
Boosting Moving Object Indexing
through Velocity Partitioning

Thi Nguyen #1, Zhen He #2, Rui Zhang ∗3, Phillip Ward #†4

#Department of Computer Science and Computer Engineering, La Trobe University, Australia
1
nt2nguyen@students.latrobe.edu.au,

2
z.he@latrobe.edu.au

∗Department of Computing and Information Systems, University of Melbourne, Australia
3
rui@csse.unimelb.edu.au

†CSIRO Land and Water, Highett, Victoria, Australia
4
p.ward@csiro.au

ABSTRACT
There have been intense research interests in moving object index-
ing in the past decade. However, existing work did not exploit the
important property of skewed velocity distributions. In many real
world scenarios, objects travel predominantly along only a few di-
rections. Examples include vehicles on road networks, flights, peo-
ple walking on the streets, etc. The search space for a query is heav-
ily dependent on the velocity distribution of the objects grouped in
the nodes of an index tree. Motivated by this observation, we pro-
pose the velocity partitioning (VP) technique, which exploits the
skew in velocity distribution to speed up query processing using
moving object indexes. The VP technique first identifies the “dom-
inant velocity axes (DVAs)” using a combination of principal com-
ponents analysis (PCA) and k-means clustering. Then, a moving
object index (e.g., a TPR-tree) is created based on each DVA, using
the DVA as an axis of the underlying coordinate system. An object
is maintained in the index whose DVA is closest to the object’s cur-
rent moving direction. Thus, all the objects in an index are moving
in a near 1-dimensional space instead of a 2-dimensional space. As
a result, the expansion of the search space with time is greatly re-
duced, from a quadratic function of the maximum speed (of the ob-
jects in the search range) to a near linear function of the maximum
speed. The VP technique can be applied to a wide range of moving
object index structures. We have implemented the VP technique on
two representative ones, the TPR*-tree and the Bx-tree. Extensive
experiments validate that the VP technique consistently improves
the performance of those index structures.

1. INTRODUCTION
GPS enabled mobile devices (phones, car navigators, etc) are

ubiquitous these days and it is common for them to report their lo-
cations to a server in order to get location based services. Such
services involve querying the current or near future locations of
the mobile devices. Many index structures have been proposed to
facilitate efficient query processing on moving objects in the last
decade (e.g., [8, 13, 17, 20, 21, 23, 25]). However, none of these
index structures exploit the important property of skewed velocity
distributions. In most real world scenarios, objects travel predomi-
nantly along only a few directions due to the fixed underlying trav-

elling infrastructure or routes. Examples include vehicles on road
networks, flights, people walking on the streets, etc. Figure 1(a)
shows a portion of the road network of San Francisco, where most
of the roads are along two directions. Figure 1(b) shows a sample
of velocity distribution of the cars travelling on the San Francisco
road network. Every point (2-dimensional vector) in the figure rep-
resents the velocity of a car. It is clear that most of the cars are
travelling along two dominant directions (axes).

(a) San Francisco road network
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Figure 1: San Francisco road network and the cars’ velocity
distribution

The velocity distribution of objects in an index has a great impact
on the rate at which the query search space expands. The search
space expansion is either due to the tree nodes’ minimum bound-
ing rectangle (MBR) expansion (e.g., the TPR-tree/TPR*-tree [21,
23]) or query expansion (e.g., the Bx-tree [13]). In either case, the
search space for a tree node is enlarged during the query time inter-
val using the largest speed of the objects grouped in that tree node.
If the velocities of the objects in a node are randomly distributed,
then the search space is enlarged along both the x- and y-axes, and
therefore there is a quadratic function of the maximum speed of the
objects in the node. If the movements of all the objects in a node are
largely along the same direction, then the search space is enlarged
mainly along one axis and hence there is close to a linear function
of the maximum speed of the objects in the node.

