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ABSTRACT

Many studies have been conducted on seeking the efficient solution

for subgraph similarity search over certain (deterministic) graphs

due to its wide application in many fields, including bioinformat-

ics, social network analysis, and Resource Description Framework

(RDF) data management. All these works assume that the underly-

ing data are certain. However, in reality, graphs are often noisy

and uncertain due to various factors, such as errors in data ex-

traction, inconsistencies in data integration, and privacy preserving

purposes. Therefore, in this paper, we study subgraph similarity

search on large probabilistic graph databases. Different from pre-

vious works assuming that edges in an uncertain graph are inde-

pendent of each other, we study the uncertain graphs where edges’

occurrences are correlated. We formally prove that subgraph sim-

ilarity search over probabilistic graphs is #P-complete, thus, we

employ a filter-and-verify framework to speed up the search. In the

filtering phase, we develop tight lower and upper bounds of sub-

graph similarity probability based on a probabilistic matrix index,

PMI. PMI is composed of discriminative subgraph features associ-

ated with tight lower and upper bounds of subgraph isomorphism

probability. Based on PMI, we can sort out a large number of prob-

abilistic graphs and maximize the pruning capability. During the

verification phase, we develop an efficient sampling algorithm to

validate the remaining candidates. The efficiency of our proposed

solutions has been verified through extensive experiments.

1. INTRODUCTION
Graphs have been used to model various data in a wide range

of applications, such as bioinformatics, social network analysis,

and RDF data management. Furthermore, in these real applica-

tions, due to noisy measurements, inference models, ambiguities of

data integration, and privacy-preserving mechanisms, uncertainties

are often introduced in the graph data. For example, in a protein-

protein interaction (PPI) network, the pairwise interaction is de-

rived from statistical models [5, 6, 20], and the STRING database

(http://string-db.org) is such a public data source that contains PPIs

with uncertain edges provided by statistical predications. In a so-

cial network, probabilities can be assigned to edges to model the

degree of influence or trust between two social entities [2, 25, 14].

In a RDF graph, uncertainties/ inconsistencies are introduced in

data integration where various data sources are integrated into RDF

graphs [18, 24]. To model the uncertain graph data, a probabilistic

graph model is introduced [27, 43, 21, 18, 24]. In this model, each

edge is associated with an edge existence probability to quantify the

likelihood that this edge exists in the graph, and edge probabilities

are independent of each other. However, the proposed probabilis-

tic graph model is invalid in many real scenarios. For example,

for uncertain protein-protein interaction (PPI) networks, authors in

[9, 28] first establish elementary interactions with probabilities be-

tween proteins, then use machine learning tools to predict other

possible interactions based on the elementary links. The predic-

tive results show that interactions are correlated, especially with

high dependence of interactions at the same proteins. Given an-

other example, in communication networks or road networks, an

edge probability is used to quantify the reliability of link [8] or the

degree of traffic jam [16]. Obviously, there are correlations for the

routing paths in these networks [16], i.e., a busy traffic path often

blocking traffics in nearby paths. Therefore, it is necessary for a

probabilistic graph model to consider correlations existed among

edges or nodes.

Clearly, it is unrealistic to model the joint distribution for the en-

tire set of nodes in a large graph, i.e., road and social networks.

Thus, in this paper, we introduce joint distributions for local nodes.

For example, in graph 001 of Figure 1, we give a joint distribution

to measure interactions (neighbor edges1) of the 3 nodes in a lo-

cal neighborhood. The joint probability table (JPT) shows the joint

distribution, and a probability in JPT (the second row) is given as

Pr(e1 = 1, e2 = 1, e3 = 0) = 0.2, where ”1” denotes exis-

tence while ”0” denotes nonexistence. For larger graphs, we have

multiple joint distributions of nodes in small neighborhoods (in

fact, these are marginal distributions). In real applications, these

marginal distributions can be easily obtained. For example, authors

in [16] use sampling methods to estimate a traffic joint probability

of nearby roads, and point out that the traffic joint probability fol-

lows a multi-gaussian distribution. For PPI networks, authors in [9,

28] establish marginal distributions using a Bayesian prediction.

In this paper, we study subgraph similarity search over proba-

bilistic graphs due to wide usage of subgraph similarity search in

many application fields, such as answering SPARQL query (graph)

in RDF graph data [18, 1], predicting complex biological interac-

tions (graphs) [33, 9], and identifying vehicle routings (graphs) in

road networks [8, 16]. In the following, we give the details about

subgraph similarity search, our solutions and contributions.

1
Neighbor edges are the edges that are incident to the same vertex or the

edges of a triangle.
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Figure 1: Probabilistic graph database & Query graph

1.1 Probabilistic Subgraph Matching
In this paper, we focus on threshold-based probabilistic sub-

graph similarity matching (T-PS) over a large set of probabilistic

graphs. Specifically, let D = {g1, g2, ..., gn} be a set of proba-

bilistic graphs where edges’ existences are not independent, but are

given explicitly by joint distributions, q be a query graph, and ϵ be

a probability threshold, a T-PS query retrieves all graphs g ∈ D
such that the subgraph similarity probability (SSP) between q and

g is at least ϵ. We will formally define SSP later (Def 9). We em-

ploy the possible world semantics [31, 11], which has been widely

used for modeling probabilistic databases, to explain the meaning

of returned results for subgraph similarity search. A possible world

graph (PWG) of a probabilistic graph is a possible instance of the

probabilistic graph. It contains all vertices and a subset of edges

of the probabilistic graph, and it has a weight which is obtained

by joining joint probability tables of all neighbor edges. Then, for

a query graph q and a probabilistic graph g, the probability that q
subgraph similarly matches g is the summation of the weights of

those PWGs, of g, to which q is subgraph similar. If q is sub-

graph similar to a PWG g′, g′ must contain a subgraph of q, say q′,
such that the difference between q and q′ must be less than the user

specified error tolerance threshold δ. In other words, q is subgraph

isomorphic to g′ after q is relaxed with δ edges.

Example 1. Consider graph 002 in Figure 1. JPT1 and JPT2

give joint distributions of neighbor edges {e1, e2, e3} and {e3, e4,
e5} respectively. Figure 2 lists partial PWGs of probabilistic graph

002 and their weights. The weight of PWG (1) is obtained by join-

ing t1 of JPT1 and t2 of JPT2, i.e., Pr(e1 = 1, e2 = 1, e3 =
1, e4 = 1, e5 = 0) = Pr(e1 = 1, e2 = 1, e3 = 1) × Pr(e3 =
1, e4 = 1, e5 = 0) = 0.3 × 0.25 = 0.075. Suppose the distance

threshold is 1. To decide if q subgraph similarly matches proba-

bilistic graph 002, we first find all of 002’s PWGs that contain a

subgraph whose difference between q is less than 1. The results

are PWGs (1), (2), (3) and (4), as shown in Figure 2, since we can

delete edge a, b or c of q. Next, we add up the probabilities of these

PWGs: 0.075 + 0.045 + 0.075 + 0.045 + ... = 0.45. If the query

specifies a probability threshold of 0.4, then graph 002 is returned

since 0.45 > 0.4.

The above example gives a naive solution, to T-PS query process-

ing, that needs to enumerate all PWGs of a probabilistic graph. This

solution is very inefficient due to the exponential number of PWGs.

Therefore, in this paper, we propose a filter-and-verify method to

reduce the search space.

1.2 Overview of Our Approach
Given a set of probabilistic graphs D = {g1, ..., gn} and a query

graph q, our solution performs T-PS query processing in three steps,

namely, structural pruning, probabilistic pruning, and verification.
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Figure 2: Partial possible world graphs of probabilistic graph 002

Structural Pruning

The idea of structural pruning is straightforward. If we remove

all the uncertainty in a probabilistic graph, and q is still not sub-

graph similar to the resulting graph, then q cannot subgraph simi-

larly match the original probabilistic graph.

Formally, for g ∈ D, let gc denote the corresponding determin-

istic graph after we remove all the uncertain information from g.

We have

Theorem 1. If q *sim gc, Pr(q ⊆sim g) = 0.

where ⊆sim denotes subgraph similar relationship (Def 8), and

Pr(q ⊆sim g) denotes the subgraph similarity probability of q
to g.

