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ABSTRACT
The paper “Stack-based Algorithms for Pattern Matching on DAGs”
generalizes the classical holistic twig join algorithms and proposes
PathStackD, TwigStackD and DagStackD to respectively evaluate
path, twig and DAG pattern queries on directed acyclic graphs. In
this paper, we investigate the major results of that paper, point-
ing out several discrepancies and proposing solutions to resolving
them. We show that the original algorithms do not find particular
types of query solutions that are common in practice. We also an-
alyze the effect of an underlying assumption on the correctness of
the algorithms and discuss the pre-filtering process that the original
work proposes to prune redundant nodes. Our experimental study
on both real and synthetic data substantiates our conclusions.

1. INTRODUCTION
Chen et al. [3] proposed a group of stack-based algorithms, nam-

ely PathStackD, TwigStackD and DagStackD, to evaluate path, twig
and DAG pattern queries on directed acyclic graphs (DAGs). Sev-
eral other studies (e.g. [7], [6], [4], [8]) have also implemented
these algorithms for experimental comparison. This paper makes
an in-depth analysis of PathStackD (Section 4) and TwigStackD
(Section 5). We propose a classification on solutions to pattern
queries and show that both PathStackD and TwigStackD do not
find particular common types of solutions. We develop a mod-
ified algorithm for PathStackD and two modified algorithms for
TwigStackD, and investigate the updated time and space complex-
ity. In addition, we discuss two claims in [3] related to an under-
lying assumption about “optimum” tree-covers (Section 6) and a
pre-filtering process (Section 7), showing several discrepancies in
the original results. Finally, we present an experimental study sub-
stantiating our claims (Section 8).

2. DEFINITIONS, NOTATIONS, AND OP
ERATIONS

This section introduces some definitions, notations and opera-
tions used through the following discussion and analysis.
Pattern Matching Queries. A path (twig/DAG) pattern query is a
directed path (resp. tree/DAG) Q = (VQ, EQ, fQ), where (1) VQ

is a set of finite nodes, and EQ = VQ ×VQ representing edges, (2)
fQ is a labeling function on VQ such that for each node q ∈ VQ,
fQ(q) is a symbol in a finite alphabet, denoting a label associated
with q. The data graph considered is a DAG G = (VG, EG, fG),
where VG, EG, and fG are respectively a finite set of nodes, a set
of edges, and the labeling function. Let |Q|, |VG|, |EG| denote
the size of query nodes, the size of graph nodes and the num-
ber of graph edges, respectively. Given Q and G, assume VQ =
{q1, . . . , qn}. A set of n data nodes (tq1 , . . . , tqn) in G is said to
be a solution to Q (or a match of Q), if and only if the following
conditions hold: (1) fQ(qi) = fG(tqi), for i ∈ [1, n]; (2) For each
edge (qi, qj) ∈ EQ, tqj is a descendant of tqi , i.e., tqj is reachable
from tqi in G. In this paper, we use tq to denote a data node with
the same label of a query node q and say tq is a matching node of
q. The answer to a pattern query Q is a set containing all solutions.
As for a path (twig) query, a descendant extension of a data node tq
on G with respect to a child node q′ of q is a solution to the subpath
(resp. subtwig) rooted at q′ that contains a descendant tq′ of tq . For
example, (a1, b1, c1) is a solution to the pattern query in the data
graph shown in Figure 1. a2 has a descendant extension w.r.t. B,
(b2, c1), as it is a solution to the path B–C and b2 is a descendant
of a2. We define ancestor extensions of a data node analogously.

In this paper, a spanning tree of a data graph G is also called a
tree-cover [1]. Given a data graph G and a tree-cover (TC), a data
node tqi is said to be a TC descendant of another data node tqj and
tqj is said to be a TC ancestor of tqi , if tqi is a descendant of tqj in
TC; otherwise if tqi is reachable from tqj in G but not in TC, tqi is
said to be an NTC descendant of tqj and tqj is an NTC ancestor of
tqi . We next define four types of solutions to a pattern query.

Classification of Solutions. Given a (path/twig/DAG) query Q and
a graph G with a TC, assume (tq1 , . . . , tqn) is a solution to Q.
We call an edge (qi, qj) ∈ EQ a TC edge with respect to that
solution if tqj is a TC descendant of tqi ; otherwise we call it an
NTC edge. A solution is of Type-1 if all edges in Q are TC edges;
it is a Type-2 solution if (1) there are at least one TC edge and
one NTC edge w.r.t. the solution, and (2) for every NTC edge
(qi, qj) ∈ EQ, all edges directing to the ancestors of qi (if any)
are also NTC edges; it is a Type-3 solution if all edges in Q are
NTC edges w.r.t. it; it is a Type-4 solution if (1) there are at least
one TC edge and one NTC edge with respect to the solution, and
(2) there is an NTC edge (qi, qj) ∈ EQ such that at least one edge
directing to an ancestor of qi is a TC edge. According to the def-
inition, Type-2 and Type-4 solutions constitute of multiple Type-1
and Type-3 subsolutions. Clearly, the four types of solutions are
disjoint and include all kinds of possible solutions. For example,
in Figure 1, (a2, b2, c2), (a3, b2, c2), (a3, b2, c1), and (a1, b1, c1)
are respectively a Type-1, Type-2, Type-3 and Type-4 solution to
the path query on the graph. Type-2, Type-3 and Type-4 solutions
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Figure 1: Snapshots of stacks and pools during the evaluation of PathStackD. In the data graph, the solid edges represent the edges
in the tree-cover, and the dashed edges represent non-tree edges.

are collectively referred to as NTC solutions, while Type-1 solu-
tions are also called TC solutions. Similarly, we classify descen-
dant extensions of a data node to TC ones and NTC ones. Given a
descendant extension of tq w.r.t. a child node q′ of q, if all edges
in the corresponding subquery are TC edges w.r.t. the extension
and tq′ is a TC descendant of tq , it is called a TC descendant ex-
tension; otherwise, it is an NTC descendant extension. In Figure 1,
(b2, c2) is a TC descendant extension of a2 w.r.t. B, while (b2, c2)
and (b2, c1) are two NTC ones of a3.
Streams, Stacks, and Pools. [3] extends the holistic twig join al-
gorithms, namely PathStack and TwigStack [2] that evaluate path
and twig queries over trees, to process queries on DAGs by utiliz-
ing a reachability index and incorporating a data structure called
partial solution pool (essentially a list). Each query node q is asso-
ciated with a stream Tq , a stack Sq and a pool Pq . The stream Tq

contains all data nodes having the same label as associated with q
(i.e. a query variable binding). During the evaluation process, the
set of stacks encodes the partial and total solutions to the query on
TC, and the pools encode the partial and total solutions to the query
beyond TC but on the whole G. Tq1 is said to be a parent stream
of Tq2 , if q1 is a parent of q2, that is, (q1, q2) ∈ EQ. Similarly,
we define parent/child stacks , parent/child pools according to the
parent-child relationship between the corresponding query nodes.
We use |T |total to denote the total number of stream nodes, and
|T |max to denote the maximal size of a stream.
Operations. The basic operations on streams are eof, advance,
next. Initially, a pointer is attached to each stream and point to the
position before the first node. eof(Tq) tests whether the pointer has
come to the end of the stream Tq . advance(Tq) moves the pointer
to the next node. next(Tq) return the node next to the pointer
(note that the pointer is not moved). Operations push, pop, top
on stacks respectively push a node, pop and return the top node.
As for nodes in a path or a twig, subtree(q) returns all nodes
in the subtree rooted at q, and parent(q) and children(q)
return the parent and all children of q respectively.