Motivated by this observation, we propose the velocity partition-
ing (VP) technique, which exploits the skew in velocity distribution
to speed up query processing using moving object indexes. The
VP technique first identifies the “dominant velocity axes (DVAs)”
using a combination of principal components analysis (PCA) and
k-means clustering. A DVA is an axis, which the velocities of most
of the objects are (almost) parallel to. Then, a moving object index
(e.g., a TPR-tree) is created based on each DVA, using the DVA as
an axis of the underlying coordinate system. Objects are dynami-
cally moved between DVA indexes when their movement directions
change from one DVA to another. Objects with current velocities,
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which are far from any DVAs, are put in an outlier index. The out-
lier index uses the regular coordinate system. Thus, except for the
outlier index, the objects in each other index are moving in a near
1-dimensional space instead of a 2-dimensional space. As a result,
the expansion of the search space with time is greatly reduced, from
a quadratic function of the maximum speed (of the objects in the
search range) to a near linear function of the maximum speed.

The VP technique is a generic method and can be applied to a
wide range of moving object index structures. In this paper, we fo-
cus our analysis and implementation of the VP technique on the two
most well recognized and representative moving object indexes of
different styles, the TPR*-tree [23] and the Bx-tree [13]. These two
indexes are the basis for many recent indexing techniques [7, 22,
24, 25]. Our method can be applied to these more recent indexes
in similar ways to how it is applied to those two representative in-
dexes. We perform an extensive set of experiments using various
real and synthetic data sets. The results show that the VP tech-
nique consistently improves the performance of both index struc-
tures. The improvement is up to around 3 times in terms of both
query I/O and query execution time for both index structures.

The contributions of this paper are summarized below:

• We analytically show why a moving object index with VP
outperforms a moving object index without VP.

• We propose the VP technique, which identifies the dominant
velocity axes (DVAs) and maintain the objects in separate
indexes based on the DVAs.

• We analytically show how to choose the value of an impor-
tant parameter that determines which objects belong to the
outlier index.

• We implemented the VP technique on two state-of-the-art
moving object indexes, the TPR*-tree and the Bx-tree. We
have performed an extensive experimental study. The results
validate the effectiveness of our approach across a large num-
ber of real and synthetic data sets.

2. PRELIMINARIES
In this section, we provide some background on moving objects,

and briefly review two techniques used in our approach, principal
components analysis (PCA) and k-means clustering.

2.1 Moving Object Representation and Query­
ing

A simple way of tracking the location of moving objects is to
take location samples periodically. However, this approach requires
frequent location updates, which imposes a heavy workload on the
system. A popular method to reduce the reporting rate is to use a
linear function to describe the near future trajectory of moving ob-
jects. The model consists of the initial location of the object and a
velocity vector. An update is issued by the object when its velocity
changes. An object velocity update simply consists of a deletion
followed by an insertion. This linear model based approach is used
by many studies [8, 13, 17, 19, 20, 21, 23, 25, 26, 28] on indexing
and querying moving objects. We also follow this model in this
paper, and the moving objects are modeled as moving points.

We support three different types of range queries: time slice
range query, which reports the objects within the query range at a
particular time stamp; time interval range query, which reports the
objects within the query range within a time range; moving range
query, where the query range itself is moving and the query reports
the objects that intersect the moving range in a time range. For all
three types of range queries, if the query timestamp (or time range)
is in the future, the query range is projected (expanded) to that fu-
ture time to check which objects should be returned.

2.2 Principal Components Analysis
Principal components analysis (PCA) is a commonly used method

for dimensionality reduction [4, 12] and for finding correlations
among attributes of data [15]. It examines the variance structure
in the data set and determines the directions along which the data

exhibits high variance. In our case, if we map the velocity of ob-
jects into the 2D velocity space as points, then the axis with high
variance is the DVA.

Given a set of k-dimensional data points, PCA finds a ranked set
of orthogonal k-dimensional eigenvectors v1, v2, ..., vk (which we
call principal component vectors) such that:

• Each principal component (PC) vector is a unit vector, i.e.,
√

βi
2
1 + βi

2
2 + ...+ βi

2
k = 1, where βij (i, j = 1,2, ...,k) is

the jth component of the PC vector vi.