Based on this observation, given D and q, we can prune the

database Dc = {gc1, ..., g
c
n} using conventional deterministic graph

similar matching methods. In this paper, we adopt the method in

[38] to quickly compute results. [38] uses a multi-filter composi-

tion strategy to prune large number of graphs directly without per-

forming pairwise similarity computation, which makes [38] more

efficient compared to other graph similar search algorithms [15,

41]. Assume the result is SCc
q = {gc|q ⊆sim gc, gc ∈ Dc}. Then,

its corresponding probabilistic graph set, SCq = {g|gc ∈ SCc
q}, is

the input for uncertain subgraph similar matching in the next step.

Probabilistic Pruning

To further prune the results, we propose a Probabilistic Matrix In-

dex (PMI) that will be introduced later, for probabilistic pruning.

For a given set of probabilistic graphs D and its corresponding set

of deterministic graphs Dc, we create a feature set F from Dc,

where each feature is a deterministic graph, i.e., F ⊂ Dc. In PMI,

for each g ∈ SCq , we can locate a set

Dg = {⟨LowerB(fj), UpperB(fj)⟩|fj ⊆iso gc, 1 ≤ j ≤ |F |}

where LowerB(f) and UpperB(f) are the lower and upper bounds

of the subgraph isomorphism probability of f to g (Def 6), denoted

by Pr(f ⊆iso g). In this paper, ⊆iso is used to denote subgraph-

isomorphism. If f is not subgraph isomorphic to gc, we have ⟨0⟩.
In the probabilistic filtering, we first determine the remaining

graphs after q is relaxed with δ edges, where δ is the subgraph dis-

tance threshold. Suppose the remaining graphs are {rq1, ...rqi, ...
rqa}. For each rqi, we compute two features f1

i and f2
i in Dg such

that rqi ⊇iso f1
i and rqi ⊆iso f2

i . Let Pr(q ⊆sim g) denote the

subgraph similarity probability of q to g (Def 9). Then, we can cal-

culate upper and lower bounds of Pr(q ⊆sim g) based on the val-

ues of UpperB(f1
i ) and LowerB(f2

i ) for 1 ≤ i ≤ a respectively.

If the upper bound of Pr(q ⊆sim g) is smaller than probability

threshold ϵ, g is pruned. If the lower bound of Pr(q ⊆sim g) is

not smaller than ϵ, g is in the final answers.

801



Verification

In this step, we calculate Pr(q ⊆sim g) for query q and candidate

answer g, after probabilistic pruning, to make sure g is really an

answer, i.e. Pr(q ⊆sim g) ≥ ϵ.

1.3 Contributions and Paper Organization
The main idea (contribution) of our approach is to use the proba-

bilistic checking of feature-based index to discriminate most graphs.

To achieve this, several challenges need to be addressed.

Challenge 1: Determine best bounds of Pr(q ⊆sim g)

For each rqi, we can find many f1
i s and f2

i s in PMI, thus, a large

number of bounds of Pr(q ⊆sim g) based on the combination of

UpperB(f1
i ) and LowerB(f2

i ) for 1 ≤ i ≤ a can be computed.

In this paper, we convert the problem of computing the best upper

bound into a set cover problem. Our contribution is to develop an

efficient randomized algorithm to obtain the best upper bound using

integer quadratic programming, which is presented in Section 3.

Challenge 2: Compute an effective Dg

An effective Dg should consist of tight UpperB(f) and LowerB(
f) whose values can be computed efficiently. As we will show

later that calculating Pr(f ⊆iso g) is #P-complete, which in-

creases the difficulty of computing an effective Df . To address this

challenge, we make a contribution to derive tight UpperB(f) and

LowerB(f) by converting the problem of computing bounds into

a maximum clique problem and propose an efficient solution by

combining the properties of probability conditional independence

and graph theory, which is discussed in Section 4.1.

Challenge 3: Find the features that maximize pruning

Frequent subgraphs (mined from Dc) are commonly used as fea-

tures in graph matching. However, it would be impractical to index

all of them. Our goal is to maximize the pruning capability with

a small number of features. To achieve this goal, we consider two

criteria in selecting features, the size of the feature and the num-

ber of disjoint embeddings that a feature has. A feature of small

size and many embeddings is preferred. The details about feature

selection are given in Section 4.2.

Challenge 4: Compute SSP efficiently

Though we are able to filter out a large number of probabilistic

graphs, computing the exact SSP in the verification phase may still

take quite some time and become the bottleneck in query process-

ing. To address this issue, we develop an efficient sampling algo-

rithm, based on the Monte Carlo theory, to estimate SSP with a

high quality, which is presented in Section 5.

In addition, in Section 2, we formally define T-PS queries over

probabilistic graphs and give the complexity of the problem in Sec-

tion 2. We discuss the results of performance tests on real data sets

in Section 6 and the related works in Section 7. We conclude our

work in Section 8.

2. PROBLEM DEFINITION
In this section, we define some necessary concepts and show the

complexity of our problem. Table 1 summarizes the notations used

in this paper.

2.1 Problem Definition

Definition 1. (Deterministic Graph) An undirected determin-

istic graph2 gc, is denoted as (V,E,Σ, L), where V is a set of ver-

tices, E is a set of edges, Σ is a set of labels, and L : V ∪E → Σ is

2
In this paper, we consider undirected graphs, although it is straightforward

to extend our methods to directed graphs.

Symbol Description

D, SCq , Aq the probabilistic database set

Dc, SCc
q the deterministic database

g the probabilistic graph

ϵ the user-specified probability threshold

δ the subgraph distance threshold

f , q, g′ gc the deterministic graph

U = {rq1, .., rqa} the remaining graph set after q is relaxed with

δ edges

LowerB(f),

UpperB(f)
the lower and upper bounds of SIP

Lsim(q), Usimq the lower and upper bounds of SSP

Brqi, Bfi, Bci the Boolean variables of query, embedding

and cut

Ef , Ec the set of embeddings and cuts

IN the set of disjoint embeddings

F the feature set

Pr(xne) the joint probability distribution of neighbor

edges

Pr(q ⊆iso g) the isomorphism between q and g
Pr(q ⊆sim g) the subgraph similarity probability between q

and g

Table 1: Notations

a function that assigns labels to vertices and edges. A set of edges

are neighbor edges, denoted by ne, if they are incident to the same

vertex or the edges form a triangle in gc.

For example, consider graph 001 in Figure 1. Edges e1, e2 and

e3 are neighbor edges, since they form a triangle. Consider graph

002 in Figure 1. Edges e3, e4, and e5 are also neighbor edges, since

they are incident to the same vertex.

Definition 2. (Probabilistic Graph) A probabilistic graph is de-

fined as g = (gc, XE), where gc is a deterministic graph, and XE

is a binary random variable set indexed by E. An element xe ∈ XE

takes values 0 and 1, and denotes the existence possibility of edge

e. A joint probability density function Pr(xne) is assigned to each

neighbor edge set, where xne denotes the assignments restricted to

the random variables of a neighbor edge set, ne.

A probabilistic graph has uncertain edges but deterministic ver-

tices. The probability function Pr(xne) is given as a joint probabil-

ity table of random variables of ne. For example, the probabilistic

graph 002 in Figure 1 has 2 joint probability tables associated with

2 neighbor edge sets, respectively.

Definition 3. (Possible World Graph) A possible world graph

g′ = (V ′, E′,Σ′, L′) is an instantiation of a probabilistic graph

g = ((V,E,Σ, L), XE), where V ′ = V , E′ ⊆ E, Σ′ ⊆ Σ. We

denote the instantiation from g to g′ as g ⇒ g′.

Both g′ and gc are deterministic graphs. But a probabilistic

graph g corresponds to one gc and multiple possible world graphs.

We use PWG(g) to denote the set of all possible world graphs de-

rived from g. For example, Figure 2 lists 4 possible world graphs

of the probabilistic graph 002 in Figure 1.

Definition 4. (Conditional Independence) Let X , Y , and Z
be sets of random variables. X is conditionally independent of Y
given Z (denoted by X ⊥ Y |Z) in distribution Pr if:

Pr(X = x;Y = y|Z = z) = Pr(X = x|Z = z)

Pr(Y = y|Z = z)

for all values x ∈ dom(X), y ∈ dom(Y ) and z ∈ dom(Z).