3. REVIEW
This section gives an overall review of [3], presenting its main

results and discussing the algorithms through examples.
Interval+SSPI. As answering reachability queries is a building
block for evaluating pattern matching queries, [3] proposes an reach-
ability index scheme, called Interval+SSPI in this paper, by com-
bining the classical interval encoding on a tree-cover of a graph and
a predecessor index, namely surrogate & surplus predecessor index
(SSPI). Each data node v is associated with an interval [v.start,
v.end], where v.start and v.end are the pre-order number and the
post-order number in a graph traversal. The reachability between
two nodes in TC generated by the graph traversal can be directly
determined by checking the containment relationship between the
intervals of the two nodes in O(1) time. In addition to the inter-
val encoding, a predecessor list, denoted by PL[v], is assigned to
each node v to derive the remaining transitive closure not covered

by the tree-cover. Given two nodes v1 and v2, if v1 can reach v2
and the interval of v1 does not contain that of v2, the path from
v1 to v2 must contain at least an edge not in TC (called a non-tree
edge). Suppose (v′1, v

′
2) is the last non-tree edge (i.e. closest to v2)

on the path. If v′2 ̸= v2, v′2 is put into PL[v2] and called a surro-
gate predecessor of v2; otherwise, v′1 is put into PL[v2] and called
a immediate surplus predecessor of v2. By recursively looking up
nodes in the predecessor lists as intermediate nodes and checking
the containment of intervals, a reachability query can be answered
in O(|EG|) time. The total size of predecessor lists is bounded
by (|EG| − 1). For more details of query processing, please re-
fer to [3]. Take the data graph of Figure 1 as an example, where
PL[c2] = {b2} and PL[b2] = {a3}. The reachability query be-
tween c2 and a3 can be answered by the following steps: (1) first
look up b2 in PL[c2], and examine whether [b2.start, b2.end] is
subsumed by [a3.start, c3.end]; (2) since the interval [9, 14] of b2
is not contained in the interval [16, 17] of a3, continue to look up
PL[b2]; and (3) a3 is found in PL[b2], so we conclude that a3 can
reach c2.

PathStackD. The original algorithm PathStackD is presented in
Algorithm 1. PathStackD visits stream nodes in the ascending or-
der of their start values (line 2). For each node tqmin , the algo-
rithm pops nodes from stacks that are not TC ancestors of tqmin

(line 4–6) and pushes tqmin into Sqmin , adding a pointer to tqmin

pointing to the top node in the parent stack (line 8). PathStackD
expands the NTC descendant extensions of tqmin stored in pools in
line 6. When qmin is a leaf node, the partial or total solutions are
transferred to pools (line 32) and next output if they are total solu-
tions (line 33); when qmin is a root node, the total solutions headed
by tqmin are output from pools after the descendant extensions are
expanded (line 29–30). The evaluation is terminated when all leaf
stream nodes are processed.

The key difference between PathStackD and PathStack is that
PathStackD introduces a pool structure. A node tq is saved in Pq ,
if q is a leaf node or tq has a descendant extension in child pools
or stacks. Indeed, stacks are only able to encode solutions to a
path query on trees, so NTC solutions need to be stored using a
structure other than stacks. Due to the rule of the pop operations
on stacks, nodes in a stack are clearly in a leaf-to-root order from
top to bottom. A node has exactly one pointer to an ancestor in the
parent stack. In contrast, nodes in a pool (1) do not follow a leaf-to-
root order, (2) cannot be dynamically removed from the pool, and
(3) may have more than one pointers to the parent pool.

Figure 1 shows an example. PathStackD first processes a1, c1, b1,
and b4 and pushes them into stacks in order. a1 is not put in PA,
because when a1 is retrieved from TA, PB is empty and obviously
a1 cannot reach any in PB . Because C is a leaf node, c1 becomes
the first node being put in the pool structure, followed by b1 due
to that b1 is able to find c1 in its child pool, which forms a de-
scendant extension. When b4 is pushed into SB , both b1 and a1

are popped from the stacks. PathStackD then attempts to find NTC
descendant extensions of a2 in pools. Because a2 cannot reach
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Figure 2: Snapshots of stacks and pools during the evaluation of TwigStackD

b1–the only node in the child pool PB of PA, a2 is not put into
PA; but it will eventually be moved to the pool when a TC solution
(a2, b3, c2) is found in stacks. After processing c2, the evaluation
process is terminated, leaving a3 not processed. In the end, two so-
lutions (a2, b2, c2) and (a2, b3, c2) are encoded in the stacks, since
c2 points to b3, b3 points to a2 and b2 is below b3 in SB . Besides,
another solution (a2, b2, c1) can be obtained from the pools.

We can draw the following conclusions from this example. (1)
The two solutions obtained from the stacks are exactly the answer
to the path query on the tree-cover, that is, Type-1 solutions. (2)
The pools encode duplicate solutions with stacks. Indeed, in proce-
dure showSolutions, all stack solutions are moved to the pools,
resulting in redundancy. (3) There is a redundant intermediate so-
lution (b4, c1) stored in pools that does not contribute to any solu-
tion to the path query. (4) The evaluation gets a Type-4 solution
(a2, b2, c1) from the pools, but fails to find another Type-4 solution
(a1, b1, c1), one Type-3 solution (a3, b2, c1), and two Type-2 solu-
tions (a3, b2, c2) and (a3, b3, c2). The last three solutions are not
identified because the evaluation is terminated too early.

TwigStackD. TwigStackD (Algorithm 3) consists of two stages.
In the first stage, it constructs the stack encoding of partial/total TC
path solutions and the pool encoding of partial/total NTC path so-
lutions by processing nodes in the ascending order of start values.
In the second stage, all path solutions are merged to derive the fi-
nal answer to the twig pattern query. Specifically, for each stream
node tq to be processed, TwigStackD first identifies the “missing”
child query nodes of q such that tq has no TC descendant exten-
sions w.r.t. them (line 5). It then determines whether an NTC de-
scendant extension exists in pools w.r.t. each “missing” node q′,
by checking the ancestor-descendant relationship between tq and
nodes in Pq′ (line 6). If tq have descendant extensions w.r.t. all
child query nodes, it is added into Pq to expand those extensions
in pools. Note that the operation in line 24 is not in the original al-
gorithm but actually needed, because for a leaf stream node, there
is of course no “missing” child query nodes and should be put into
the pool anyway. Since the detail of function showSolution-
sWithBlockings is not given in [3], we assume that similar to
showSolutions in PathStackD, the solutions in stacks are repli-
cated to the pools. After all nodes in the leaf streams are processed,
all individual path solutions are merged to form twig solutions.

Figure 2 illustrates an evaluation process of TwigStackD. Be-
cause a1 has no TC descendant extension w.r.t. B and also cer-
tainly cannot find one in the empty pools, a1 is not pushed into SA.
d1 is either not pushed into SD due to the lack of an ancestor in SA;
but it is put into PD , because it is a match of the leaf node D. a3

is the first node pushed into the stack structure, because it directly
finds two TC descendant extensions respectively w.r.t. B and D.
In the end, we obtain two path solutions encoded in the stacks and
one new path solutions in pools. By merging the path solutions,
TwigStackD only finds one Type-1 twig solution (a3, b3, c4, d3)
and one Type-2 solution (a3, b3, c4, d2).

The following conclusions about this example can be made. (1)

TwigStackD correctly finds the Type-1 solution. Indeed, the cor-
rectness of TwigStack guarantees TwigStackD is able to identify all
twig solutions on a tree. (2) Similar to PathStackD, pools encode
duplicate solutions with stacks and redundant intermediate solu-
tions. (3) TwigStackD fails to find two Type-4 solutions (a1, b1, c1,
d1) and (a5, b1, c1, d1), and two Type-2 solutions (a2, b2, c2, d2)
and (a4, b3, c4, d3). The last solution is not found because of the
early termination of the first stage of the evaluation.
DagStackD. [3] briefly introduces another algorithm DagStackD
for DAG pattern queries. DagStackD first decomposes a DAG pat-
tern into several twig patterns, evaluates them using TwigStackD
individually, and merges the results of each twig query to assemble
the final answer. Due to space limitations, [3] does not elaborate on
DagStackD. Since TwigStackD servers as a sub-routine, we can in-
fer that DagStackD suffers from the same problems as TwigStackD.

We investigate PathStackD and TwigStackD in Section 4 and
Section 5 respectively. We assume that the tree-cover of a data
graph and the intervals are created by a depth-first graph traversal
so that the order of the end values of the intervals is exactly re-
verse topological order. We shall relax this constraint and discuss
its effect in Section 6.

4. ANALYSIS OF PATHSTACKD
PathStackD generalizes PathStack to evaluate path pattern queries

on DAGs. As our example shows in Section 3, an obvious problem
with the original PathStackD is the termination time. Since it is a
less fundamental issue, we assume in the following discussion of
the capability of PathStackD that this problem has been fixed (the
solution is given when we present our modified version) and all
necessary stream nodes can be processed.