• The first PC v1 accounts for most of the variability in the
data, and each succeeding component accounts for as much
of the remaining variability as possible.

2.3 K­means Clustering
K-means clustering [18] is a method commonly used to auto-

matically partition a data set into k clusters where each data point
belongs to the cluster with the nearest centroid. It starts by assign-
ing each object to one of k clusters either randomly or using some
heuristic method. The centroid of each cluster is computed and
each point is re-assigned to its closest cluster centroid. When all
points have been assigned, the k cluster centroids are recomputed.
The process is repeated until the centroids no longer move.

3. RELATED WORK
In this section, we review existing work on moving object in-

dexes, specifically R-tree [3] based indexes, the Bx-tree [13], and
dual transform based indexes. We also discuss indexing techniques
for handling skewed workloads and for handling moving objects on
road networks.

3.1 R­tree Based Moving Object Indexes
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Figure 2: MBRs of a TPR-tree growing with time

An established approach to index moving objects is to use the
R-tree [3] or it’s more optimized variant the R*-tree [11] to index
the extents of objects and their current velocities. These indexes
include the TPR-tree [21] and its variant TPR*-tree [23], which
optimize some operations of the TPR-tree. They work by grouping
object extents at the reference time into minimum bounding rect-
angles (MBRs). Figure 2(a) shows the objects a, b and c grouped
into the same MBR in node N1. Accompanying the MBRs are the
velocity bounding rectangles (VBRs), which represent the expan-
sion of the MBRs with time according to the velocity vectors of
the constituent objects. The rate of expansion in each direction is
equal to the maximum velocity among the constituent objects in the
corresponding direction. A negative velocity value implies that the
velocity is towards the negative direction of the axis. For example,
in Figure 2(a) we can see that the solid arrow on the left of node N1

has a value of -2. This is because the maximum velocity value of
the constituent objects in the left direction is 2. Figure 2(b) shows
the expanded MBRs at time 1.

The MBR and VBR structure described can be extended by re-
placing the constituent object extents with smaller MBRs. This
when recursively applied creates a hierarchical tree structure. The
tree structure is identical to the classic R-tree [11]. The only differ-
ence being the algorithms used to insert, delete and query the tree
also need to take the velocity information into consideration. The
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TPR-tree and the TPR*-tree modify the R*-tree’s insertion/deletion
and query algorithms.

The insertion and deletion algorithms of the TPR*-tree use a cost
model proposed by Tao et al. [23] to reduce the expected number
of node accesses for a range query Q. We briefly describe this
cost model below. This cost model is also used by our paper for
analyzing the benefits of a partitioned index in Section 4.

Consider a moving tree node N and a moving range query Q for
the time interval [0,1] as shown in Figure 3(a). The MBR (VBR)
of N is denoted as NR = {NR1−, NR1+, NR2−, NR2+} (NV =
{NV 1−, NV 1+, NV 2−, NV 2+}), where NRi− (NV i−) is the coor-

dinate (velocity) of the lower boundary of N on the ith dimension,
where i ∈ {1, 2}. Similarly, NRi+ (NV i+) refers to the upper
boundary. MBR (VBR) of Q also can be denoted similar to N .

The sweeping regions of N and Q are the regions swept by N
and Q during the time interval [0,1] (the grey regions shown in
Figure 3(a)). To determine whether node N intersects Q, we first
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Figure 3: Sweeping region of moving node

define the transformed node N ′ with respect to Q as follows: the

MBR of N ′ in the ith dimension is 〈NRi− − |QRi|/2, NRi+ +

|QRi|/2〉; the VBR of N ′ in the ith dimension is 〈NV i− −QV i+,
NV i+ − QV i−〉. To check whether node N intersects Q during
the time interval [0,1] is equivalent to checking whether the trans-
formed node N ′ intersects the center of Q (which is a point) during
the time interval [0,1]. Therefore, the probability of N intersecting
Q (which is the probability of node N being accessed by the query
Q) during the time interval [0,1] is the same as the probability of
N ′ intersecting the center of Q during the time interval [0,1], which
equals to the area of the sweeping region of N ′ in the time inter-
val [0,1] (the grey region shown in Figure 3(b)). Assuming that
the MBR of Q uniformly distributes in the data space and the data
space has a unit extent in each dimension. Adding up this proba-
bility for every node of the tree, we obtain the expected number of
node accesses for the range query Q as:

∑
every node N in the tree

VN′ (qT ), (1)

where qT is the query time interval; VN′(qT ) is the volume of the

sweeping region of N ′ during qT .

