
SODA: Generating SQL for Business Users

Lukas Blunschi
ETH Zurich, Switzerland

lukas.blunschi@inf.ethz.ch

Claudio Jossen
Credit Suisse AG, Switzerland
claudio.r.jossen@credit-

suisse.com

Donald Kossmann
ETH Zurich, Switzerland

donald.kossmann@inf.ethz.ch

Magdalini Mori
Credit Suisse AG, Switzerland
magdalini.mori@credit-

suisse.com

Kurt Stockinger
Credit Suisse AG, Switzerland
kurt.stockinger@credit-

suisse.com

ABSTRACT
The purpose of data warehouses is to enable business analysts to
make better decisions. Over the years the technology has ma-
tured and data warehouses have become extremely successful. As
a consequence, more and more data has been added to the data
warehouses and their schemas have become increasingly complex.
These systems still work great in order to generate pre-canned re-
ports. However, with their current complexity, they tend to be a
poor match for non tech-savvy business analysts who need answers
to ad-hoc queries that were not anticipated.

This paper describes the design, implementation, and experi-
ence of the SODA system (Search over DAta Warehouse). SODA
bridges the gap between the business needs of analysts and the
technical complexity of current data warehouses. SODA enables a
Google-like search experience for data warehouses by taking key-
word queries of business users and automatically generating exe-
cutable SQL. The key idea is to use a graph pattern matching al-
gorithm that uses the metadata model of the data warehouse. Our
results with real data from a global player in the financial services
industry show that SODA produces queries with high precision and
recall, and makes it much easier for business users to interactively
explore highly-complex data warehouses.

1. INTRODUCTION

1.1 Problem Statement
Modern data warehouses have grown dramatically in complex-

ity over the last decades. In particular, the schemas of data ware-
houses have become increasingly complex with hundreds of tables
and ten thousands of attributes for many organizations. In part, this
growth in complexity has been the result of the large success of data
warehousing in many organizations. Data warehouses are used for
an increasing number of applications and these applications have
evolved over time. Each new application and most evolutionary
steps involve extending the schema in order to fiddle in the new
information requirements of, say, the new application.

A second observation that can be made in modern data ware-
houses is that there is a growing gap between the high-level (con-
ceptual) view of business users and the low-level (physical) per-
spective of database administrators. Business users still think of
the data in star schemas with fact tables in the center and dimension
tables as satellites [13]. Database administrators need to integrate
many such star schemas of different kinds of business users with
varying information needs into a single physical schema. Their job
is to optimize the data warehouse, thereby minimizing cost (i.e., $)
and meeting all performance goals (i.e., response time and through-
put). At the same time, they must manage the data and the schema.

Given these differences in goals, it is not surprising that the con-
ceptual world of business users and the physical world of database
administrators is very different. For instance, database administra-
tors may implement a simple business concept such as Customer
using many different tables, thereby partitioning the data horizon-
tally and vertically. Furthermore, database administrators may store
information from different business entities in a single table if that
helps improve performance or manageability. Database administra-
tors may also implement inheritance and generalization in different
ways, depending on the query workload that they anticipate. As an
extreme example, database administrators may use cryptic naming
schemes for table and column names, thereby helping them with
certain administration tasks. What makes matters worse is that
the schemas of data warehouses have already evolved for several
decades and different conventions and optimizations have been ap-
plied in each generation.

In regular, every-day operations, this gap does not become ap-
parent. The information needs of business users are typically ful-
filled with the help of pre-defined reports using pre-canned queries.
These pre-canned queries specify exactly how to reconstruct the
business concepts (e.g., revenue of a customer) from the physical
database schema. While these reports work well for periodically
recurring information needs of business users, the gap between the
business and IT world becomes problematic if business users want
to ask ad-hoc queries or if new reports need to be generated for an
optimized business processes or to launch a new product. In such
an event, business users and database administrators must work to-
gether and it often takes days or weeks before both groups of users
have found a way to implement such a new report if all the infor-
mation is already in the data warehouse.

1.2 SODA Overview
In order to support a more agile usage of a data warehouse, new

search tools are required. Ideally, a business user asks a query using
operators and the business concepts of her world and the search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 10
Copyright 2012 VLDB Endowment 2150-8097/12/06... $ 10.00.