Observe that all Type-1 solutions (TC solutions) can be correctly
found by PathStackD, due to the correctness and completeness of
PathStack. The key challenge of PathStackD is how to encode NTC
solutions in pools. A node tq may be added into Pq in two situa-
tions. The first is when tq has the minimal start value in stacks and
has a descendant already in Pchild(q) so that a descendant exten-
sion in pools can be expanded (line 18 of Algorithm 1). The other
is when PathStackD identifies a solution containing tq encoded in
stacks and transfers it into pools (line 32 of Algorithm 1).

We first consider the first situation. Note that (1) the nodes are
added to pools in reverse topological order, and (2) no NTC de-
scendant extensions of a node tq would be created and expanded
once after tq is put into Pq . Accordingly, to ensure all NTC so-
lutions can be derived from pools, PathStackD should guarantee
that, before determining whether a node should be put in its pool,
all of its NTC descendant extensions have been already stored in
pools. However, PathStackD does not satisfy this requirement. The
cause is that PathStackD processes stream nodes in the pre-order
rather than the reverse topological order. One intuitive observation
about this is that the solutions in stacks are expanded from the root
to leaf, while those in pools are expanded from the leaf to root.
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Algorithm 1: PathStackD [3]

1. while ¬ end() do
2. qmin := argmini{next(Tqi ).start}
3. tqmin = next(Tqmin )
4. for each qi in subtree(q) do
5. while ¬empty(Sqi ) ∧ top(Sqi .end) < tqmin .start do
6. pop(Sqi )

7. sweepPartialSolutions(qmin)
8. push

(
Sqmin , tqmin , pointer to top(Sparent(qmin))

)
9. advance(Tqmin )

10. if isLeaf(qmin) then
11. showSolutions(Sqmin , 1, null)
12. pop(Sqmin )

Function: end()
13. for each leaf query node qi do
14. if ¬eof(Tqi ) then return false

15. return true

Procedure: sweepPartialSoltuions(q)
16. tq := next(Tq)
17. for each h in Pchild(q) do
18. if checkContainment(tq , h) then expand(q, tq, h)

Function: checkContainment(tq , h)
19. found := false
20. while ¬empty(PL[h]) ∧ ¬found do
21. a := first

(
PL(h)

)
22. if a.start > tq .start ∧ a.end < tq .end then return true
23. else if a.start > tq .end then return false

24. else if ¬
(
found := checkContainment(tq , a)

)
then

25. PL[h] := PL[h]\{a} ∪ PL[a]

26. return found

Procedure: expand(q, tq , h)
27. put tq into Pq

28. h.ptr_to_parentPool := tq
29. if isRoot(q) then
30. output the solutions headed by tq in the root pool

Procedure: showSolutions(SN, TC,ChildSP )
31. index[SN ] := TC
32. expand(SN, S[SN ].index[SN ], S[SN + 1].ChildSP )
33. if SN = 1 then output(S[1].index[1], . . . , S[n].index[n])
34. else
35. for i = 1 to S[SN ].index[SN ].ptr_to_stackParent do
36. showSolutions(SN − 1, i, TC)

Recall the example shown in Figure 1. (b1, c1) is an NTC descen-
dant extension of a1 and cannot be identified by stack encoding;
but both b1 and c1 are TC descendant of a1 and hence processed
after a1. That is, when PathStackD expands possible partial solu-
tions in pools with a1, b1 and c1 are still not in the pools. As a
result, a1 is seen as not having descendant extensions w.r.t. B and
consequently PathStackD is not able to find the Type-4 solution
(a1, b1, c1). Interestingly, although PathStackD processes nodes in
pre-order, those nodes having no ancestor-descendant relationship
in the tree-cover are read in reverse topological order, since it is
assumed that the intervals of nodes are produced by a depth first
traversal. Therefore, we have the following critical Observation 1.
Since Type-3 solutions have no Type-1 parts, the observation shows
that PathStackD can correctly find all of Type-3 solutions.

Observation 1. A solution partially containing Type-3 parts can
be identified by PathStackD as long as the Type-1 parts (if any) can
be constructed and expanded completely and correctly.

We now turn to the second situation of nodes being put in pools.
We have the following observations: (1) the second situation is the
only chance for a Type-1 partial solutions to be encoded in pools;
(2) no partial solutions in pools would be expanded when a Type-
1 partial/total solution is moved to the pools, unless a part of the
transferred Type-1 solution “accidentally” connects with them. In
the example of Figure 1, (a2, b2, c1) can be derived from the pools,
because the Type-1 part, i.e. (a2, b2), belongs to a Type-1 solu-
tion (a2, b2, c2) and (b2, c1) is connected to a2 when the Type-1
solution is replicated from stacks to pools. Therefore, for any solu-
tions containing Type-1 partial solutions, they can be obtained by
PathStackD, only if the Type-1 parts can be encoded in stacks and
moved to pools, a case that only takes place in showSolutions
and when a leaf matching node is found. In other words, we have
Observation 2, showing what Type-2 and Type-4 solutions can be
found.

Observation 2. Type-2 and Type-4 solutions can be found only if
each Type-1 part (partially) constitutes one TC ancestor extension
of a leaf matching node.

Clearly, the Type-1 part of a Type-2 solution satisfies the condi-
tion, but the parts of a Type-4 solution do not necessarily satisfy

it. By Observation 1 and Observation 2, we have the following
proposition.

Proposition 1. Given a data graph and a path pattern query, all
Type-1, Type-2 and Type-3 solutions can be found by PathStackD,
but Type-4 solutions can be found if and only if each Type-1 part
of them (partially) constitutes one TC ancestor extension of a leaf
matching node.

The problem for finding all Type-4 solutions is mainly how to
resolve the conflict between the two orders for constructing stack
encoding and pool encoding. A naïve solution is to simply put all
stream nodes in their corresponding pools before any operations in
the original PathStackD. However, it would introduce large redun-
dant intermediate solutions in pools and incur high I/O cost. It is
desirable to maintain the following rule to reduce the size of inter-
mediate results and improve I/O efficiency.

Rule 1. A node tq is put into Pq if and only if it has at least one
NTC descendant extension w.r.t. the child of q (if exists).

In fact, the original algorithm is intended to follow Rule 1, but
it does not correctly find all potential NTC descendant extensions
and only maintains the property that all nodes being put in the pools
have at least one descendant extension.

Our modified parts of PathStackD are presented in Algorithm
2. First of all, the evaluation terminates only if the root stack is
empty and all nodes in the root stream have been read, since no
new solutions will then be encoded in stacks and no descendant
extensions will be possibly expanded to a total solution (line 3).

The most important modification is in procedure expand for ex-
panding and finding Type-4 solutions (line 7–13). As illustrated in
Figure 3, a Type-4 solution consists of Type-1 and Type-3 subpath
solutions alternated with each other. When PathStackD identifies a
descendant tqk in Pqk for tqj , besides tqj itself, the ancestors of
tqj in stacks, such as tqi , also should be put into the pools imme-
diately, so that the NTC descendant extension currently rooted at
tqk can be expanded with the whole Type-1 subpath solution from
tqi to tqj , regardless of whether the subpath is part of a Type-1 to-
tal solution. In order to make the expansion possible, the order of
pushing a node into its stack and sweeping pool nodes should be
interchanged so that the ancestor extensions stored in stacks can be
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Algorithm 2: Modified PathStackD

Modifications: (1) replace line 1 in Algorithm 1 with line 1 below,
insert line 3 below to the position preceding line 7 in Algorithm 1
and interchange line 7 and line 8 in Algorithm 1 as shown below; (2)
replace line 32 in Algorithm 1 with line 15-16 below; (3) replace
procedure expand in Algorithm 1 with the one below.

Procedure: main
1. while true do
2. · · ·
3. if empty(Sqroot ) ∧ eof(Tqroot ) then break
4. push

(
Sqmin , tqmin , pointer to top(Sparent(qmin))

)
5. sweepPartialSolutions(qmin)
6. · · ·

Procedure: expand(q, tq , h)
7. if ¬isInPool[tq ] then Pq := Pq ∪ {tq}
8. tq .ptrs_to_childPool := tq .ptrs_to_childPool ∪ {h}
9. if ¬isInPool[tq ] then

10. if ¬isRoot(q) ∧ ¬empty(Sparent(q)) then
11. for i := 1 to tq .ptr_to_stackParent do
12. expand(parent(q), Sparent(q)[i], tq)

13. isInPool[tq ] := true

Procedure: showSolutions(SN, TC,ChildSP )
14. · · ·
15. if SN ̸= 1 then
16. expand(SN, S[SN ].index[SN ], S[SN + 1].ChildSP )

17. · · ·

directly derived during expanding (line 4–5). In this way, all and
only qualified nodes are able to be added into pools. Consequently,
all Type-4 solutions can be correctly constructed and Rule 1 also
follows.