3.2 The Bx­tree
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The Bx-tree [13] indexes moving objects using the B+-tree. This

is a challenge because the B+-tree indexes 1D space but objects
move in a 2D space with associated velocities as well. The Bx-tree
achieves the challenge by first partitioning the 2D space using a
grid, and then using a space-filing curve (Hilbert-curve or Z-curve)
to map the location of each grid cell to a 1D space where 2D prox-
imity is approximately preserved. The locations of the moving ob-
jects are indexed relative to a common reference time.

The Bx-tree incorporates the fact that objects are moving by en-
larging the query window according to the maximum velocity of
the objects. If the query time is far in the future, and therefore
very different from the index reference time, then the query may
be enlarged significantly. Figure 4 shows an example of how the
window enlargement works. Supposing that the current time is 0,
we issue a predictive time slice range query Q at time 2 (the solid
rectangle). Considering that moving points a and b (the black dots)
stored in the Bx-tree, are indexed relative to timestamp 5. From
their velocities as shown in Figure 4, we can infer their positions
at timestamp 2, which are a∗ and b∗ (the circles). The window en-
largement technique enlarges the range query Q using the reverse
velocities of a and b to get the query window at timestamp 5 (the
dashed rectangle). In practice, histograms on a grid base are main-
tained for the maximum/minimum velocity of different portions of
the data space and the query window is enlarged according to the
maximum/minimum velocity in the region it covers. Therefore, a
drawback of the Bx-tree is that, if only a few objects have a high
speed, they would make the enlarged query window unnecessarily
large for most of the objects.

To reduce the amount of query window enlargement, the Bx-tree
partitions the index into multiple time buckets, where all objects
indexed within the same time bucket are indexed using the same
reference time. This results in a smaller difference between the
reference time and query time and thus reduces the query window
enlargement. When objects are updated, they are moved from the
time bucket they are currently residing in to the future time bucket.

3.3 Dual Transform Based Moving Object In­
dexes

The earlier work on dual transform based moving object indexes
[1, 16] was improved upon by more recent indexes such as STRIPES

[20], the Bdual-tree [25] and [17]. They index objects in the dual
space, i.e. a 4-dimensional space consisting of two dimensions for
the location of an object and another two dimensions for the ve-
locity of the object. A consequence of indexing the velocity as
separate dimensions is that the moving objects are effectively in-
dexed as stationary objects. All objects are indexed based on the
same reference time of 0. A drawback of indexing all objects at
the same reference time is that the query search space continues
to grow with time,which is overcome by periodically replacing the
old index with a new index with an updated reference time.

Dual transform based moving object indexes differ from our work
by not exploiting velocity distribution skew to index objects travel-
ing along different dominant velocity axes (DVAs) separately.

3.4 Indexing Techniques that Handle Skewed
Workloads

Zhang et al. [27] propose the P+-tree, which efficiently handles
both range and kNN queries for different data distributions includ-
ing skewed distributions. Their work differs from ours in that their
index is designed for stationary objects instead of moving objects.
Tzoumas et al. [24] propose the QU-Trade technique for indexing
moving objects that adapts to varying query versus update distribu-
tions by building an adaptive layer on top of the R-tree or TPR-tree.
Our work differs from this by adapting to velocity distributions in-
stead of query versus update distributions. Chen et al. [7] propose

the ST2B-tree, which improves the Bx-tree by making it adaptive
to data and query distribution. This is done by dynamically ad-
justing the reference points and grid sizes. Our work differs from
this by creating separate indexes according to velocity distributions
instead of adjusting the reference points and grid sizes. Our VP
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technique can be applied in a straightforward manner to the QU-

trade technique and ST2B-tree because their underlying structures
are the TPR-tree and the Bx-tree, respectively.