Following real applications [9, 28, 18, 16], we assume that any

two disjoint subsets of Boolean variables, XA and XB of XE , are
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conditionally independent given a subset XC (XA ⊥ XB |XC ), if

there is a path from a vertex in A to a vertex in B passing through

C. Then, the probability of a possible world graph g′ is given by:

Pr(g ⇒ g′) =
∏

ne∈NS

Pr(xne) (1)

where NS is all the sets of neighbor edges of g.

For example, in probabilistic graph 002 of Figure 1, {e1, e2} ⊥
{e4, e5}|e3. Clearly, for any possible world graph g′, we have

Pr(g ⇒ g′) > 0 and
∑

g′∈PWG(g) Pr(g ⇒ g′) = 1, that is, each

possible world graph has an existence probability, and the sum of

these probabilities is 1.

Definition 5. (Subgraph Isomorphism) Given two determinis-

tic graphs g1 = (V1, E1,Σ1, L1) and g2 = (V2, E2,Σ2, L2), we

say g1 is subgraph isomorphic to g2 (denoted by g1 ⊆iso g2), if

and only if there is an injective function f : V1 → V2 such that:

• for any (u, v) ∈ E1, there is an edge (f(u), f(v)) ∈ E2;

• for any u ∈ V1, L1(u) = L2(f(u));

• for any (u, v) ∈ E1, L1(u, v) = L2(f(u), f(v)).

The subgraph (V3, E3) of g2 with V3 = {f(v)|v ∈ V1} and E3 =
{(f(u), f(v))|(u, v) ∈ E1} is called the embedding of g1 in g2.

When g1 is subgraph isomorphic to g2, we also say that g1 is a

subgraph of g2 and g2 is a super-graph of g1.

Definition 6. (Subgraph Isomorphism Probability) For a de-

terministic graph f and a probabilistic graph g, we define their

subgraph isomorphism probability (SIP) as,

Pr(f ⊆iso g) =
∑

g′∈SUB(f,g)

Pr(g ⇒ g′) (2)

where SUB(f, g) is g’s possible world graphs that are super-graphs

of f , that is, SUB(f, g) = {g′ ∈ PWG(g)|f ⊆iso g′}.

Definition 7. (Maximum Common Subgraph-MCS) Given two

deterministic graphs g1 and g2, the maximum common subgraph of

g1 and g2 is the largest subgraph of g2 that is subgraph isomorphic

to g1, denoted by mcs(g1, g2).

Definition 8. (Subgraph Distance) Given two deterministic gr-

aphs g1 and g2, the subgraph distance is, dis(g1, g2) = |g1| −
|mcs(g1, g2)|. Here, |g1| and |mcs(g1, g2)| denote the number of

edges in g1 and mcs(g1, g2), respectively. For a distance threshold

δ, if dis(g1, g2) ≤ δ, we call g1 is subgraph similar to g2.

Note that, in this definition, subgraph distance only depends on

the edge set difference, which is consistent with pervious works on

similarity search over deterministic graphs [38, 15, 30]. The oper-

ations on an edge consist of edge deletion, relabeling and insertion.

Definition 9. (Subgraph Similarity Probability) For a given

query graph q, a probabilistic graph g3 and a subgraph distance

threshold δ, we define their subgraph similarity probability as,

Pr(q ⊆sim g) =
∑

g′∈SIM(q,g)

Pr(g ⇒ g′) (3)

where SIM(q, g) is g’s possible world graphs that have subgraph

distance to q no larger than δ, that is, SIM(q, g) = {g′ ∈ PWG(g
)| dis(q, g′) ≤ δ}.

3
Without loss of the generality, in this paper, we assume query graph is a

connected deterministic graph, and probabilistic graph is connected.
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v1 v2 v3
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Figure 3: The probabilistic graph g and query graph q constructed for

(y1 ∧ y2) ∨ (y1 ∧ y2 ∧ y3) ∨ (y2 ∧ y3).
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Problem Statement. Given a set of probabilistic graphs D =
{g1, ..., gn}, a query graph q, and a probability threshold ϵ (0 <
ϵ ≤ 1), a subgraph similar query returns a set of probabilistic

graphs {g|Pr(q ⊆sim g) ≥ ϵ, g ∈ D}.

2.2 Problem Complexity
From the problem statement, we know that in order to answer

probabilistic subgraph similar queries efficiently, we need to cal-

culate SSP (subgraph similarity probability) efficiently. We now

show the time complexity of calculating SSP.

Theorem 2. It is #P-complete to calculate the subgraph simi-

larity probability.

Proof. Due to space limit, we do not give the full proof and just

highlight the major steps here. We consider a probabilistic graph

whose edge probabilities are independent from each other. This

probabilistic graph model is a special case of the probabilistic graph

defined in Definition 2. We prove the theorem by reducing an arbi-

trary instance of the #P-complete DNF counting problem [13] to

an instance of the problem of computing Pr(q ⊆sim g) in poly-

nomial time. Figure 3 illustrates an reduction for the DNF formula

F = (y1∧y2)∨ (y1∧y2∧y3)∨ (y2∧y3). In the figure, the graph

distance between q and each possible world graph g′ is 1 (delete

vertex w from q). Each truth assignment to the variables in F cor-

responds to a possible world graph g′ derived from g. The proba-

bility of each truth assignment equals to the probability of g′ that

the truth assignment corresponds to. A truth assignment satisfies F
if and only if g′, the truth assignment corresponds to, is subgraph

similar to q (suppose graph distance is 1). Thus, Pr(F ) is equal to

the probability, Pr(q ⊆sim g). �

3. PROBABILISTIC PRUNING
As mentioned in Section 1.2, we first conduct structural pruning

to remove probabilistic graphs that do not approximately contain

the query graph q, and then we use probabilistic pruning techniques

to further filter the remaining probabilistic graph set, named SCq .
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3.1 Pruning Conditions
We first introduce an index structure, Probabilistic Matrix In-

dex (PMI), to facilitate probabilistic filtering. Each column of the

matrix corresponds to a probabilistic graph in the database D, and

each row corresponds to an indexed feature. Each entry records

{LowerB(f), UpperB(f)}, where UpperB(f) and LowerB(f)
are the upper and lower bounds of the subgraph isomorphism prob-

ability of f to g, respectively.

Example 2. Figure 4 shows the PMI of probabilistic graphs in

Figure 1.

Given a query q, a probabilistic graph g and subgraph distance δ,

we generate a graph set, U = {rq1, .., rqa}, by relaxing q with δ
edge deletions or relabelings4. Here, we use the solution proposed

in [38] to generate {rq1, .., rqa}. Suppose we have built the PMI.

For each g ∈ SCq , in PMI, we locate

Dg = {⟨LowerB(fj), UpperB(fj)⟩|fj ⊆iso gc, 1 ≤ j ≤ |F |}

For each rqi, we find two graph features in Dg , {f1
i , f

2
i }, such that

rqi ⊇iso f1
i and rqi ⊆iso f2

i , where 1 ≤ i ≤ a. Then we have

probabilistic pruning conditions as follows.

Pruning 1.(subgraph pruning) Given a probability threshold ϵ
and Dg , if

∑a
i=1 UpperB(f1

i ) < ϵ, then g can be safely pruned

from SCq .

Pruning 2.(super graph pruning) Given a probability threshold ϵ
and Dg , if

∑a
i=1 LowerB(f2

i )−
∑

1≤i,j≤a UpperB(f2
i )Upper-

B(f2
j ) ≥ ϵ, then g is in the final answers, i.e., g ∈ Aq , where Aq

is the final answer set.

Before proving the correctness of the above two pruning con-

ditions, we first introduce a lemma about Pr(q ⊆sim g), which

will be used for the proof. Let Brqi be a Boolean variable where

1 ≤ i ≤ a, Brqi is true when rqi is subgraph isomorphic to gc,

and Pr(Brqi) is the probability that Brqi is true. We have

Lemma 1.