Besides, we make the following modifications. (1) The point-
ers assigned to a pool node now points to the child pool instead of
the parent pool, because solutions typically require nodes sorted in
root-to-leaf order (note that the pointers in stacks, however, must
point to the child stack due to the special scheme of stack encod-
ing). (2) Since a node may have multiple descendants in the child
pool and the connectivity should be individually specified, a list
of pointers are attached to each pool node. In the original algo-
rithm, ptr_to_parentPool is actually also a list but not explicitly
expressed in [3]. (3) isInPool records for each node whether it
is in a pool to determine whether the ancestor extensions in stacks
have been already put in pools. (4) An if clause is added in pro-
cedure showSolutions to avoid pools storing duplicate TC so-
lutions in stacks so that solutions derived from pools and stacks are
distinctive (line 15–16).

Figure 4 shows the updated evaluate process of the modified
PathStackD for the query in Figure 1. (1) The Type-4 solution
(a1, b1, c1) is correctly returned by the algorithm. Indeed, when
b1 is pushed into PB , the partial solution (b1, a1) in stacks is also
put into the pools and expanded with c1. (2) a2 is not added into
the pool, since a) when it is processed, no descendants are found in
PB and it has no descendant extensions in pools; b) when perform-
ing procedure showSolutions, only partial solutions (b2, c2)
and (b3, c2) rather than total solutions are transferred into pools.
Consequently, the Type-1 solutions are not stored in pools. (3) The
evaluation completes after processing a3. All the NTC descendant
extensions of a3 can thus be expanded to the total solutions.
Time Complexity. We first point out three discrepancies in [3]
concerning the analysis of the time complexity of the original algo-
rithm which are independent of our extensions.

tqi tqj tqk tqm

…… ……

Type-1 subpath solution Type-3 subpath solution

Figure 3: Illustration of a Type-4 path solution. The solution
is embedded in the path pattern. The dashed edges represent
the NTC ancestor-descendant relationship between two inci-
dent nodes, while the solid edges represent the TC ancestor-
descendant relationship.

First, [3] only considers the cost for constructing stack and pool
encoding, and does not take into account the cost of moving partial
solutions from stacks to pools (line 32 of Algorithm 1) and the cost
of outputting the final results. The size of partial and final solutions
is bounded by O(|T ||Q|

max), and so is the cost.
Second, the original analysis of the number of nodes being looked

up in SSPI during an evaluation, on which [3] mainly focus, is
also questionable. When determining the reachability between two
nodes using Interval+SSPI, function checkContainment dy-
namically removes a part of the predecessors in the predecessor
lists to reduce the times for recursively invoking checkContain-
ment. [3] then claims that the total number of the removed nodes
would not be larger than the size of the original SSPI, and gives an
analysis on the basis of this claim. However, function checkCon-
tainment not only removes predecessors from SSPI, but also
augments the index; thus the size of SSPI does not necessarily
monotonously decrease. See line 24-25 in Algorithm 1. When the
predecessor a in PL[h] is not reachable from tq , a is removed from
PL[h], and nodes in PL[a] are replicated into PL[h] but cannot be
cleared from PL[a]. Therefore, if no nodes in PL[a] are removed
after PathStackD invokes checkContainment in line 24 (e.g.
when all nodes in PL[a] are to the right of tq), the total size of
predecessors in PL[a] and PL[h] is increased by (|PL[a]| − 1).
Indeed, during the evaluation, the size of SSPI may be even larger
than (|EG| − 1), because the index nodes are propagated through
the graph and the propagation does not keep the way of construct-
ing SSPI that guarantees the bound of the index size.

Although the total size of SSPI is not bounded by (|EG| − 1)
as a result of the add-and-remove operation in checkContain-
ment, as for a single node h, the maximal size of predecessors
to be looked up for checking the reachability to h is bounded by
(|EG| − 1), since once a is removed, a will not be looked up again
while nodes in PL[a], which were potential predecessors to be
looked up, are now replicated to Pl[h] and may also have to be
checked for the next reachability checking with h. Given a node
h, we use tsh, ssh and nrh to respectively denote the total size of
nodes being looked up for all sweeping processes on h, the shrink-
ing size of nodes, and the number of times when a node is looked
up but not removed. Because h is not swept by duplicate nodes,
we have tsh = ssh + nrh and ssh ≤ |EG| − 1. In a call of
checkContainment, there are two types of predecessors that
are looked up in PL and not removed: the first is those to the right
of tq , and the second is those being looked up in the last recursive
call stack (when found = true in line 24 of Algorithm 1). During
a recursion of checkContainment, whenever a recursive call in
the depth higher than one encounters a node a′ ∈ PL[a] of the first
type, a will be removed in a predecessor list in a call of lower depth.
That is, at least a node would be removed if there is a node of the
first type in a call with depth higher than one. Therefore, we have
ssh ≥ nrh + 1 + |dph|max|invoke|, where |dph| is the length
of the longest recursive call stack and |invoke| is the number of
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Figure 4: Snapshots during the evaluation of the modified PathStackD on the query and the data graph in Figure 1

times for h being checked by nodes in sweepPartialSoltu-
ions for examining reachability. In fact, in checkContain-
ment, all predecessors that are looked up and to the right of tq in-
cluding those in the last linear call stack can be safely removed and
its predecessor lists are subsequently duplicated. With this change,
we can refine the previous expression to ssh ≥ nrh + 1. Thus,
tsh = ssh + nrh ≤ 2ssv − 1 ≤ 2|EG| − 3. Given that there
are |T |total stream nodes that may be all put in pools and need to
be swept by others to the right in the worst case, the total times of
predecessors in SSPI being looked up is O(|EG||T |total).

Third, the add-and-remove operations in checkConainment
not only possibly increase the total size of index, but also involve
cost for maintaining the order in the predecessor lists. The nodes
in a predecessor list are initially sorted in ascending order of start
values. Because merging two sorted lists takes linear time in the
sum of the sizes of two lists and the size of a predecessor list is
bounded by |VG|, each replication from a predecessor list to an-
other when a predecessor is removed is in O(|VG|) time. In the
worst case, such a replication should be performed whenever there
is a node to be deleted. As discussed before, the shrinking size is
O(|EG||T |total). Hence the total cost for maintaining the order in
SSPI is O(|EG||VG||T |total).

Plus the cost for stack encoding which is linear in |VG|, the over-
all time complexity of the original PathStackD is O(|T |total|EG|
|VG|+ |T ||Q|

max). Compared with the original PathStackD, the mod-
ified PathStackD needs to enumerate more intermediate solutions
encoded in stacks and store them in pools. However, since the size
of the intermediate solutions is bounded by O(|T ||Q|

max), the com-
plexity of the modified version does not change. Clearly, the time
complexity of PathStackD is not independent of the size of inter-
mediate solutions.
Space Complexity. The space cost for PathStackD includes the
cost for stacks and pools. The space cost for stacks is min{|T |total,
pathmax}, where pathmax is the maximum size of a path in the
tree-cover, since every state of stacks at a time corresponds to a
path in the tree-cover. The major concern here is the space cost of
pools. In the worst case, each stream node is put in its pool and
every node has pointers to each ancestor in the parent pool. Hence
the space complexity is O(|T |2max|Q|+min{|T |total, pathmax}).
The modified PathStackD does not increase the space complexity.
Similar to the time complexity, the space complexity of PathStackD
is not independent of the size of intermediate solutions. Indeed, the
nodes in pools are only guaranteed to have descendant extensions
but do not necessarily have ancestor extensions. The pools prob-
ably encode a large number of redundant intermediate results that
do not contribute to any final solutions.

5. ANALYSIS OF TWIGSTACKD
Recall that TwigStackD finds solutions to individual paths in the

first stage and then joins them to form final solutions in the second
stage. The version in [3] has a problem with the termination time
of the first stage that can be resolved the same as for PathStackD.

We again do not consider it in our discussion until giving our mod-
ifications.

TwigStackD uses stacks and pools to construct TC and NTC path
solutions respectively. The two following rules are for determining
whether a node should be pushed in its stack and put in its pool.
Note that Rule 3 does not lead to the conclusion that nodes hav-
ing required descendant extensions are in pools, unless all possible
descendant extensions can be found and expanded correctly.