Dittrich et al. [8] propose a main memory indexing technique
called MOVIES for moving objects. MOVIES assumes that the
whole data set resides in memory and the update rate is very high
(greater than 5,000,000 per second) whereas our technique does not
make such assumptions.

3.5 Indexing Techniques for Moving Objects
on Networks

There are many existing papers [2, 5, 9, 10] which model the
movement of objects along any type of network including road net-
works. Our paper does not assume that every object must move in
a road network, in other words, our technique works for generic
scenarios where objects can move freely. Objects moving in road
networks is just one of the motivating examples in which case our
technique brings great performance gain due to the few dominant
directions of object movements.

4. HOW VELOCITY PARTITIONING RE­

DUCES SEARCH SPACE EXPANSION
In this section, we analytically show how a velocity partitioned

index can reduce the rate of search space expansion. We focus our
analysis on the Bx-tree and the TPR-tree variants. We first give
an intuitive description of a partitioned index versus unpartitioned
index. Second, we define search space expansion. Third, we an-
alytically contrast the rate of search space expansion between an
unpartitioned index versus a partitioned index. Finally, we present
preliminary experimental verification of our analysis.

Partitioned index. The main idea of the velocity partitioning (VP)
technique is to index objects moving along different DVAs (direc-
tions) in separate indexes. It is important to note that the VP tech-
nique is not restricted to pairs of DVAs that are perpendicular to
each other, but rather will work for any number of DVAs separated
by any angle. Here we first use a simple example to illustrate the
concept of the VP technique. Later in Section 5, we provide a de-
tailed description of how the VP technique is performed. Figure
5 shows an example of objects indexed by an unpartitioned index
versus the same objects indexed by a partitioned index. In this ex-
ample, objects are moving along two DVAs, the x-axis and the y-
axis. In the unpartitioned index, all objects are indexed by the same
index. In the partitioned index, objects moving along the x-axis are
indexed in a separate index from those moving along the y-axis.

Search space expansion. First, we define what we mean by search
space expansion. The search space for a query describes the data
space that is covered (accessed) when processing the query. The
expansion of the search space is determined by the relative move-
ment between the query and the tree nodes. The size of the search
space is proportional to the number of tree nodes accessed by a
query Q, which can be estimated using a cost model proposed by
Tao et al. [23] for the TPR-tree/TPR*-tree. The cost model was
described in Section 3.1 and given as Equation 1.

Although the cost model was designed for the TPR-tree, it also
applies to the Bx-tree as follows. For the Bx-tree, the query ex-
pands but the tree nodes are stationary, which is a special case of
the analysis used for Equation 1 where both the query and the tree
node are moving and expanding.

The idea behind the cost model of Equation 1 is that we can
always transform a moving/expanding query into a stationary one
by making relative adjustments to tree nodes. For example, an ex-
panding query and a stationary tree node can be transformed into
a stationary query by expanding the tree node by the amount the
query was supposed to expand. Following this line of argument,
we only consider the expansion of the tree node in the following
analysis without loss of generality.

Figure 6 shows an example of the search space of the example
shown in Figure 5. In the example, S is the search space of the un-
partitioned index, S′

X and S′
Y are the search space of a partitioned

index in the x- and y-axes, respectively. We also assume that all
objects are traveling either along the x- or y-axes, as was the case
for Figure 5. The example shows that the search space expands by
a quadratic factor for the unpartitioned index versus a linear factor
for the partitioned index.