932

tool automatically translates these concepts into SQL queries that
are executable in the current version of the data warehouse. Typical
queries might be: Show me all my wealthy customers who live in
Zurich. Who are my top ten customers in terms of revenue? In such
queries, wealthy customers is a business concept that is defined by,
say, the salary of a customer. top ten is an operator and applied to
customer it asks for the customers with the highest trading volume.

SODA addresses this need of business users by allowing them
to pose queries in an intuitive, high-level language based on key-
words, operators and values. SODA translates these queries into
a set of alternative SQL queries, ranks those queries, and (par-
tially) executes the Top 10 in order to generate result snippets (up
to twenty tuples) for each of these queries. Just as in a Web search
with Google or Bing, the user has now the choice to select one of
those queries of the first result page, ask for the next set of candi-
date queries (i.e., the next result page), or refine the original query.

Translating keywords into SQL has been studied before in re-
lated work such as BANKS [3], DISCOVER [10], DBExplorer [1],
SQAK [23] or Keymantic [2]. Like most of these systems, SODA
indexes the base data and finds join paths using key/foreign key re-
lationships of the database schema. The key innovation of SODA
is its flexible way of making use of metadata that goes way be-
yond looking at key/foreign key relationships or lookups on column
names and table names. SODA allows to define metadata patterns
that specify how the database schema implements the conceptual
model that the business user might have in mind. For instance,
at Credit Suisse customer information is spread across several ta-
bles; different kinds of customers (e.g., organizations, wealthy cus-
tomers in private equity, customers with special compliance con-
straints and risk profiles) are implemented in different ways. The
metadata allows to bridge the gap between the low-level SQL im-
plementation and the concepts typically used by business users and
allows to generate the right SQL for a complex query.

To enable SODA (and other related tools), Credit Suisse has in-
vested heavily in building a so-called metadata warehouse [11].
Such a metadata warehouse stores all available metadata. [11]
shows, for instance, how provenance information of the metadata
warehouse can be used in order to find out which applications are
affected by a change in a specific data source. As will be shown,
SODA exploits the definition of business terms (e.g., wealthy cus-
tomer), homonyms and synonyms (e.g., information extracted from
DBPedia), and data models at different levels to help business users
to ask complex queries to the data warehouse. Given the growing
gap between business and IT, we are aware of several other or-
ganizations that are also investing into such metadata warehouses.
Obviously, these metadata warehouses will have totally different
structures and model metadata in different ways. By using patterns,
however, SODA is flexible and generic enough to exploit any kind
of metadata. Furthermore, SODA can evolve over time thereby
adapting to new patterns based on user feedback or to an evolving
data warehouse.

1.3 Contributions and Overview
In summary, the main contributions of this paper are as follows:
a) This paper shows how SODA can be used to generate SQL

queries from a high-level query language (keywords and operators),
metadata, and patterns. The key innovation is the use of patterns
that help to interpret and exploit a large variety of different kinds
of metadata such as homonyms and synonyms (e.g., using DBPe-
dia), domain ontologies (Credit Suisse has its own domain ontology
and imports standards from the financial industry), modeling con-
ventions (e.g., inheritance), performance tricks (e.g., partitioning,
redundancy), and last but not least base data.

Organizations

Individuals

Transactions Parties

Financial
Instruments

X

Legend:

N-to-1 Relationship

N-to-N Relationship

X Inheritance
(mutually exclusive)

Figure 1: Sample World: Conceptual Schema.

Organizations

Individuals

Parties

Addresses

Money
Transactions

Financial
Instrument

Transactions

X
X

Transactions

Securities
Financial

Instruments

Legend

N-to-1 Relationship

N-to-N Relationship

X Inheritance
(mutually exclusive)

Figure 2: Sample World: Logical Schema.

b) This paper presents the results of experiments using a real-life
data warehouse with hundreds of tables and thousands of attributes
from a major player in the financial industry. The experiments show
that indeed complex SQL queries can be generated automatically
from high-level specifications and that the gap between the world
of business users and the reality of IT can be bridged. The exper-
iments, however, also demonstrate some of the limitations of the
approach and that a search tool like SODA needs to evolve based
on user feedback and experience.