Rule 2. A node tq is pushed in Sq only if it is in a TC solution to
the twig query.

Rule 3. A node tq is put in Pq only if TwigStackD finds the descen-
dant extensions of tq w.r.t. each of children(q).

We have the following observations: (1) All Type-1 and Type-3
solutions can be correctly found by TwigStackD. (2) Type-2 and
Type-4 solutions can be found as long as each Type-1 parts can
be constructed and expanded completely and correctly. (3) For
any Type-2 or Type-4 solutions that can be found, every Type-1
part must partially constitute a total Type-1 solution. The first two
points are based on the analysis similar to that for PathStackD. The
third point is due to Rule 2. Type-1 partial solutions, as a com-
ponent of a Type-2 solution and a Type-4 solution, are first con-
structed in stacks only if the partial solutions participate in a total
solution. Because only the Type-1 partial solutions that are en-
coded in stacks are moved to the pools and able to be expanded to
total Type-2 or Type-4 solutions in sweepPartialSolution-
sTSD, the Type-2 and Type-4 solutions having partial solutions that
belong to Type-1 but do not take part in any final Type-1 solu-
tions cannot be constructed and found in pools. In the example
shown in Figure 2, TwigStackD fails to find the Type-2 solution
(a2, b2, c2, d2), because the Type-1 partial solution (b2, c2) does
not appear in any Type-1 total solution and hence cannot be con-
structed in pools when TwigStackD attempts to find descendant ex-
tensions for a2. In contrast, if a4 is processed with correct termina-
tion time, the Type-2 solution (a4, b3, c4, d3) could be found since
(b3, c4) and (d3) then have been moved from stacks to pools.

With the three observations, we can consequently prove Propo-
sition 2. An obvious corollary is that TwigStackD cannot find any
Type-2 nor Type-4 solutions if there are no Type-1 solutions.

Proposition 2. Given a data graph and a twig pattern query, a
Type-2 or Type-4 solution can be found by TwigStackD if and only
if each Type-1 part of the solution partially constitutes a total Type-
1 solution.

To find a Type-2 solution, we need to violate Rule 2 with small
changes and we shall discuss the detail when giving our modified
algorithms. However, to find Type-4 solutions is more complicated
and requires a more thorough analysis.

Function getMissings and sweepParitalSolutionsT-
SD are designed to discover descendant extensions in streams and
pools respectively. Given a node tq , function getMissings is
able to find those child streams in which no nodes are TC de-
scendants of tq or those descendants have no extensions in the
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Algorithm 3: TwigStackD [3]

1. while ¬ end() do
2. qmin := argmini{next(Tqi ).start}; tqmin := next(Tqmin )
3. for each qi in subtree(q) do
4. while ¬empty(Sqi ) ∧ top(Sqi .end) < tqmin .start do

pop(Sqi )

5. missings := getMissings(qmin, tqmin )
6. if sweepPartialSolutionsTSD(qmin,missings) then
7. if isroot(qmin)∨¬empty(Sparent(qmin)) then
8. push

(
Sqmin , tqmin ), pointer to top(Sparent(qmin))

)
9. advance(Tqmin )

10. if isLeaf(qmin) then
11. showSolutionsWithBlockings(Sqmin , 1, null)
12. pop(Sqmin )

13. else advance(Tqmin )

14. else advance(Tqmin )

15. mergeAllPathSolutions()
Function: sweepPartialSolutionsTSD(q,missings)

16. for each qi in child(q) do
17. for each h in Pqi do
18. if checkContainment(next(Tq), h) then
19. candidateSet[qi]:= candidateSet[qi] ∪ {h}
20. if qi ∈ missings then missings := missings\{qi}

21. if empty(missings) then
22. for each qi in children(q) do
23. for each h in candidateSet(qi) do expand(q, next(Tq), h)

24. if isLeaf(q) then expand(q, next(Tq), null) // (*)
25. return true

26. return false

Function: getMissings(q, tq)
27. missings := ∅
28. for each qi in children(q) do
29. pos := 1
30. if checkInSync(qi, pos, tq) then
31. allInSync := false

32. while
(
pos<=size(Tqi )

)
∧(Tqi [pos].start<tq .end) do

33. mi := getMissings(qi, Tqi [pos])
34. if ¬empty(mi) then pos++
35. else
36. allInSync := true
37. break

38. if ¬allInSync then
39. missings := missings ∪ {qi}

40. else missings := missings ∪ {qi}
41. return missings

Function: checkInSync(childq, pos, tpar)
42. while

(
pos<=size(Tchildq)

)
∧(Tchildq [pos].start<tpar.start) do

43. pos++

44. if pos <= size(Tchildq) ∧ Tchildq[pos].start < tpar.end then
45. return true

46. else return false

.

t1

t3 t2

(a) Type-4(1)

t1

t2

t3

(b) Type-4(2)

Figure 5: Two types of path components of Type-4 twig solu-
tions. The path t1–t2–t3 is part of a Type-4 solution. The solid
lines enclosed in each triangle denote reachability on the tree-
cover and the dashed edges denote non-tree edges.

tree-cover. Note that the function only relies on the interval en-
coding to determine the ancestor-descendant relationship between
nodes. All the operations in getMissings thus actually work
on the tree-cover rather than the whole data graph. As a result,
getMissings cannot find the Type-2, Type-3, and Type-4 path
extensions with all nodes exclusively in streams, for which their
reachability cannot be identified. The whole algorithm is unable to
return the particular Type-4 total solutions having a component(s)
as suggested in Figure 5(a). Recall the example shown in Figure 2.
When the evaluation processes a1 at the very beginning, a1 clearly
has two descendant extensions with nodes all in streams, namely
(b1, c1) w.r.t. B and (d1) w.r.t. D; but a1 is not put in PA, since
the ancestor-descendant relationship between b1 and c1 cannot be
determined by using the interval encoding in getMissings.

The other type of path components of a Type-4 solution is shown
in Figure 5(b). TwigStackD is unable to identify such a descendant
extension that consists of both stream node(s) and pool node(s), as
getMissings only checks structural constraints among stream
nodes, while sweepPartialSolutionsTSD limits itself in se-
arching in pools. An example of this type is (b1, c1) for a5 in Fig-
ure 2. a5 is seen as missing an extension w.r.t. B and TwigStackD

thus fails to find the Type-4 solution (a5, b1, c1, d1). As a solu-
tion, getMissings needs to look up pool nodes when recur-
sively searching for descendant extensions of a stream node as
done in sweepPartialSolutionsTSD except that none ex-
panding operations currently need to be performed. In this case,
TwigStackD also has the problem caused by the conflict between
the two orders for putting nodes in stacks and pools as we have
discussed for PathStackD. Intuitively, TwigStackD expands partial
solutions in stacks and pools in opposite directions. In Figure 2, the
partial solution (b4, c3) is constructed after the process of searching
for and expanding descendant extensions of a3 in pools is finished.
The Type-4 solution (a3, b4, c3, d3) is consequently missed.

We next describe our first modified algorithm (Algorithm 4) for
correcting TwigStackD. Clearly, a natural way to fix the problem
regarding function getMissings is to (1) use Interval+SSPI rather
than the interval encoding alone for determining structural relation-
ship among descendants and (2) look up pool nodes besides stream
nodes to search for descendant extensions. Given an incoming node
tq , getMissings traverses its TC descendants w.r.t each child of
q and attempts to find their descendant extensions by invoking the
new function checkMissingDEsBySSPI. For a stream node,
function checkMissingDEsBySSPI first searches for descen-
dant extensions by determining the reachability with pool nodes.
If the node does not reach any, the function has to further recur-
sively explore the structure of stream descendants. isChecked and
hasMissingDEs are both global variables, respectively record-
ing whether a node has been checked for its descendant structure
(either when it is processed in the main procedure or when it is
a stream node and checked in checkMissingDEsBySSPI for
one ancestor) and whether it has descendant extensions w.r.t. ev-
ery child query node. They are used to guarantee that no nodes are
examined for more than once. Notice that checkContainment
used in sweepPartialSolutionsTSD to answer reachability
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Algorithm 4: Modified TwigStackD without Pre-Filtering

Modifications: (1) replace line 1 and 2–14 in Algorithm 3 with line 1 and
line 3–16 below; (2) replace line 33–37 in Algorithm 3 to line 22–23
below, and add function checkMissingDEsBySSPI and function
reachBySSPI; (3) insert line 19 below before line 22 in Algorithm 3;
(4) replace function expand the same as in Algorithm 2 and change
showSolutionsWithBlocking in the way similar to the
modification for showSolutions in Algorithm 2 (omitted).