Pr(q ⊆sim g) = Pr(Brq1 ∨ ... ∨Brqa). (4)

Proof. From Definition 9, we have

Pr(q ⊆sim g) =
∑

g′∈SIM(q,g)

Pr(g ⇒ g′) (5)

where SMI(q, g) is a set of possible world graphs that have sub-

graph distance to q no larger than δ Let d be the subgraph distance

between q and gc. We divide SIM(q, g) into δ − d + 1 subsets5,

{SM0, ..., SMδ−d}, such that a possible world graph in SMi has

subgraph distance d+ i with q. Thus, from Equation 5, we get

Pr(q ⊆iso g) =
∑

g′∈SM1∪...∪SMδ−d

Pr(g ⇒ g
′
)

=
∑

0≤j1≤δ−d

∑

g′∈SMj1

Pr(g ⇒ g
′
)−

∑

0≤j1<j2≤δ−d

∑

g′∈SMj1
∩SMj2

Pr(

g ⇒ g
′
) + · · ·+ (−1)

i
∑

0≤j1<...<ji≤δ−d

∑

g′∈SMj1
∩...∩SMji

Pr(g ⇒ g
′
)

+ · · ·+ (−1)
δ−d

∑

g′∈SMj1
∩...∩SMjδ−d

Pr(g ⇒ g
′
).

(6)

4
According to the subgraph similarity search, insertion does not change the

query graph.
5
For g ∈ SCq , we have d ≤ δ, since the probabilistic graphs with d > δ

have been filtered out in the deterministic pruning.

Let Li, 0 ≤ i ≤ δ − d, be the graph set after q is relaxed with

d + i edges, and BLi be a Boolean variable, when BLi is true,

it indicates at least one graph in Li is a subgraph of gc. Consider

the ith item on the RHS in Equation 6, let A be the set composed

of all graphs in i graph sets, and B = BLj1 ∧ ... ∧ BLji be the

corresponding Boolean variable of A. The set g′ ∈ SMj1 ∩ ... ∩
SMji contains all PWGs that have all graphs in A. Then, for the

ith item, we get,

(−1)
i

∑

0≤j1<...<ji≤δ−d

∑

g′∈SMj1
∩...∩SMji

Pr(g ⇒ g
′
)

= (−1)
i

∑

0≤j1<...<ji≤δ−d

Pr(BLj1
∧ ... ∧ BLji

).
(7)

Similarly, we can get the results for other items. By replacing

the corresponding items with these results in Equation 6, we get

Pr(q ⊆iso g) =
∑

0≤j1≤δ−d

Pr(BLj)−
∑

0≤j1<j2≤δ−d

Pr(BLj1
∧ BLj2

)

+ · · ·+ (−1)
i

∑

0≤j1<...<ji≤δ−d

Pr(BLj1
∧ ... ∧ BLji

)

+ · · ·+ (−1)
δ−d

Pr(BLj1
∧ ... ∧ BLjδ−d

).

(8)

Based on the Inclusion-Exclusion Principle [26], the RHS of

Equation 8 is Pr(BL0 ∨ ... ∨ BLδ−d). Clearly, BL0 ⊆ ... ⊆
BLδ−d, then

Pr(BL0∨...∨BLδ−d) = Pr(BLδ−d) = Pr(Brq1∨...∨Brqa) �

Lemma 1 gives a method to compute SSP. Intuitively, the prob-

ability of q being subgraph similar to g equals to the probability

that at least one graph of the graph set U = {rq1, ..., rqa} is a sub-

graph of g, where U is remanning graph set after q is relaxed with

δ edges. With Lemma 1, we can formally prove the two pruning

conditions.

Theorem 3. Given a probability threshold ϵ and Dg , if
∑a

i=1

UpperB(f1
i ) < ϵ, then g can be safely pruned from SCq .

Proof. Since rqi ⊇iso f1
i , we have Brq1∨ ...∨Brqa ⊆ Bf1

1 ∨
...∨Bf1

a , where Bf1
i is a Boolean variable denoting the probability

of f1
i being a subgraph of g for 1 ≤ i ≤ a. Based on Lemma 1, we

obtain

Pr(q ⊆sim g) = Pr(Brq1 ∨ ... ∨ Brqa)

≤ Pr(Bf
1

1 ∨ ... ∨ Bf
1

a)

≤ Pr(Bf
1

1 ) + ... + Pr(Bf
1

a)

≤ UpperB(f
1

1 ) + ... + UpperB(f
1

a) < ϵ.

Then g can be pruned. �

Theorem 4. Given a probability threshold ϵ and Dg , if
∑a

i=1 L-

owerB(f2
i ) −

∑
1≤i,j≤a UpperB(f2

i )UpperB(f2
j ) ≥ ϵ, then

g ∈ Aq , where Aq is the final answer set.

Proof. Since ∨a
i=1Brqi ⊇ ∨a

i=1Bf2
i , we can show that

Pr(q ⊆sim g) = Pr(Brq1 ∨ ... ∨ Brqa)

≥ Pr(Bf
2

1 ∨ ... ∨ Bf
2

a)

≥
a∑

i=1

Pr(Bf
2

i )−
∑

1≤i,j≤a

Pr(Bf
2

i )Pr(Bf
2

j )

≥

a∑

i=1

LowerB(f
2

i )−
∑

1≤i,j≤a

UpperB(f
2

i )UpperB(f
2

j )

≥ ϵ.
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f2
c S2:{rq2,rq3} W(S2)=0.1

f3
b S3:{rq1,rq3} W(S3)=0.5

Figure 5: Obtain tightest Usim(q)

Then g ∈ Aq . �

Note that the pruning process needs to address the traditional

subgraph isomorphism problem (rq ⊆iso f or rq ⊇iso f ). In our

work, we implement the state-of-the-art method VF2 [10].

3.2 Obtain Tightest Bounds of subgraph sim-
ilarity probability

In pruning conditions, for each rqi (1 ≤ i ≤ a), we find only one

pair feature {f1
i , f

2
i }, among |F | features, such that rqi ⊇iso f1

i

and rqi ⊆iso f2
i . Then we compute the upper bound, Usim(q) =∑a

i=1 UpperB(f1
i ) and the lower bound Lsim(q) =

∑a
i=1 Lowe-

rB(f2
i ) −

∑
1≤i,j≤a UpperB(f2

i )UpperB(f2
j ). However, there

are many f1
i s and f2

i s satisfying conditions among F features,

therefore, we can compute a large number of Usim(q)s and Lsim(q)
-s. For each rqi, if we find x features meeting the needs among |F |
features, we can derive xa Usim(q)s. Let x = 10 and a = 10, then

there are 1010 upper bounds. The same holds for Lsim(q). Clearly,

it is unrealistic to determine the best bounds by enumerating all the

possible ones, thus, in this section, we give efficient algorithms to

obtain the tightest Usim(q) and Lsim(q).

3.2.1 Obtain Tightest Usim(q)

For each fj (1 ≤ j ≤ |F |) in PMI, we determine a graph set,

sj , that is a subset of U = {rq1, ..., rqa}, such that rqi ∈ sj
s.t. rqi ⊇iso fj . We also associate sj a weight, UpperB(fj).
Then we obtain |F | sets {s1, .., s|F |} with each set having a weight

w(sj) = UpperB(fj) for 1 ≤ j ≤ |F |. With this mapping,

we transform the problem of computing tightest Usim(q) into a

weighted set cover problem defined as follows.

Definition 10. (Tightest Usim(q)) Given a finite set U = {rq1,
..., rqa} and a collection S = {s1, .., sj , .., s|F |} of subsets of U
with each sj attached a weight wsj , we want to compute a subsect

C ⊆ S to minimize
∑

sj∈C w(sj) s.t.
∪

sj∈C sj = U .

It is well-known that the set cover problem is NP-complete [13],

we use a greedy approach to approximate the tightest Usim(q). Al-

gorithm 1 gives detailed steps. Assume the optimal value is OPT,

the approximate value is within OPT · ln|U | [12].