The remainder of this paper is structured as follows: Section 2
describes the running example used throughout this paper. Section
3 gives an overview of the SODA approach. Section 4 defines the
algorithms used in SODA in more detail and presents several ex-
ample queries. Section 5 discusses the results of experiments that
evaluate the quality of the search results produced by SODA. Sec-
tion 6 compares SODA to related work; in particular, Section 6
shows how existing systems would fare for the queries used in our
experiments. Section 7 contains conclusions and possible avenues
for future work.

2. RUNNING EXAMPLE
This section describes the simplified schema of a mini-bank with

customers that buy and sell banking products (so-called financial
instruments). We use this example throughout this work to demon-
strate that generating SQL queries that meet a business need can
be difficult for humans even for a small schema. The example,
however, also illustrates that if the metadata is known and the right
patterns can be extracted from the query, then generating the right
SQL is quite doable for a machine.

933

Typical end user queries that we will analyze throughout the pa-
per are as follows: (1) Find all financial instruments of customers in
Zurich. (2) What is the total trading volume over the last months?
(3) What is the address of Sara Guttinger?

2.1 Example Schema
Figure 1 shows the example schema. It models information about

customers (referred to as Parties in our data warehouse) and the
transactions these customers made; buying and selling on the stock
market. Parties can be individuals for private banking or corporate
customers for investment banking (i.e., organizations); both kinds
of parties are modeled separately because they are supported by dif-
ferent sets of analysts. The technical term for products which can
be bought or sold on the stock market is Financial Instrument. Fi-
nancial instruments can be shares of a company (e.g., IBM shares).
Financial instruments, however, can also be structured; that is, a fi-
nancial instrument could relate to a fund that manages a portfolio of
shares or even a hedge fund that manages a portfolio of certificates
of other funds and hedge funds. It is in part this recursive nature of
financial instruments that makes it difficult for business analysts to
extract the right information from a data warehouse.

As mentioned in the introduction, real-world data warehouses
are far more complex. In a real data warehouse, schemas are lay-
ered with different levels of abstraction. Figure 1 is a dramatic sim-
plification, which could be at the conceptual layer at which busi-
ness analysts and architects meet in order to design a new report. At
lower layers (i.e., logical and physical layer), the schemas become
more complex as the system architects and database administrators
refine the schemas in order to achieve better performance by parti-
tioning and replicating data, improve data quality by modeling data
at different granularities, etc. Figure 2 shows the example schema
at the logical level. Here, the addresses of individuals are actually
stored in a separate table and transactions are modeled as either
financial instrument transactions or money transactions.

It is easy to imagine how complex such schemas can get in a
global financial institution considering varying regulatory require-
ments of different countries, redundancy that arises from keeping
data in different granularities for performance reasons, the hetero-
geneity of the data sources that feed the data into the data ware-
house, and with different departments asking for different kinds of
reports.

2.2 Extended Metadata Graph
The data warehouse of Credit Suisse consists of base data stored

in a relational database as well as metadata stored in a graph struc-
ture (such as RDF). The metadata consists of the database schema
extended with DBpedia and domain ontologies (see Figure 3).
Integrated Schema. A data warehouse combines and aggregates
data from many heterogeneous data sources. To handle the differ-
ences in the data sources, an integrated schema is built. To facil-
itate the design process, there are different levels of the schema,
namely conceptual, logical and physical. The conceptual schema
(business layer) serves for communication with business and con-
tains the main entities to be modeled such as parties, transactions,
and securities. The logical schema extends the conceptual one by
showing inheritance, splitting entities (for instance, parties are split
into individuals and organizations), etc. The physical schema con-
tains information about database indexes or table partitioning. Typ-
ically all these schemas are designed with one modeling tool with
the goal to generate the physical tables.
Domain Ontologies. In addition to the schema, our metadata con-
sists of several domain ontologies. The domain ontologies are built
for a given data warehouse and are used to classify data for a spe-

DBpedia
Domain

Ontologies

Conceptual
Schema

Logical
Schema

Table 1

B
A

S
E

 D
A

TA
M

E
TA

 D
A

TA

Table N
...