1. while true do
2. · · ·
3. if empty(Sqroot ) ∧ eof(Tqroot ) then break
4. if ¬isChecked[tqmin ] then
5. missings := getMissings(tqmin )

6. if ¬isChecked[tqmin ] ∨ (isChecked[tqmin ] ∧
¬hasMissingDEs[tqmin ]) then

7. if sweepPartialSolutionsTSD(qmin,missings) then
8. if ¬isChecked[tqmin ] then
9. hasMissingDEs[tqmin ] := false

10. advance(Tqmin )
11. if isLeaf(qmin) then
12. showSolutionsWithBlockings(Sqmin , 1, null)
13. pop(Sqmin )

14. else hasMissingDEs[tqmin ] := true
15. isChecked[tqmin ] := true

16. if hasMissingDEs[tqmin ] then advance(Tqmin )

17. mergeAllPathSolutions()

Function: sweepPartialSolutionsTSD(q,missings)
18. · · ·
19. push

(
Sq , next(Tq), pointer to top(Sparent(q))

)
20. · · ·

Function: getMissings(tq)
21. · · ·
22. if checkMissingDEsBySSPI(Tqi [pos], tq) then pos++
23. else allInSync := true; break
24. · · ·

Function: reachBySSPI(v1, v2)
25. if ¬visited[v2] then
26. visited[v2] := true
27. if v1.start ≤ v2.start ∧ v1.end ≥ v2.end then return true
28. else if v1.end < v2.start then return false
29. for pos from 1 to size(PL[v2]) do
30. if reachBySSPI(v1, PL[v2][pos]) then return true

31. return false

Function: checkMissingDEsBySSPI(tq , r)
32. if isChecked[tq ] then
33. return hasMissingDEs[tq ]

34. isChecked[tq ] := true
35. for qi in children(q) do
36. find := false
37. for each h in Pqi do
38. if reachBySSPI(tq , h) then find := true; break

39. if ¬find then
40. pos = pointer(Tqi ) + 1
41. while pos <= size(Tqi ) ∧ Tqi [pos].start < r.start do
42. pos++

43. while
(pos <= size(Tqi ))∧(Tqi [pos].end < tq .end) ∧ ¬find do

44. if reachBySSPI(tq , Tqi [pos]) ∧
¬checkMissingDEsBySSPI(qi, Tqi [pos])) then

45. find := true

46. else pos++

47. if ¬find then
48. hasMissingDEs[tq ] := true
49. return true

50. hasMissingDEs[tq ] := false
51. return false

queries cannot be used for checkMissingDEsBySSPI. This is
because the queries are then on two stream nodes that may be later
put in pools where they are processed in sweepPartialSolu-
tionsTSD. The add-and-remove operations involved in check-
Containment probably remove predecessors that should be used
as an intermediate node for answering reachability queries in swee-
pPartialSolutionsTSD. We thus give a new function reac-
hBySSPI as the reachability query processing algorithm without
add-and-remove operations.

The way to resolve the conflict between stack encoding and pool
encoding is similar to that in PathStackD: (1) function expand is
properly modified; (2) before PathStackD invokes this function, the
current node being processed should be pushed into the stack. Ad-
ditionally, we need to relax Rule 2 to Rule 4 so that Type-1 parts of
possible Type-4 or Type-2 solutions are allowed to be constructed
in stacks even though they may not constitute any Type-1 total so-
lutions. Finally, the termination condition of the first stage should
be changed as in the modification for PathStackD.

Rule 4. A node tq is pushed into Sq if and only if it has at least
one descendant extension w.r.t. each child of q.

Consider the example of Figure 2. (1) With the modifications,
a1 will be pushed into SA since the reachability between two TC
descendants b1 and c1 will be checked in checkMissingDEs-
BySSPI and answered by reachBySSPI. The path solution (a1,
d1) then can be derived from stacks. When b1 sweeps PC and iden-
tifies c1 as a descendant, the partial solution (c1) will be expanded
to (a1, b1, c1) by replicating (a1, b1) constructed in stacks to pools.

In the end, the two path solutions will be merged to (a1, b1, c1, d1).
(2) When invoking the modified getMissings on a5 and search-
ing for descendant extensions of its TC descendant b1, TwigStackD
will look up c1 in PC and correctly find (c1) as a extension of b1,
which in turn can be expanded as a extension of a5 w.r.t. B. (3)
Although (b2, c2) is not in a Type-1 solution, it will be encoded
in stacks due to the new rule and moved to the pools when c2 is
processed so that it is able to be expanded with a2.

Time Complexity. Compared with the time complexity of the mod-
ified PathStackD, the additional major time cost in the modified
TwigStackD includes (1) the cost of checking descendant exten-
sions for stream nodes, i.e. the cost of function getMissings,
(2) the cost of enumerating the path solutions, (3) the cost of merge-
join operations on individual path solutions. We first analyze the
time cost of the modified getMissings. Function reachBySS-
PI is invoked at most O(|T |2max|Q|) times. Since each call of
reachBySSPI takes O(|EG|), the total time cost of performing
getMissings during an evaluation is O(|EG||T |2max|Q|). [3]
does not take into account cost(2) and (3). The cost(2) is linear
in the size of path solutions. Given that the modified TwigStackD
complies with Rule 4, all path solutions are merge-joinable and as
a result, the cost(3) can be linear time in the sum of the size of path
solutions and the size of final twig solutions. Therefore, in addition
to other costs similar in PathStackD, the total time complexity of
TwigStackD is O(|EG||T |2max|Q|+ |VG||EG||T |total + |T ||Q|

max).

Space Complexity. [3] overlooks (1) the space cost for construct-
ing the pool encoding, and (2) the space cost for storing the inter-
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mediate path solutions in order to perform merge-join operations
on them. The space cost of pools is O(|T |2max|Q|) with the same
analysis in computing the cost for PathStackD. Since the size of
path solutions is bounded by |T |2max|Q|, the total space complex-
ity of TwigStackD is O(|T |2max|Q|+min{|T |total, pathmax}).

Clearly, TwigStackD is not quite efficient. In particular, if the
size of input stream nodes is large, it is prohibitively costly to check
for descendant extensions among stream nodes even when the size
of intermediate solutions and final answer are pretty small and man-
ageable. Intuitively, consider evaluating a twig pattern query on a
single root DAG. Assume the root has the same label with the root
query node. It is the first stream node to be processed. As function
getMissings is to find whether there are descendant extensions
w.r.t. each child of the root query node among stream nodes, in this
example it is essentially to determine whether there is such a solu-
tion to the twig on the entire DAG that it contains the root. In the
worst case, getMissings performs exactly the same for finding
a solution to a twig, which is just what TwigStackD is designed for.

Alternatively, we can extend TwigStackD by just incorporating
a process that can exactly identify those stream nodes guaranteed
to appear in a final solution, with which the input stream nodes
having required descendant extensions can be selected and conse-
quently getMissings and sweepPartialSolutionsTSD
can be abandoned (the expanding operations in them should be re-
tained and put in the main procedure). [3] proposes such a pre-
filtering process that is capable of selecting the desirable nodes and
can be employed in TwigStackD, which takes O(|EG|+|VG|) time.
With the pre-filtering process, the time complexity of TwigStackD
is reduced to O(|VG||EG||T |total + |T ||Q|

max), the same as Path-
StackD, while the space complexity does not change.

6. AN UNDERLYING ASSUMPTION
An assumption is made but not explicitly specified in [3] for

PathStackD and TwigStackD. It is assumed that the tree-cover used
in the algorithms is generated by a depth-first graph traversal. The
Lemma 3.2 in [3], as a key basis leading to the major results of the
correctness of PathStackD and TwigStackD including Theorem 3.1
and Theorem 4.1 in [3], states that, given two nodes v1 and v2, if
v1 is reachable from v2, either v1 is a TC descendant of v2 or the
end value of v1 is smaller the start value of v2. Intuitively, it states
that all edges are directed from the right to left. The lemma does not
hold if the tree-cover cannot be generated by a depth-first traversal,
since in a traversal of the tree-cover for creating the intervals, the
end value is assigned to v2 when v2 and all the TC descendants are
visited; but v1 probably is not yet visited and hence has a start
value larger than v2, thereby contradictory to the lemma.

