of works dealing with related problems.

[27] addresses incremental maximal clique maintenance, from a

mostly theoretical perspective, and using a growth property. This

is very closely related to a special case of ENGAGEMENT (namely,

for unweighted graphs, AVGWEIGHT, and T = 1). An important

difference is that our instantiation of ENGAGEMENT deals with all

cliques, with cardinality constraints, as opposed to maximal cliques

of unconstrained cardinality. As discussed in Section 5.2, while the

former is better suited to real-time story identification, the latter

may be preferable in other scenarios.

[28] addresses near-clique identification, in an offline setting,

again from a mostly theoretical perspective, and using a growth

property; this corresponds to the offline version of ENGAGEMENT

for unweighted graphs, and AVGWEIGHT. The techniques pro-

posed therein cannot be efficiently dynamized in a straight-forward

fashion, as the information they rely upon cannot be efficiently

maintained across updates. Our DEGREEPRIORITIZE pruning con-

dition is inspired by the parent degree-based criterion proposed in

this work. [23] addresses the same problem, using a similar growth

property, and with a focus on a parallel implementation. As with

the other works, the techniques developed therein are not straight-

forward to efficiently dynamize.

Max (quasi-) clique: Related problems occur in the maximum

clique [25] and quasi-clique literature. To overcome the intractabil-

ity and inapproximability of this problem, heuristics (typically ran-

domized) have been used to discover large (quasi-) cliques. A cru-

cial difference is that ENGAGEMENT requires the enumeration of

all dense subgraphs (as from an application perspective, each sub-

graph corresponds to a story of interest). In contrast, works in the

maximum (quasi-) clique domain are geared towards identifying

one “good” subgraph per execution iteration. Moreover, most such

heuristic techniques are not straightforward to efficiently dynamize.

Perhaps most closely related is the state-of-the-art Greedy Ran-

domized Adaptive Search Procedure used in [1] to identify large

dense subgraphs (quasi-cliques). Although this work is more fo-

cused towards developing techniques for limited main-memory sce-

narios, their techniques can be dynamized in an efficient manner to

address ENGAGEMENT for unweighted graphs and AVGWEIGHT

(cf. Section 5.2).

Local density: Other works have dealt with edge-weight update

semantics, albeit with much simpler definitions of density. For in-

stance [30] and others maintain dense subgraphs over sliding win-

dows using neighbor-based patterns (i.e. whether a dense subgraph

should be augmented with an additional node is decided based on

local information only). As the problem being addressed therein

is very different from ENGAGEMENT, the proposed techniques are

inapplicable in the latter domain.

584

Max-flow: [12], [20] and others use (primarily) max-flow based

algorithms to identify dense subgraphs. While max-flow algorithms

can be dynamized [22], [18], these algorithms can only identify and

maintain clusters containing user-specified nodes. In a related vein,

[14] uses max-flow to find the top-1 dense subgraph (for AVGDE-

GREE); however their techniques cannot be efficiently applied to a

top-k or threshold variant, nor can they be efficiently dynamized.

Dynamic graphs: Other works (e.g. [10], [6]) have dealt with

dynamic graph algorithms under edge weight updates, but do not

deal with density problems, focusing instead on properties such as

planarity, connectivity, triangle counting, etc. A notable exception

is [17], which discusses approximation algorithms to general maxi-

mization problems in dynamic graphs. It is, however, theoretical in

nature, and its focus is on the approximation ratio of the resulting

algorithm, not on efficiency.

Clustering: Related problems are also dealt with in the incre-

mental clustering literature (e.g. [11], [15], [8]); however, these

deal with graph node insertion and deletion, and the proposed tech-

niques cannot directly accommodate streaming edge weight up-

dates. A tangentially related problem is evolutionary clustering

([7], [21]) which identifies clusters based on both density, and his-

torical data; the goal is to introduce temporal smoothing, so that

clusters behave in a stable fashion over time.

Communities of interest: [9], and its extension [19], address

the problem of supporting efficient retrieval of important 2-neighbors

of any node, where the importance of a neighbor is related to local

and global edge thresholds. The focus is on better representation

of actual interactions, and removal of spurious information, and

the provided insights are invaluable for any applications that in-

volve dynamic graphs. However, the problem examined in these

works, is substantially different from ENGAGEMENT, hence tech-

niques proposed in these works do not apply in ENGAGEMENT.

Shingling: [13] proposes techniques to identify large dense sub-

graphs in an offline fashion via recursive shingling. While this

could potentially be dynamized, it is geared towards large sub-

graphs (100-10K nodes), and would not be effective on smaller

subgraphs. [29] also uses LSH to identify cliques of moderate size

in large graphs; it is however not easily amenable to dynamization,

as it has a significant preprocessing phase.

Data structures: Finally, the index structure used by DYNDENS

resembles the FP-tree [16], in that both store overlapping subsets

in a prefix tree, with inverted lists embedded into the tree structure.

However, the FP-tree is optimized for static data, and assumes that

tree nodes can be statically ordered in a way that heuristically de-

creases tree size; this makes it unsuitable for ENGAGEMENT, where

tree nodes dynamically change. Moreover, other improvements of

the FP-tree over a plain prefix tree are not applicable to ENGAGE-

MENT, as the problems solved are different.