Analysis of search space expansion of unpartitioned versus par-
titioned index. We will first analyze a simplified scenario as shown
in Figure 6, and then discuss more general situations in Section 4.1.
In this simplified scenario, we assume that: (i) the velocities of all
the objects are exactly along the standard x- or y-axes; (ii) the ob-
jects travel in the same speed along all directions; (iii) the extent
length of the tree nodes along the x- and y-axes are the same; and
(iv) the initial locations of objects are uniformly distributed in the
2D space. The symbols used in Figure 6 are described as follows.
N ′ is the transformed rectangle of the node N with respect to the
query for the unpartitioned index at the initial time 0; N ′

X and N ′
Y

are the transformed rectangles of the node N for the partitioned in-
dex for the x- and y-axes, respectively; v is the maximum speed for
the objects in S along both the x- and y-axes. The extent length of
all the nodes is d. This assumption is reasonable since we are more
interested in the rate of expansion of the search space rather than
its initial size.

Let S′ denote the combined search space of the partitioned index
in the x-axis, S′

X and the y-axis, S′
Y (as shown in Figures 6(b) and

6(c), respectively). Our aim is to show that the rate at which the
unpartitioned search space, S expands is higher than the rate at
which the partitioned search space S′ expands. We quantify the
search space as the volume created by integrating the search area
from time 0 to the query predictive time th, where query predictive
time refers to the future time of the query. The search area expands
with time, therefore we start by expressing the search area of the
partitioned index N ′ as a function of time t, AN′(t) as follows:

AN′ (t) = (d+ 2vt)(d+ 2vt)

= d2 + 4vtd+ 4v2t2 (2)

We are interested in the total expansion of the search area of
the partitioned indexed including both the x-axis index and y-axis
index. Therefore, let ACN′(t) be the combined area of N ′

X and

N ′
Y as a function of time t. ACN′(t) can be computed as follows:

ACN′ (t) = AN′

X

(t) +AN′

Y

(t)

= (d+ 2vt)d+ d(d+ 2vt)

= 2d2 + 4dvt (3)

We next compute the search volume of S. It is important to
compute the search volume rather than just the expanded search
area since the volume includes the cumulative expansion of the area
from time 0 to th. We compute the search volume VS of S by
integrating the search area AN′ from time 0 to th as follows:

VS(th) =

∫ th

0
AN′ (t) dt

=

∫ th

0
(d2 + 4vtd+ 4v2t2) dt

= d2th + 2dvth
2 +

4

3
v2th

3 (4)

Similarly the search space volume from time 0 to th of S′, VS′

can be computed as follows:

VS′ (th) =

∫ th

0
ACN′ (t) dt

=

∫ th

0
(2d2 + 4dvt) dt

= 2d2th + 2dvth
2 (5)

In order to compare the search space of the partitioned index
versus the unpartitioned index, we compute the difference between
the search space volume of the partitioned search space S′ versus
the unpartitioned search space S as a function of time, ∆V (th) as
follows:
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(b) Tree nodes of partitioned index
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Figure 5: Objects indexed by an unpartitioned index versus the same objects indexed by a partitioned index
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∆V (th) = VS′ (th)− VS(th)

= 2d2th + 2dvth
2
− (d2th + 2dvth

2 +
4

3
v2th

3)

= d2th −
4

3
v2th

3 (6)

From Equation 6 we can see that as time increases the search
volume of the unpartitioned space VS becomes increasingly larger
than the search volume of the partitioned space, VS′ . This can be

seen by the fact ∆V (th) is negative when th is greater than d
√
3

2v
.

Therefore, when time th passes the d
√
3

2v
threshold the search vol-

ume of the unpartitioned search volume VS becomes larger than the
partitioned search volume VS′ .

Next, we analyze the rate of change in the search space, by taking
the derivative of Equation 6. This is stated as follows:

d∆V (th)

dth
= d2 − 4v2th

2 (7)

Equation 7 shows that the search volume of the unpartitioned index
expands at a much faster rate than the partitioned index. This can
be seen by the fact the rate at which the search volume of the un-
partitioned index increases above the partitioned index is a squared

factor of both v and th because
d∆V (th)

dth
is a squared factor of both

v and th.
The above analysis is with respect to a single node. It obviously

applies to any node in the tree and when summing up the search
space for all the tree nodes, we reach the conclusion that the query
search space on a partitioned index grows much slower with time
than the query search space on an unpartitioned index. The follow-
ing experiment on a real data set validates this result.