Our modifications are also based on this underlying assumption,
since the partial solutions encoded in pools are only expanded with
nodes to the right of those consisting of the solutions. Figure 6
gives a tree-cover of the data graph of Figure 1 and the correspond-
ing intervals of each node. The tree-cover as well as the intervals is
not able to be generated by a DFS. Using the intervals, PathStackD
has not put any descendant extensions of a3 into pools when pro-
cessing a3; then PathStackD cannot find two solutions (a3, b2, c1)
and (a3, b2, c2).

However, [3] claims in the end of Section 2.2 that the approach
proposed in [1] could be adopted to pick an “optimum” tree-cover,
which is not necessarily able to be obtained by a DFS. When pre-
senting the time complexity of PathStackD, [3] also gives a wrong
analysis by approximating the length of a linear recursive call stack
of function checkContainment to be the diameter of the data
graph based on the situation where the interval numbers of nodes
are created by a traversal on an optimum tree-cover. Indeed, the
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[0, 1]
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Figure 6: An optimum tree-cover of the graph in Figure 1

Algorithm 5: Modified Pre-Filtering
1. for each node n in reverse topological order do
2. for each child prev of n do
3. if prev matches a query node ∧

bitAND(nBitV ector, preQBit) ̸= 0 then
4. reset := false

5. else
6. reset := true

7. nBitV ector := bitOR(nBitV ector, preBitV ector)
8. if reset ∧ prev matches a query node ∧prev does not

satisfy structural constraint then
9. nBitV ector := bitAND(nBitV ector,∼preQBit)

10. if n matches a query node ∧
bitAND(nBitV ector,QBitV ector) == QBitV ector then

11. n satisfies downward structural constraints

approach in [1] can be used as a heuristic way to reduce the size
of SSPI. Yet it cannot be used in PathStackD and TwigStackD. We
have shown that PathStackD fails to find a part of solutions using
an optimum tree-cover shown in Figure 6.

7. PREFILTERING PROCESS
[3] proposes a pre-filtering process to filter redundant nodes not

appearing in solutions (Section 5 in [3]). Given a query pattern,
two bit vectors with length equal to query size are assigned to each
query node for respectively representing ancestors and descendants
specified in the pattern. Specifically, each position Bitq in a vector
corresponds to a query node q; a bit vector for a query node q has 1
in position Bitq′ if q′ is the ancestor or descendant of q depending
on the type of the vector. Such bit vectors can be also computed for
data nodes, recording whether they has ancestors or descendants
matching a particular query node. For example, in Figure 1, the
bit vector of query node B for recording descendants is 011 (the
three positions from left to right respectively represent A, B, and
C). The same type of the bit vector for data node b4 is also 011,
indicating that b4 satisfies the downward structural constraints for
B. The general idea of the pre-filtering algorithm is to employ two
graph traversals to get bit vectors for data nodes and filter those
with bit vectors inconsistent with the vectors assigned to their cor-
responding query nodes. Algorithms 5 shows the process of a graph
traversal for checking the downward structural constraints, where
QBit (preQBit) denotes a bit vector having 1 only in position
corresponding to the query node that n (resp. prev) matches. The
algorithm shown here is slightly different from the original algo-
rithm in [3] in that we add a flag variable reset to indicate whether
a bit for the query node that prev matches should be reset (line 3–6,
line 8). When computing the bit vector for a node n, the original al-
gorithm resets a bit Bitq once n has a child prev that has the label
of q but does not satisfy structural constraints. However, the value
of Bitq may have been set before visiting prev and now should
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Figure 7: Example for illustrating the modification in the pre-
filtering algorithm

a1

b1 d1

c1 c2

1111

0110

0010 0010

0011

(a) Data graph

A

B D

C

1111

00110110

0010

(b) DAG pattern query

Figure 8: Example for illustrating the pre-filtering process on
a DAG pattern query

not be changed (e.g. the left sibling of prev also has the same label
and satisfies the structural constraints). Given a data graph and a
twig query shown in Figure 7, consider the process of computing
the bit vector of a1 for checking downward structural constraints.
Assume line 2 visits b2 after b1. Since b2 has no descendants hav-
ing the label of C, QBitC would be reset to 0 if literally following
the original process, thereby a1 incorrectly identified not satisfying
structural constraints. In contrast, the refined process will not reset
the bit since reset that evaluates to false indicates that the value is
inherited from b1.

[3] claims that this pre-filtering process can identify nodes guar-
anteed to appear in the final results. The claim only holds for path
and twig queries, but not for DAG queries. It is because each bit of
a bit vector only records whether a ancestor or a descendant exist,
but does not capture the specific structure among those ancestors
and descendants. In a tree-structured pattern graph, there are no
edges between descendants in different subtrees of a given node,
so the downward structural constraints are satisfied by the node
as long as all children also satisfy their constraints. Yet in a gen-
eral graph-structured pattern, multiple nodes may share an identical
child node, which means for a node, its different children may be
required to have the same nodes. The fact that children respectively
satisfy downward constraints does not lead to the conclusion that
their parent node is also consistent with structural constraints. The
reasoning line is similar when it comes to upward structural con-
straints. In Figure 8, b1 and d1 individually satisfy subtwig struc-
tural constraints, but a1 does not, since b1 and d1 do not share a
descendant with the label as C. In summary, pre-filtering is indeed
useful for evaluating a path/twig pattern query, but it cannot filter all
redundant nodes for a DAG pattern query. In addition, for a twig
pattern query, because the process needs two graph traversals, it
may be less efficient than directly performing getMissings and
sweepPartialSolutionsTSD, when querying a large graph
yet with a small size of stream nodes.

8. EXPERIMENTAL STUDY
In this section, we present an experimental study using both real

and synthetic data to evaluate: (1) the effectiveness of the origi-
nal PathStackD and TwigStackD; (2) the efficiency of the modified

Table 1: Statistics of XMark datasets
Scaling factor 0.5 1 1.5 2 4
Dataset size (MB) 55 111 167 223 447
Nodes (Million) 0.64 1.29 1.94 2.52 5.17
Edges (Million) 0.77 1.54 2.32 3.09 6.20

Table 2: The total number of solutions returned by
PathStackD-O and PathStackD-M

Path1 Path2 Path3 Path4

PathStackD-O 19055 44422 188872 0
PathStackD-M 19055 44422 188872 89369

TwigStackD without and with the pre-filtering process; (3) the ef-
fectiveness of using the optimum tree-cover; and, (4) the effective-
ness of the pre-filtering process on DAG pattern queries.

8.1 Experimental Setting
Datasets. We use large synthetic XMark data [5] and the real-life
arXiv data in our experiments.

(1) We generated five XMark datasets with the scaling factors
from 0.5 to 4. For each dataset, we constructed a node-labeled
graph, where nodes correspond to XML elements, edges represent
the internal parent-child links and ID/IDREF links, and labels are
the tags of elements. The details are given in Table 1.

(2) We generated a graph from the HEPTh database1, originally
derived from the arXiv2. There are paper nodes and author nodes,
each associated with multiple properties. We assigned a label to
each author node according to the email domain, and a label to
each paper node based on its area and journal it is published in.
The edges of the graph represent author or citation relationships.
The graph has 9562 nodes, 28120 edges, and 1132 distinct labels.
Queries. We used the query set shown in Figure 9 for XMark data,
where a dashed edge indicates that the path between the two ele-
ments with the incident tags contains at least a ID/IDREF link. We
randomly classified person and item elements into ten groups and
each group has a distinct label. For each type of query, we gen-
erated ten different queries by randomly choosing a label for each
person and item node.

A query generator is also designed to produce twig and DAG
queries for arXiv data. Each query node is associated with a la-
bel randomly chosen from the data graph. Two groups of queries
are generated: one have a small size of results between 2 and 50,
the other has a relatively large size of results between 200 and 1200.
For each group, we generated 5 sets of queries with query size vary-
ing from 5 to 13. For each size scale, fifteen different queries are
tested and the average is reported here.
Implementation. We have implemented the original PathStackD
(denoted as PathStackD-O), the original TwigStackD (TwigStackD-
O), the modified PathStackD (PathStackD-M), the modified TwigSt-
ackD without the pre-filtering process (TwigStackD-NF), and us-
ing the pre-filtering process (TwigStackD-F). In PathStackD-O and
TwigStackD-O, the error with the termination time is corrected. All
experiments are performed on a 2.4GHz Intel-Core-i3 CPU with
3.7 GB RAM running Ubuntu 11.04 (with gcc 4.5.2).