8. CONCLUSIONS
Motivated by the need to mine important stories and events from

the social media collective, as they emerge, in this work we exam-

ine the problem of maintaining dense subgraphs under streaming

edge weight updates. For a broad definition of graph density, we

propose the first efficient algorithm, DYNDENS, which is based on

novel theoretical results regarding the magnitude of change that a

single edge weight update can have. DYNDENS is highly efficient,

and able to gracefully scale to rapidly evolving datasets, and we

validate the efficiency and effectiveness of our approach via a thor-

ough evaluation on real and synthetic datasets.

Moreover, there are many exciting new directions stemming from

this work. For example, an important problem in the social media

space is the timely identification of online communities. While it is

easy to see how ENGAGEMENT can be applied to this domain, its

characteristics are somewhat different from those of real-time story

identification (e.g. social graphs are frequently directed, communi-

ties are typically subgraphs of larger cardinality than stories, etc.),

and it would be interesting to explore how to adapt DYNDENS to

the diverse challenges this domain imposes. Another interesting

technical problem arises when considering the need for adjusting

the density threshold T , during execution - e.g. in order to adapt

to changes in the dataset. We are actively exploring adapting the

techniques used in DYNDENS to more efficiently perform this task.

9. REFERENCES
[1] J. Abello, M. G. C. Resende, and S. Sudarsky. Massive quasi-clique detection.

In LATIN, pages 598–612, 2002.

[2] A. Angel and N. Koudas. Efficient diversity-aware search. In SIGMOD, pages

781–792, 2011.

[3] A. Angel, N. Koudas, N. Sarkas, and D. Srivastava. What’s on the grapevine? In

SIGMOD, pages 1047–1050, 2009.

[4] A. Angel, N. Koudas, N. Sarkas, and D. Srivastava. Dense subgraph

maintenance under streaming edge weight updates for real-time story

identification. Tr, 2011. Available at http://tinyurl.com/dyndens.

[5] N. Bansal, F. Chiang, N. Koudas, and F. W. Tompa. Seeking stable clusters in

the blogosphere. In VLDB, pages 806–817, 2007.

[6] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming

algorithms, with an application to counting triangles in graphs. In SODA, pages

623–632, 2002.

[7] D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In KDD,

pages 554–560, 2006.

[8] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and

dynamic information retrieval. In STOC, pages 626–635, 1997.

[9] C. Cortes, D. Pregibon, and C. Volinsky. Computational methods for dynamic

graphs. JCGS, 12(4):950–970, 2003.

[10] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms. In

Algorithms and Theory of Computation Handbook, chapter 8. 1999.

[11] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental

clustering for mining in a data warehousing environment. In VLDB, pages

323–333, 1998.

[12] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of web

communities. In KDD, pages 150–160, 2000.

[13] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in

massive graphs. In VLDB, pages 721–732, 2005.

[14] A. Goldberg. Finding a maximum density subgraph. Technical report,

University of California at Berkeley, 1984.

[15] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering

data streams: Theory and practice. TKDE, 15(3):515–528, 2003.

[16] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate

generation. In SIGMOD, pages 1–12, 2000.

[17] J. Hartline and A. Sharp. An incremental model for combinatorial maximization

problems. In WEA, pages 36–48, 2006.

[18] J. Hartline and A. Sharp. Incremental flow. Networks, 50(1):77–85, 2007.

[19] S. Hill, D. K. Agarwal, R. Bell, and C. Volinsky. Building an effective

representation for dynamic networks. Journal of Computational and Graphical

Statistics, 15(3):584–608, 2006.

[20] S. Khuller and B. Saha. On finding dense subgraphs. In ICALP, pages 597–608,

2009.

[21] M.-S. Kim and J. Han. Chronicle: A two-stage density-based clustering

algorithm for dynamic networks. In Discovery Science, pages 152–167, 2009.

[22] S. Kumar and P. Gupta. An incremental algorithm for the maximum flow

problem. JMMA, 2(1):1–16, 2003.

[23] J. Long and C. Hartman. ODES: an overlapping dense sub-graph algorithm.

Bioinformatics, 26(21):2788–2789, 2010.

[24] M. Mathioudakis and N. Koudas. Twittermonitor: trend detection over the

twitter stream. In SIGMOD, pages 1155–1158, 2010.

[25] P. M. Pardalos and J. Xue. The maximum clique problem. Journal of Global

Optimization, 4(3):301–328, 1994.

[26] N. Sarkas, A. Angel, N. Koudas, and D. Srivastava. Efficient identification of

coupled entities in document collections. In ICDE, pages 769–772, 2010.

[27] V. Stix. Finding all maximal cliques in dynamic graphs. Computational

Optimization and Applications, 27(2):173–186, 2004.

[28] T. Uno. An efficient algorithm for solving pseudo clique enumeration problem.

Algorithmica, 56(1):3–16, 2010.

[29] N. Wang, S. Parthasarathy, K.-L. Tan, and A. K. H. Tung. Csv: visualizing and

mining cohesive subgraphs. In SIGMOD, pages 445–458, 2008.

[30] D. Yang, E. A. Rundensteiner, and M. O. Ward. Neighbor-based pattern

detection for windows over streaming data. In EDBT, pages 529–540, 2009.

585