Algorithm 1 ObtainTightestUsim(q)(U , S)

1: A← ϕ, Usim(q) = 0;

2: while A is not a cover of U do

3: for each s ∈ S, compute γ(s) =
w(s)

|s− A|
;

4: choose an s with minimal γ(s);

5: A← A
∪

s;

6: Usim(q)+ = w(s);

7: end while

8: return Usim(q);

Example 3. In Figure 1, suppose we use q to query probabilis-

tic graph 002, and the subgraph distance is 1. The relaxed graph

set of q is U = {rq1, rq2, rq3} as shown in Figure 5. Given in-

dexed features {f1, f2, f3}, we first determine s1 = {rq1, rq2},

s2 = {rq2, rq3} and s3 = {rq1, rq3}. We use the UpperB(fj),
1 ≤ j ≤ 3, as weight for three sets, and thus we have w(s1) = 0.4,

w(s2) = 0.1 and w(s3) = 0.5. Based on Definition 10, we

obtain three Usim(q)s, which are 0.4+0.1=0.5, 0.4+0.5=0.9 and

0.1+0.5=0.6. Finally the smallest (tightest) value, 0.5, is used as

the upper bound, i.e., Usim(q) = 0.5.

3.2.2 Obtain Tightest Lsim(q)

For lower bound Lsim(q), the larger (tighter) Lsim(q) is, the

better the probabilistic pruning power is. Here we formalize the

problem of computing largest Lsim(q) as an integer quadratic pro-

gramming problem, and develop an efficient randomized algorithm

to solve it.

For each fi (1 ≤ i ≤ |F |) in PMI, we determine a graph set,

si, that is a subset of U = {rq1, ..., rqa}, such that rqj ∈ si s.t.

rqj ⊆iso fi. We associate si a pair weight of {LowerB(fi), Upper
B(fi)}. Then we obtain |F | sets {s1, .., s|F |} with each set having

a pair weight {wL(si), wU (si)} for 1 ≤ i ≤ |F |. Thus the prob-

lem of computing tightest Lsim(q) can be formalized as follows.

Definition 11. (Tightest Lsim(q)) Given a finite set U = {rq1,
..., rqa} and a collection S = {s1, ..., s|F |} of subsets of U with

each si attached a pair weight {wL(si), wU (si)}, we want to com-

pute a subsect C ⊆ {s1, ..., s|F |} to maximize

∑

si∈C

wL(si)−
∑

si,sj∈C

wU (si)wU (sj)

s.t.
∪

si∈C si = U .

Associate an indicator variable, xsi , with each set si ∈ S, which

takes value 1 if set si is selected, 0 otherwise. Then we want to:

Maximize
∑

si∈C

xsiwL(si)−
∑

si,sj∈C

xsixsjwU (si)wU (sj)

s.t.
∑

rq∈si

xsi ≥ 1 ∀rq ∈ U,

xs ∈ {0, 1}.

(9)

Equation 9 is an integer quadratic programming which is a hard

problem [13]. We relax xsi to take values within [0, 1], i.e., xsi ∈
[0, 1]. Then the equation becomes a standard quadratic program-

ming (QP). Clearly, this QP is convex, and there is an efficient solu-

tion to solve the programming [23]. Since all feasible solutions for

Equation 9 are also feasible solutions for the relaxed quadratic pro-

gramming, the maximum value QP (I) computed by the relaxed

QP provides an upper bound for the value computed in Equation 9.

Thus the value of QP (I) can be used as the tightest lower bound.

However, the proposed relaxation technique cannot give any theo-

retical guarantee on how tight QP (I) is to Equation 9 [12].

Now following the relaxed QP, we propose a randomized round-

ing algorithm that yields an approximation bound for Equation 9.

Algorithm 2 shows the detailed steps. According to Equation 9,

it is not difficult to see that more elements in U are covered, the

tighter Lsim(q) is. The following theorem states that the number

of covered elements of U has a theoretical guarantee.

Theorem 5. When Algorithm 2 terminates, the probability that

all elements are covered is at least 1− 1
|U|

.
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Algorithm 2 ObtainTightestLsim(q)(U , S)

1: C ← ϕ, Lsim(q) = 0;

2: Let x∗
s be an optimal solution to the relaxed QP;

3: for k = 1 to 2ln|U | do

4: Pick each s ∈ S independently with probability x∗
s ;

5: if s is picked then

6: C ← s;

7: Lsim(q) = Lsim(q) + wL(s)− wU (s)
|C|∑
l=1

wU (sl);

8: end if

9: end for

10: return Lsim(q);

b

a a c

b

crq1 rq2 rq3

f1
a S1:{rq1,rq2} W(S1)=0.4

f2
c S2:{rq2,rq3} W(S2)=0.1

f3
b S3:{rq1,rq3} W(S3)=0.5

Figure 6: Obtain tightest Lsim(q)

Proof. For an element rq ∈ U , the probability of rq is not

covered in an iteration is

∏

rq∈s

(1− x∗
s) ≤

∏

rq∈s

e−x∗
s ≤ e−

∑
rq∈s x∗

s ≤
1

e
.

Then rq is not covered at the end of the algorithm is at most

e−2log|U| ≤ 1
|U|2

. Thus, the probability that there is some rq that

is not covered is at most |U | ·1/|U |2 = 1/|U |. �

Example 4. In Figure 1, suppose we use q to query probabilis-

tic graph 002, and the subgraph distance is 1. The relaxed graph

set of q is U = {rq1, rq2, rq3} shown in Figure 6. Given in-

dexed features {f1, f2}, we first determine s1 = {rq1} and s2 =
{rq1, rq2, rq3}. Then we use {LowerB(fi), UpperB(fi)}, 1 ≤
i ≤ 2, as weights, and thus we have {wL(s1) = 0.28, wU (s1) =
0.36}, {wL(s2) = 0.08, wU (s2) = 0.15}. Based on Definition

11, we assign Lsim(q) = 0.31.

4. PROBABILISTIC MATRIX INDEX
In this section, we discuss how to obtain tight {LowerB(f), Upp-

erB(f)} and generate features used in probabilistic matrix index

(PMI).

4.1 Bounds of Subgraph Isomorphism Proba-
bility

4.1.1 LowerB(f)

Let Ef = {f1, .., f|Ef |} be the set of all embeddings6 of fea-

ture f in the deterministic graph gc, Bfi be a Boolean variable for

1 ≤ i ≤ |Ef |, which indicates whether fi exists in gc or not,

and Pr(Bfi) be the probability of the embedding fi exists in g.

Similar to Lemma 1, we have

Pr(f ⊆iso g) = Pr(Bf1 ∨ ... ∨Bf|Ef |). (10)

According to Theorem 2, it is not difficult to see that calculating

the exact Pr(f ⊆iso g) is NP-complete. Thus we rewrite Equation

10 as follows

6
In this paper, we use the algorithm in [36] to compute embeddings of a

feature in gc

Pr(f ⊆iso g) = Pr(Bf1 ∨ ... ∨ Bf|Ef|)

= 1− Pr(Bf1 ∧ ... ∧ Bf|Ef|)

≥ 1− Pr(Bf1 ∧ ... ∧ Bf|IN| |

Bf|IN|+1 ∧ ... ∧ Bf|Ef|).

(11)

where IN = {Bf1, ..., Bf|IN|} ⊆ Ef .

Let the corresponding embeddings of Bfi, 1 ≤ i ≤ |IN |, do

not have common parts (edges). Since gc is connected, these |IN |
Boolean variables are conditionally independent given any random

variable of g. Then Equation 11 is written as

Pr(f ⊆iso g) ≥ 1− Pr(Bf1 ∧ ... ∧ Bf|IN| | Bf|IN|+1 ∧ ... ∧ Bf|Ef|)

= 1−

|IN|∏

i=1

[1− Pr(Bfi | Bf|IN|+1 ∧ ... ∧ Bf|Ef|)].

(12)

For variables Bfx, Bfy ∈ {Bf|IN|+1, ..., Bf|Ef |}, we have

Pr(Bfi|Bfx ∧ Bfy) =
Pr(Bfi ∧ Bfx ∧ Bfy)

Pr(Bfx ∧ Bfy)

=
Pr(Bfi ∧ Bfx ∧ Bfy)/Pr(Bfy)

Pr(Bfx ∧ Bfy)/Pr(Bfy)

=
Pr(Bfi ∧ Bfx|Bfy)

Pr(Bfx|Bfy)
.