Figure 8: Chicago road network

Experimental verification of the analysis. Figure 7 shows the
results of an experiment, which illustrates the 2D search space ex-
pansion for an unpartitioned TPR*-tree and an unpartitioned Bx-
tree versus a near 1D search space expansion for their partitioned
counterparts. The indexes are partitioned using our VP technique
(detailed in Section 5). The experiment uses data generated from a
portion of the road network of Chicago shown in Figure 8. The ex-
periment involved 100,000 moving objects, with maximum speed
of 100 meters per time stamp, with a query predictive time of 60
time stamps. Details of other parameters of the experiment are the
default parameters described in the experimental study (Section 6).

Figures 7(a) and 7(b) show the velocity expansion rate of the leaf
MBRs for the unpartitioned TPR*-tree and partitioned TPR*-tree,
respectively. The results show that the leaf nodes of the unpar-
titioned TPR*-tree expand in a 2D space whereas the partitioned
TPR*-tree expand in a near 1D space. Similarly, Figures 7(c) and
7(d) show the query expansion rate of the unpartitioned Bx-tree
and partitioned Bx-tree, respectively. Again, the query of the un-
partitioned Bx-tree expands in a 2D space, whereas the partitioned
Bx-tree expands in a near 1D space.

4.1 Discussion of General Cases
In the analysis of the simplified scenario, we have made several

assumptions. To lift the first assumption, when the velocities of
objects are not exactly along the standard x- or y-axes, as long as
their directions are close to the standard x- or y-axes, the previous
analysis still holds since a small deviation from the dominant ve-
locity axis (DVA) incurs a small search space expansion. However,
if some objects’ directions are not close to any of the DVAs, we
will put these objects into an outlier partition. Details of the outlier
partition will be discussed in Section 5.2.

An implicit assumption we also made in the previous analysis is
that there are two DVAs, one is vertical and the other is horizontal.
This assumption may not hold in practice. Therefore, in our VP
technique, we first find out the actual DVAs (through a combination
of PCA and k-means clustering). Then, the previous analysis still
holds when we replace the x- and y-axes with the actual DVAs.
Details of how to find the DVAs will be discussed in Section 5.1.

5. THE VELOCITY PARTITIONING TECH­

NIQUE
We present our VP technique in this section. Figure 9 shows the

system architecture for the VP technique. The system has two main
components, a velocity analyzer and an index manager. The veloc-
ity analyzer partitions a sample of the velocity of objects from the
current workload in order to find the DVAs and an outlier threshold
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Figure 7: Search space expansion of the unpartitioned versus partitioned Bx-tree and TPR*-tree on the Chicago data set

(used to determine which objects belong to the outlier partition).
Velocity is a 2D point in the velocity space, so we refer to the ve-
locity of an object as a velocity point. The index manager takes
the output of the velocity analyzer to transform the query, insertion
and deletion operations to operate on the DVA indexes and outlier
index. A DVA index is the same as a traditional moving object in-
dex such as the TPR-tree or the Bx-tree except objects are indexed
using a transformed coordinate space according to the DVA. The
index manager inserts an object into the closest DVA index unless
it is far from all DVAs, in which case, the object is inserted into
the outlier index. If an object update causes its direction of travel
to change sufficiently, it may be moved from one index to another.
Processing a query involves transforming the query into the coor-
dinate space of each index, and then querying all the indexes and
combining the results.

Query/Insertion/Deletion

DVADVA Outlier

DVAs +

Outlier
Threshold

Index Manager

Transformed Query/Insertion/Deletion

Index 1 Index 2 Index k Index
......