8.2 Experimental Results
Exp-1: Effectiveness of PathStackD. To evaluate the effective-
ness of the original PathStackD, we used the queries of Path1,
Path2, Path3, and Path4, whose solutions respectively belong

1http://kdl.cs.umass.edu/data/hepth/hepth-info.html
2http://arxiv.org
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Figure 9: Queries for XMark data
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Figure 10: Experimental results

Table 3: The total number of solutions returned by TwgStackD-
O and TwgiStackD-F

Twig1 Twig2 Twig3 Twig4
TwgStackD-O 4794 0 18743 0
TwgiStackD-F 4794 11158 18743 11158

to Type-1, Type-2, Type-3 and Type-4. The total number of re-
turned solutions to the ten generated queries for each query type
on XMark data (scale 1.5) by PathStackD-O and PathStackD-M
is presented in Table 2. The results show that PathStackD-O can
find all solutions to Path1, Path2 and Path3, but returns none
to Path4, since there are no Type-1 solutions to Path4 and cer-
tainly no “lucky” cases of Path4 where every Type-1 component
of Type-4 solutions can be found in a Type-1 solution.
Exp-2: Effectiveness of TwigStackD. We evaluate the effective-
ness of TwigStackD-O on the query sets of Twig1, Twig2, Twig3
and Twig4, whose solutions are respectively of Type-1, Type-2,
Type-3 and Type-4. The results on XMark data (scale 1.5) are
given in Table 3. TwigStackD-O fails to identify the solutions to
Twig2 and Twig4. The reason why none of the Type-2 solutions
and Type-4 solutions to Twig2 and Twig4 are not found is that the

Type-1 components of those solutions are not in a total Type-1 so-
lution. Indeed, Twig2 and Twig4 queries have no type-1 solutions.
TwigStackD-O also failed to return any solutions to Twig4, Twig5
and Twig6. The results show the inability of TwigStackD-O to find
all Type-4 and Type-2 solutions.

Exp-3: Efficiency and scalability of TwigStackD. Since TwigSt-
ackD is a generalization of PathStackD, we focus on studying the
efficiency and scalability of TwigStackD. In this set of experiments,
we compare the performance of TwigStackD-F and TwigStackD-
NF on both XMark data and arXiv data.

Figure 10(a) shows the evaluation time for processing Twig1,
Twig4, Twig5 and Twig6 on XMark data with scaling factor 1.5.
TwigStackD-F significantly outperforms TwigStackD-NF by more
than two orders of magnitudes for all tested query sets. The pro-
cessing time for both TwigStackD-F and TwigStackD-NF remains
nearly the same with the increasing query size with reasons as fol-
lowing. (1) Due to the tree-like structure of XMark data, the size of
the resulting SSPI is small and besides, most reachability queries
can be efficiently answered by checking the intervals in constant
time. As a result, The additional major cost for the operations of
reachability query processing caused by the increased size of query
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nodes is limited. (2) The size of solutions to Twig1 (with an aver-
age of 479.4) is very small and the solutions to different query sets
in this experiment are actually related. Intuitively, the evaluation
process for Twig4, Twig5 and Twig6 which contain Twig1 in-
volve little extra cost to derive solutions from the answer to Twig1.

Figure 10(c) and 10(d) respectively depict the results of the group
of queries with small results and the group with large results on
arXiv data. In contrast to XMark data with a small density of nearly
1, the density of arXiv data is close to 3. The larger number of non-
tree edges not only increase the size of SSPI, but also diminishes
the importance of stack encoding and requires more costly oper-
ations of checking and expanding descendant extensions in pools.
As a result, TwigStackD-NF is more sensitive to the query size on
arXiv data. However, the elapsed time of TwigStackD-F does not
change much, due to the effectiveness of the pre-filtering process,
during which most nodes are pruned before constructing the stack
and pool encoding. Yet TwigStackD-F fluctuates sharply in Figure
10(a). It has pool performance for particular queries with size of 5
and 9, for which the evaluation generates a relatively large size of
intermediate partial results.

Figure 10(b) shows the evaluation time of the two algorithms
for processing Twgi4 on XMark data varying the data size. The
results show that the larger the XMark data, the greater the gap
between the performance of TwigStackD-F and TwigStackD-NF.
While TwigStackD-F 30 times faster than TwigStackD-NF on XM-
ark data with scaling factor 0.5, TwigStackD-F outperforms TwigS-
tackD-NF by more than 300 times when the scale increases to 4.

The experiments reveal that TwigStackD-NF is inefficient and
unscalable, but the pre-filtering process can considerably improve
the performance. However, note that we do not take into account
the I/O cost involved in the pre-filtering. Since the pre-filtering
needs two graph traversals on the data graph and the graph databases
in practical applications are often extremely large, TwigStackD-F
is also supposed to be prohibitively costly in practice.
Exp-4: Effectiveness of the optimum tree-cover. In this set of
experiment, we test the effectiveness of applying the optimum tree-
cover to generate interval encoding and SSPI, using recall mea-
sure for quantitative comparison. Figure 10(e) shows the results of
evaluating Twig1, Twig4, Twig5, and Twig6 on the four XMark
data sets. The results are quite similar in different data sets. Be-
cause the paths between the elements matching the query nodes of
Twig1, such as the path from person elements to education ele-
ments, do not include ID/IDREF links in the original XML data, the
TC ancestor-descendant relationship between them is maintained in
any tree-covers including the optimum tree-cover. As a result, all
solutions to Twig1 are found. However, the recalls of other queries
are less than 0.4. In particular, the more edges involving ID/IDREF
links, the lower the recall. Therefore, the SSPI and intervals cre-
ated on an optimum tree-cover cannot be used in PathStackD and
TwigStackD unless the queries can be answered by PathStack and
TwigStack, in which case the SSPI is actually not used.
Exp-5: Effectiveness of the pre-filtering process. This set of ex-
periments uses the arXiv data to evaluate the effectiveness of the
pre-filtering process in terms of the precision measure defined as
follow:

For each query qi, precision(qi) =
#resulting_nodes
#selected_nodes

Here #selected_nodes is the number of distinct nodes selected by
the pre-filtering algorithm, and #resulting_nodes is the number of
distinct nodes in the final query answers. We generated five DAG
query sets with varying query sizes. For each query size scale,
15 different queries are tested and the micro-average and macro-
average precision (MicroP and MacroP for short respectively) are

reported in Figure 10(f). For most queries, the precisions are less
than 0.5, which indicates more than a half of nodes returned by the
algorithm are not in any query answer. The difference of MicroP
and MacroP for 5-node DAG patterns is due to their different ways
to present the measures. The precisions for a half of 5-node queries
are nearly 1, but some are pretty small (less than 0.2). The MicroP
tends to be affected by some queries for which the algorithm returns
too many redundant nodes. The results verified that the pre-filtering
step cannot exactly select the nodes guaranteed to appear in final
results for DAG pattern queries.

9. CONCLUSIONS
Based on a classification of solutions proposed in this paper, we

have shown that PathStackD cannot identify particular Type-4 path
solutions and TwigStackD is unable to find particular Type-4 and
Type-2 solutions. Both the missed Type-4 solutions and the missed
Type-2 solutions are not rare in practice. A modified PathStackD
and two modified algorithms for TwigStackd are proposed, which
can guarantee soundness and completeness. We have shown that
the time and space complexity of PathStackD and TwigStackD is
quite high. In particular, in contrast to the claim in [3], the com-
plexity is neither independent of the size of intermediate solutions
and nor quadratic in the average size of the query variable bind-
ings. We have also shown that the optimum tree-cover proposed
in [1] cannot be used in PathStackD and TwigStackD, and the pre-
filtering process proposed in [3] cannot exactly prune all redundant
nodes not in the final answer to a DAG pattern query. We have ex-
perimentally verified the inability of PathStackD and TwigstackD
to find certain types of solutions, compared the efficiency of the
two modified versions of TwigStackD, demonstrated the low effec-
tiveness of the optimum tree-cover, and the low effectiveness of the
pre-filtering process on DAG pattern queries.
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