(13)

If Bfi and Bfx are conditionally independent given Bfy , then

Pr(Bfi ∧ Bfx|Bfy) = Pr(Bfi|Bfy)Pr(Bfx|Bfy). (14)

By combining Equations 13 and 14, we obtain

Pr(Bfi|Bfx ∧ Bfy) = Pr(Bfi|Bfy). (15)

Based on this property, Equation 12 is reduced to

Pr(f ⊆iso g) ≥ 1−

|IN|∏

i=1

[1− Pr(Bfi | Bf|IN|+1 ∧ ... ∧ Bf|Ef|)]

= 1−

|IN|∏

i=1

[1− Pr(Bfi | Bf1 ∧ ... ∧ Bf|C|)]

= 1−

|IN|∏

i=1

[1− Pr(Bfi|COR)]

(16)

where COR = Bf1 ∧ ... ∧ Bf|C|, and the corresponding embedding of Bfj ∈

C = {Bf1, ..., Bf|C|} overlaps with the corresponding embedding of Bfi.

For a given Bfi, Pr(Bfi|COR) is a constant, since the num-

ber of embeddings overlapping with fi in gc is constant. Now we

obtain the lower bound of Pr(f ⊆iso g) as

LowerB(f) = 1−

|IN|∏

i=1

[1− Pr(Bfi|COR)], (17)

which is only dependent on the selected |IN | embeddings that do

not have common parts with each other.

To compute Pr(Bfi|COR), a straightforward approach is the

following. We first join all the joint probability tables (JPT), and

meanwhile multiply joint probabilities of joining tuples in JPTs.
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Figure 7: Embeddings & fG of feature f2 in probabilistic graph 002

Then, in the join result, we project on edge labels involved in Bfi
and COR, and eliminate duplicates by summing up their existence

probabilities. The summarization is the final result. However, this

solution is clearly time inefficient for the sake of join, duplicate

elimination, and probability multiplication.

In order to calculate Pr(Bfi|COR) efficiently, we use a sam-

pling algorithm to estimate its value. Algorithm 3 shows the de-

tailed steps. The main idea of the algorithm is as follows. We first

sample a possible world g′. Then we check the condition, in Line

4, that is used to estimate Pr(Bfi ∧ COR), and the condition,

in Line 7, that is used to estimate Pr(COR). Finally we return

n1/n2 which is an estimation of Pr(Bfi ∧ COR)/Pr(COR) =
Pr(Bfi|COR). The cycling number m is set to (4ln 2

ξ
)/τ2 (0 <

ξ < 1, τ > 0) used in Monte Carlo theory [26].

Algorithm 3 CalculatePr(Bfi|COR) (g, Bfi, COR)

1: n1 = 0, n2 = 0;

2: for i = 1 to m do

3: Sample each neighbor edge set ne of g according to Pr(xne), and then

obtain an instance g′;

4: if g′ has embedding fi & no embeddings involved in COR then

5: n1+ = 1;

6: end if

7: if g′ has no embeddings involved in COR then

8: n2+ = 1;

9: end if

10: end for

11: return n1/n2;

Example 5. In Figure 4, consider f2, a feature of probabilis-

tic graph 002 shown in Figure 1. f2 has three embeddings in

002, namely EM1, EM2 and EM3 as shown in Figure 7. In

corresponding Bfis, Bf1 and Bf3 are conditionally independent

given Bf2. Then based on Equation 17, we have LowerB(f) =
1− [1− Pr(Bf1|Bf2)][1− Pr(Bf3|Bf2)] = 0.26.

As stated early, LowerB(f) depends on embeddings that do not

have common parts. However, among all |Ef | embeddings, there

are many groups which contain disjoint embeddings and leads to

different lower bounds. We want to get a tight lower bound in order

to increase the pruning power. Next, we introduce how to obtain

tightest LowerB(f).
Obtain Tightest Lower Bound We construct an undirected graph,

fG, with each node representing an embedding fi, 1 ≤ i ≤ |Ef |,
and a link connecting two disjoint embeddings (nodes). Note that,

to avoid confusions, nodes and links are used for fG, while ver-

tices and edges are for graphs. We also assign each node a weight,

− ln[1 − Pr(Bfi|COR)]. In fG, a clique is a set of nodes such

that any two nodes of the set are adjacent. We define the weight of

a clique as the sum of node weights in the clique. Clearly, given

a clique in fG with weight v, LowerB(f) is 1 − e−v . Thus, the

larger the weight, the tighter (larger) the lower bound. To obtain a

tight lower bound, we should find a clique whose weight is largest,

which is exactly the maximum weight clique problem. Here we use

the efficient solution in [7] to solve the maximum clique problem,

and the algorithm returns the largest weight z. Therefore, we use

1− e−z as the tightest value for LowerB(f).

Example 6. Following Example 5, as shown in Figure 7, EM1
is disjoint with EM3. Based on the above discussion, we con-

struct fG, for the three embeddings, shown in Figure 7. There

are two maximum cliques namely, {EM1, EM3} and EM2. Ac-

cording to Equation 17, the lower bounds derived from the 2 max-

imum cliques are 0.26 and 0.11 respectively. Therefore we select

the larger (tighter) value 0.26 to be the lower bound of f2 in 002.

4.1.2 UpperB(f)

Firstly, we define Embedding Cut: For a feature f , an embedding

cut is a set of edges in gc whose removal will cause the absence of

all f ’s embeddings in gc. An embedding cut is minimal if no proper

subset of the embedding cut is an embedding cut. In this paper, we

use minimal embedding cut.

Denote an embedding cut by c and its corresponding Boolean

variable (same as Bf ) by Bc, where Bc is true indicating that the

embedding cut c exists in gc. Similar to Equation 10, it is not diffi-

cult to obtain,

Pr(f ⊆iso g) = 1− Pr(Bc1 ∨ ... ∨ Bc|Ec|)

= Pr(Bc1 ∧ ... ∧ Bc|Ec|)
(18)

where Ec = {c1, ..., c|Ec|} is the set of all embedding cuts of

f in gc. Equation 18 shows that the subgraph isomorphism prob-

ability of f to g equals the probability of all f ’s embedding cuts

disappearing in g.

Similar to the deduction from Equation 10 to 17 for LowerB(f),
we can rewrite Equation 18 as follows

Pr(f ⊆iso g) = Pr(Bc1 ∧ ... ∧ Bc|Ec|)

≤ Pr(Bc1 ∧ ... ∧ Bc|IN′||Bc|IN′|+1 ∧ ... ∧ Bc|Ec|)

=

|IN′|∏

i=1

[1− Pr(Bci|Bc|IN′|+1 ∧ ... ∧ Bc|Ec|)]

=

|IN′|∏

i=1

[1− Pr(Bci|Bc1 ∧ ... ∧ Bc|D|)]

=

|IN′|∏

i=1

[1− Pr(Bci|COM)]

(19)

where IN ′ = {Bc1, ..., Bc|IN′|} is a set of Boolean variables whose correspond-

ing cuts are disjoint, COM = Bc1 ∧ ... ∧ Bc|D|, and the corresponding cut of

Bcj ∈ D = {Bc1, ..., Bc|D|} has common parts with the corresponding cut of

Bci.

Finally we obtain the upper bound as

UpperB(f) =

|IN′|∏

i=1

[1− Pr(Bci|COM)]. (20)

The upper bound only relies on the picked embedding cut set in

which any two cuts are disjoint.

The value of Pr(Bci|COM) is estimated using Algorithm 3 by

replacing embeddings with cuts. Similar to lower bound, comput-

ing tightest UpperB(f) can be converted into a maximum weight

clique problem. However, different from lower bound, each node

of the constructed graph fG represents a cut and has a weight of

−ln[1−Pr(Bci|COM)] instead. Thus, for the maximum weight

clique with weight v, the tightest value of UpperB(f) is e−v .

Now we discuss how to determine embedding cuts in gc.