Velocity
Analyzer

Sample Velocity Points

DVA

Figure 9: The system architecture of the VP technique

We provide a more detailed description of the velocity analyzer
in this section since it is the key component of the system. The ve-
locity analyzer analyzes the sample of velocity points to determine
the partition boundaries for future object insertions and querying.
The partition boundaries are determined by the DVAs in the data set
and an outlier threshold τ . We observe that when there are multiple
DVAs in the data set, using only PCA may not be able to identify
the DVAs correctly. Therefore, we propose to use a combination of
PCA and k-means clustering on the sample velocity points to deter-
mine the DVAs. Here k is an input value given by the user based on
observation of the data set or experience. For example, most road
networks have two dominant traffic directions and we can set k to
2. Once the DVAs are determined, the objects can be partitioned
based on the closeness of their velocity directions to the directions
of the DVAs. However, some velocity points may not be close to
any DVA. Those objects are placed in an outlier partition. We de-
termine the boundary of the outlier partition using a threshold τ ,
which defines an upper bound on what a DVA partition will accept.
We choose the τ value for every partition by analyzing the sample
data set using a search space-based cost function.

Algorithm 1 summarizes the VP algorithm used by the velocity
analyzer. It starts by finding the DVAs using a combination of PCA
and k-means clustering on the representative sample data (Line 2).
Specifically, we integrate PCA into the clustering process itself by
using PCA to guide the formation and refinement of clusters. At
the end of the clustering process, each cluster contains the velocity
points that form one DVA partition. The 1st PC of each partition is
the DVA for the partition. The partitioning algorithm minimizes the

perpendicular distance from each velocity point to the DVAs. The
reason we minimize the perpendicular distance is that if all velocity
points within one partition have a small perpendicular distance to
the DVA, then those velocity points occupy a near 1D space.

We define a threshold τ for every DVA to determine whether an
object can be accepted to its partition (Line 4). We determine the
optimal τ by minimizing the combined rate of search area expan-
sion of the DVA partition and the outlier partition. Objects whose
perpendicular velocity is not within the threshold, τ , of any DVA,
are placed in the outlier partition (Line 5). Once all the outlier ve-
locity points have been removed from the DVA partition we recom-
pute the DVA using the remaining velocity points (Line 6). This
updated DVA will be a more precise representation of the veloc-
ity points now remaining in the DVA partition. The final DVAs
and their associated τ thresholds are used by the index manager for
future insertions and query processing.

Algorithm 1: VelocityPartitioning(A,k)

Input: A: sample set of velocity points, k: number of DVA partitions
Output: D: set of DVAs with associated outlier thresholds τ

1 let P be the set of k DVA partitions with their associated DVAs
2 P = Find DVAs(A, k) // See Algorithm 2
3 for each p ∈ P do
4 compute the maximum perpendicular distance threshold τ for p

according to Section 5.2
5 move the velocity points from p whose perpendicular distance is

greater than τ from the DVA of p into the outlier partition
6 recompute the DVA for the remaining velocity points in p

7 let D be the set of DVAs and associated τ thresholds of P
8 return D

In Section 5.1, we describe how our velocity analyzer finds DVAs.
In Section 5.2, we describe how our velocity analyzer determines
the threshold τ to decide which objects should be placed in the
outlier partition. In Section 5.3, we show how our index manager
handles insertion, deletion and update operations. In Section 5.4,
we show how our index manager performs the range query. Finally
in Section 5.5, we discuss the issue of changing velocity distribu-
tions.

5.1 Velocity Analyzer: Finding Dominant Ve­
locity Axes (DVAs)

In this subsection, we will first examine two naı̈ve approaches to
finding DVAs, and then present our approach for finding DVAs.

Naı̈ve approach I: PCA. The first naı̈ve approach is to apply PCA
on a sample set of velocity points to find the DVAs. Using PCA
to find DVAs is intuitive, since the 1st PC (as described in Section
2.2) represents the principal axis along which the data points lay.
In our case, the data points are velocity points, therefore, the 1st PC
represents the principal axis along which objects travel. However,
this approach effectively combines the multiple DVAs in the data
set into one average velocity axis, which does not represent any
of the individual DVAs. PCA is only useful for finding the DVA
when there is only one DVA in the data set. Figure 10(a) shows
the result of applying PCA on a sample of 10,000 velocity points
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