Calculation of Embedding Cuts

We build a connection between embedding cuts in gc and cuts

for two vertices in a deterministic graph.
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Figure 8: Transformation from embeddings of f2 to parallel graph cG

Suppose f has |Ef | embeddings in gc, and each embedding has

k edges. Assign k labels, {e1, ..., ek}, for edges of each embed-

ding (the order is random.). We create a corresponding line graph

for each embedding by (1) creating k + 1 isolated nodes, and (2)

connecting these k + 1 nodes to be a line by associating k edges

(with corresponding labels) of the embedding. Based on these line

graphs, we construct a parallel graph, cG. The node set of cG con-

sists of all nodes of the |Ef | line graphs and two new nodes, s and

t. The edge set of cG consists of all edges (with labels) of the |Ef |
line graphs. In addition, one edge (without label) is placed between

an end node of each line graph and s. Similarly, there is an edge

between t and the other end node of each line graph. As a result,

|Ef | embeddings are transformed into a deterministic graph cG.

Based on this transformation, we have

Theorem 6. The embedding cut set of gc is also the cut set

(without edges incident to s and t) from s to t in cG.

In this work, we determine embedding cuts using the method in

[22].

Example 7. Figure 8 shows the transformation for feature f2
in graph 002 in Figure 1. In cG, we can find cuts {e2, e4}, {e1, e3,
e4} and {e2, e3} which are clearly the embedding cuts of f2 in 002.

4.2 Feature Generation
We would like to select frequent and discriminative features to

construct probabilistic matrix index (PMI).

To achieve this, we consider UpperB(f) given in Equation 20,

since upper bound plays a most important role in the pruning ca-

pability. According to Equation 20, to get a tight upper bound,

we need a large disjoint cut set and a large Pr(Bci|COM). Sup-

pose the cut set is IN ′′. Note that |IN ′′| = |IN ′|, since a cut

in IN ′′ has a corresponding Boolean variable Bci in IN ′. From

the calculation of embedding cuts, it is not difficult to see that a

large number of disjoint embeddings leads to a large |IN ′′|. Thus

we would like a feature that has a large number of disjoint embed-

dings. Since |COM | is small, a small size feature results in a large

Pr(Bci|COM). In summary, we should index a feature, which

complies with following rules:

Rule 1. Select features that have a large number of disjoint em-

beddings.

Rule 2. Select small size features.

To achieve rule 1, we define the frequency of feature f as frq(f)

= |{g|f⊆isog
c,|IN|/|Ef |≥α,g∈D}|

|D|
, where α is a threshold of the

ratio of disjoint embeddings among all embeddings. Given a fre-

quency threshold β, a feature f is frequent iff frq(f) ≥ β. Thus

we would like to index a frequent feature. To achieve rule 2, we

control a feature size used in Algorithm 4. To control feature num-

ber [37, 29], we also define the discriminative measure as: dis(f) =
|
∩
{Df′ |f

′⊆isof}|

|Df |
, where Df is the list probabilistic graphs g s.t.

f ⊆iso gc. Given a discriminative threshold γ, a feature f is dis-

criminative, iff dis(f) > γ. Thus we should also select a discrimi-

native feature.

Based on the above discussion, we select frequent and discrim-

inative features, which is implemented in Algorithm 4. In this al-

gorithm, we first initial a feature set F with single edge or vertex

(line 1-4). Then we increase feature size (number of vertices) from

1, and pick out desirable features (line 6-9). maxL is used to con-

trol the feature size, and guarantees picking out a small size feature

satisfying rule 2. frq(f) and dis(f) are used to measure the fre-

quency and discrimination of feature. The controlling parameters

α, β and γ guarantee picking out feature satisfying rule 1. The

default values of the parameters are usually set to 0.1 [37, 38].

Algorithm 4 FeatureSelection(D, α, β, γ, maxL)

1: F ← ϕ;

2: Initial a feature set F with single edge or vertex;

3: Df ← {g|f ⊆iso gc};

4: F ← F ∪ {f};
5: for i = 1 to maxL do

6: for each feature f with i vertices do

7: if frq(f) ≥ β & dis(f) > γ then

8: Df ← {g|f ⊆iso gc};

9: F ← F ∪ {f};
10: end if

11: end for

12: end for

13: return F ;

5. VERIFICATION
In this section, we present the algorithms to compute subgraph

similarity probability (SSP) of a candidate probabilistic graph g to

q.

Equation 4 is the formula to compute SSP. By simplifying this

equation, we have

Pr(q ⊆sim g) =

a∑

i=1

(−1)
i

∑

J⊆{1,...,a},|J|=i

Pr(∧
|J|
j=1

Brqj). (21)

Clearly, we need exponential number of steps to perform the ex-

act calculation. Therefore, we develop an efficient sampling algo-

rithm to estimate Pr(q ⊆sim g).
By Equation 4, we know there are totally a Brqs that are used to

compute SSP. By Equation 10, we know Brq = Bf1∨...∨Bf|Ef |.

Then, we have,

Pr(q ⊆sim g) = Pr(Bf1 ∨ ... ∨Bfm) (22)

where m is the number of Bfs contained in these a Brqs.

Assume m Bfs have x1, ..., xk Boolean variables for uncer-

tain edges. Algorithm 5 gives detailed steps of the sampling algo-

rithm. In this algorithm, we use junction tree algorithm to calculate

Pr(Bfi) [17].

Algorithm 5 Calculate Pr(q ⊆sim g)

1: Cnt = 0, V =
∑m

i=1
Pr(Bfi);

2: N = (4ln2/ξ)/τ2;

3: for 1 to N do

4: randomly choose i ∈ {1, ...,m} with probability Pr(Bfi)/V ;

5: randomly choose x1, .., xk (according to probability Pr(xne)) with

{0, 1} s.t. Bfi = 1;

6: if Bf1 = 0 ∧ ... ∧ Bfi−1 = 0 then

7: Cnt = Cnt + 1;

8: end if

9: end for

10: return Cnt/N ;

6. PERFORMANCE EVALUATION
In this section, we report the effectiveness and efficiency test

results of our new proposed techniques. Our methods are imple-

mented on a Windows XP machine with a Core 2 Duo CPU (2.8
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GHz and 2.8 GHz) and 4GB main memory. Programs are com-

piled by Microsoft Visual C++ 6.0. In the experiments, we use a

real probabilistic graph date set.

Real Probabilistic Graph Dataset. The real probabilistic graph

dataset is obtained from the STRING database7 that contains the

protein-protein interaction (PPI) networks of organisms in the Bi-

oGRID database8. A PPI network is a probabilistic graph where

vertices represent proteins, edges represent interactions between

proteins, the labels of vertices are the COG functional annotations

of proteins9 provided by the STRING database, and the existence

probabilities of edges are provided by the STRING database. We

extract 5K probabilistic graphs from the database. The probabilis-

tic graphs have an average number of 385 vertices and 612 edges.

Each edge has an average value of 0.383 existence probability. Ac-

cording to [9], the neighbor PPIs (edges) are dominated by the

strongest interactions of the neighbor PPIs. Thus, for each neighbor

edge set ne, we set its probabilities as: Pr(xne) = max1≤i≤|ne|

Pr(xi), where xi is a binary assignment to each edge in ne. Then,

for each ne, we obtain 2|ne| probabilities. We normalize those

probabilities to construct the probability distribution, of ne, that is

input into algorithms. Each query set qi has 100 connected query

graphs and query graphs in qi are size-i graphs (the edge number in

each query is i), which are extracted from corresponding determin-

istic graphs of probabilistic graphs randomly, such as q50, q100,

q150, q200 and q250. In scalability test, we randomly generate 2k,

4K, 6K, 8K and 10K data graphs.

The setting of experimental parameters is set as follows: the

probability threshold is 0.3–0.7, and the default value is 0.5; the

subgraph distance is 2–6, and the default value is 4; the query size

is 50–250, and the default value is 150. In feature generation, the

value of maxL is 50–250, and the default value is 150; the values

of {α, β, γ} are 0.05–0.25, and the default value is 0.15.

As introduced in Section 1.2, we implement the method in [38]

to do structural pruning. This method is called Structure in ex-

periments. In probabilistic pruning, the method using bounds of

subgraph similarity probability is called SSPBound, and the ap-

proach using the best bounds is called OPT-SSPBound. To imple-

ment SSPBound, for each rqi, we randomly find two features sat-

isfying conditions in probabilistic matrix index (PMI). The method

using bounds of subgraph isomorphism probability is called SIP-

Bound, and the method using the tightest bound approach is called

OPT-SIPBound. In verification, the sampling algorithm is called

SMP, and the method given by Equation 21 is called Exact. Since

there are no pervious works on the topic studied in this paper, we

also compare the proposed algorithms with Exact that scans the

probabilistic graph databases one by one. The complete proposed

algorithm of this paper is called PMI. We report average results in

following experiments.

In the first experiment, we demonstrate the efficiency of SMP

against Exact in verification step. We first run structural and prob-

abilistic filtering algorithms against the default dataset to create

candidate sets. The candidate sets are then verified for calculat-

ing SSP using proposed algorithms. Figure 9(a) reports the result,

from which we know SMP is efficient with average time less than 3

seconds, while the curve of Exact decreases in exponential. The ap-

proximation quality of SMP is measured by the precision and recall

metrics with respect to query size shown in Figure 9(b). Precision

is the percentage of true probabilistic graphs in the output proba-

bilistic graphs. Recall is the percentage of returned probabilistic

7
http://string-db.org

8
http://thebiogrid.org

9
http://www.ncbi.nih.gov/COG

graphs in all true probabilistic graphs. The experimental results

verify that SMP has a very high approximation quality with preci-

sion and recall both larger than 90%. We use SMP for verification

in following experiments.

Figure 10 reports candidate sizes and pruning time of SSPBound,

OPT-SSPBound and Structure with respect to probability thresh-

olds. Recall that SSPBound and OPT-SSPBound are derived from

upper and lower bounds of SIP. Here, we feed them with OPT-

SIPBound. From the results, we know that the bars of SSPBound

and OPT-SSPBound decrease with the increase of probability thresh-

old, since larger thresholds can remove more false graphs with low

confidences. As shown in Figure 10(a), the candidate size of OPT-

SSPBound is very small (i.e., 15 on average), and is smaller than

that of SSPBound, which indicates that our derived best bounds are

tight enough to have a great pruning power. As shown in Figure

10(b), OPT-SSPBound has short pruning time (i.e., smaller than 1s

on average) but takes more time than SSPBound due to more sub-

graph isomorphic tests during the calculation of OPT-SSPBound.

Obviously, probabilities do not have impacts on Structure, and thus

both bars of Structure hold constant.

Figure 11 shows candidate sizes and pruning time of SIPBound,

OPT-SIPBound and Structure with respect to subgraph distance

thresholds. To examine the two metrics, we feed SIPBound and

OPT-SIPBound to OPT-SSPBound. From the results, we know that

all bars increase with the increase of subgraph distance thresh-

old, since larger thresholds lead to a large remaining graph set

which is input into the proposed algorithms. Both OPT-SIPBound

and SIPBound have a small number of candidate graphs, but OPT-

SIPBound takes more time due to additional time for computing

tightest bounds. From Figures 10(a) and 11(a), we believe that

though Structure remains a large number of candidates, the prob-

abilistic pruning algorithms can further remove most false graphs

with efficient runtime. This observation verifies our algorithmic

framework (i.e., structure pruning–probabilistic pruning– verifica-

tion) is effective to process queries on a large probabilistic graph

database.

Figure 12 examines the impact of parameters {maxL, α, β, γ}
for feature generation. Structure holds constant in the 4 results,

since the feature generation algorithm is used for probabilistic prun-

ing. From Figure 12(a), we know the larger maxL is, the more

candidates SSPBound and OPT-SSPBound have. The reason is that

the large maxL generates large sized features, which leads to loose

probabilistic bounds. From Figure 12(b), we see that all bars of

probabilistic pruning first decrease and then increase, and reach

lowest at the values 0.1 and 0.15 of α. As shown in Figures 12(c)

and 12(d), both bars of OPT-SIPBound decrease as the values of

parameters increase, since either large β or large γ results in fewer

features.

Figure 13 reports total query processing time with respect to

different graph database sizes. PMI denotes the complete algo-

rithm, that is, a combination of Structure, OPT-SSPBound (feed

OPT-SIPBound) and SMP. From the result, we know PMI has quite

efficient runtime and avoids the huge cost of computing SSP (#P-

complete). PMI can process queries within 10 seconds on average.

But the runtime of Exact grows in exponential, and has gone be-

yond 1000 seconds at the database size of 6k. The result of this

experiment validates the designs of this paper.

Figure 14 examines the quality of query answers based on prob-

ability correlated and independent models. The query returns prob-

abilistic graphs if the probabilistic graphs and the query (subgraph)

belong to the same organism. We say the query and probabilis-

tic graph belong to the same organism if the subgraph similarity

probability is not less than the threshold. In fact the STRING
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database has given real organisms of the probabilistic graphs. Thus

we can use the precision and recall to measure the query quality.

Precision is the percentage of real probabilistic graphs in the re-

turned probabilistic graphs. Recall is the percentage of returned

real probabilistic graphs in all real probabilistic graphs. To de-

termine query answers for the probability independent model, we

multiply probabilities of edges in each neighbor edge set to obtain

joint probability tables (JPT). Based on the JPTs, we use PMI
to determine query answers for the probability independent model.

Each time, we randomly generate 100 queries and report average

results. In the examination, COR and IND denote the probabil-

ity correlated and probability independent models respectively. In

the figure, precision and recall go down as probability threshold is

larger, since large thresholds make query and graphs more difficult

to be categorized into the same organism. We also know that the

probability correlated model has much higher precision and recall

than the probability independent model. The probability correlated

model has average precision and recall both larger than 85%, while

the probability independent model has values smaller than 60% at

threshold larger than 0.6. The result indicates that our proposed

model behaves more accurate biologic features than the probability

independent model.
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7. RELATED WORK
In this paper, we study similarity search over uncertain graphs,

which is related to uncertain and graph data management. Readers

who are interested in general uncertain and graph data management

please refer to [3] and [4] respectively.
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Figure 13: Total query processing
time.
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The topic most related to our work is similarity search in de-

terministic graphs. Yan et al. [38] proposed to process subgraph

similarity queries based on frequent graph features. They used a

filtering-verification paradigm to process queries. He et al [15] em-

ployed an R-tree like index structure, organizing graphs hierarchi-

cally in a tree, to support k-NN search to the query graph. Jiang

et al [19] encoded graphs into strings and converted graph similar-

ity search into string matching. Williams et al [35] aimed to find

graphs with the minimum number of miss-matchings of vertex and

edge labels bounded by a given threshold. Zeng et al [41] proposed

tight bounds of graph edit-distance to filter out false graphs in sim-

ilarity search, based on which, Wang et al [34] developed an index-

ing strategy to speed up query. Shang et al [30] studied super-graph

similarity search, and proposes top-down and bottom-up index con-

struction strategy to optimize the performance of query processing.

Recently, Sun et al [32] proposed a subgraph matching algorithm

on distributed in-memory graphs without using structured index.

Another related topic is querying uncertain graphs. Potamias et

al [27] studied k-nearest neighbor queries (k-NN) over uncertain

graphs, i.e., computing the k closest nodes to a query node. They

proposed sampling algorithms to answer the #P-complete k-NN

queries. Zou et al [42, 43] studied frequent subgraph mining on un-

certain graph data under the probability and expectation semantics

respectively. Yuan et al [40] proposed graph feature-based frame-

work to conduct uncertain subgraph graph query. In another work,

Yuan et al [39] and Jin et al [21] studed shortest path query and

distance-constraint reachability query in a single uncertain graph.

The above works define uncertain graph models with independent

edge distributions and do not consider edge correlations.

8. CONCLUSION
This is the first work to answer the subgraph similarity query

on a large probabilistic graphs with correlation on edge probabil-

ity distributions. Though it is an NP-hard problem, we employ

the filter-and-verify methodology to answer the query efficiently.

During the filtering phase, we propose a probabilistic matrix (PMI)

index with tight upper and lower bounds of subgraph isomorphism

probability. Based on PMI, we derive upper and lower bounds of

subgraph similarity probability, and we compute best bounds by

developing deterministic and randomized optimization algorithms.

We also propose selective strategies for picking powerful subgraph

features. Therefore we are able to filter out large number of prob-

abilistic graphs without calculating the subgraph similar probabil-

ities. During verification, we use the Monte Carlo theory to fast

validate final answers with a high quality. Finally, we confirm our

designs through an extensive experimental study.
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