Physical
Schema

Table 2

Figure 3: Metadata Graph and Relational Data.

cific domain. As an example, such a domain ontology could clas-
sify financial instruments or customers. At Credit Suisse, cus-
tomers are divided into private and corporate customers: Private
customers are implemented using an Individuals table; the infor-
mation of corporate customers is stored in an Organizations table.
DBpedia. The metadata also contains data from DBpedia in or-
der to capture synonyms. Credit Suisse only maintains DBpedia
entries that have direct connections to the terms stored in the in-
tegrated schema of the data warehouse. For instance, for the term
“Parties” shown in our example world, the following entries have
been extracted from DBpedia: customer, client, political organi-
zation, etc. As a result, when a user searches for customers then,
parties would be one possible answer.
Base Data. As in most large-scale data warehouses, the base data
of the Credit Suisse data warehouse is stored in relational databases.
All the base data is implicitly connected to the metadata by the ta-
ble and column names of the physical schema that holds the base
data.

3. SODA IN A NUTSHELL
Before elaborating on the patterns and the algorithms used in

SODA, we would like to give a high-level overview of SODA [4].
Figure 4 shows the main steps of the SODA approach. These steps
are similar to the way systems like BANKS, DBExplorer, and DIS-
COVER generate SQL queries. Again, the magic of SODA lies in
the use of metadata and patterns (described in Section 4). Starting
from a list of keywords and operators, SODA computes a ranked
list of executable SQL statements that are likely to meet the infor-
mation needs of the user. This transformation is carried out in the
following five steps:

934

query: keywords + operators + values

lookup: find entry points

rank and top N: select best N results

tables: determine tables and joins

filters: collect filters

SQL: generate SQL

result: scored SQL statements

m
et

ad
a

ta
,

ba
se

 d
a

ta

pa
tt

e
rn

s
Figure 4: SODA Overview.

Step 1 - Lookup: The lookup step matches the keywords of the
input query to sets of possible entry points. A lookup of a sin-
gle keyword provides us with all the nodes in the metadata graph
where this keyword is found. For example, in Figure 5, the key-
words “customers” and “Zürich” are both found once, in the do-
main ontology and the base data, respectively. On the other hand,
the keyword “financial instruments” is found twice: once in the
conceptual schema and once in the logical schema. The output
of the lookup step is a combinatorial product of all lookup terms.
For this example two solutions are produced: One where “financial
instruments” is found in the conceptual schema, and another one
where “financial instruments” is in the logical schema. Besides
processing keywords, our algorithm also uses operator constructs
(patterns) to express aggregation and filters.
Step 2 - Rank and top N: The next step assigns a score to every
result and continues with the best N results. For the ranking, we
currently apply a simple heuristic which uses the location of the
entry points in the metadata graph to assign a score to a result.
For example, a keyword which was found in DBpedia gets a lower
score than a keyword which was found in the domain ontology. We
rank the domain ontology higher, because it was built by domain
experts from the financial services industry, and hence it is more
likely to match the intent of our business users than the general
terms found in DBpedia. There exist certainly more sophisticated
ranking algorithms such as BLINKS [9], however, ranking is only
a part of SODA and not the main focus of this paper.
Step 3 - Tables: The purpose of this phase is to identify all the
tables which are used in each solution and to discover the relation-
ships between these tables. Starting at every entry point which we
discovered in the lookup phase, we recursively follow all the out-
going edges in the metadata graph. At every node we test a set
of graph patterns to find tables and joins. We assume, that tables
found in this way, represent the entry points. In our example the
output of this step are 7 tables (see Figure 6).
Step 4 - Filters: Filters can be found in two ways: a) by parsing the
input query or b) by looking for filter conditions while traversing
the metadata graph. In this step, we add the filters to the discovered
tables and columns of the previous step. A filter condition consists
of a column and a value such as “Zürich”. In our example, the
filter conditions are used to connect “Zürich” to the city column
within the addresses table. While having filters in the input query is

Figure 5: Query Classification.

Financial Instruments
(Logical schema)

Customers
(Domain ontology)

Zürich
(Basedata)

Input (graph nodes):

Output (tables):

parties

individuals

addresses financial_instruments

fi_contains_sec

securitiesorganizations

Figure 6: Output of Tables Step (join relationships not shown).

quite common, filters stored in the metadata can be very powerful
as well. An example of a filter stored in the metadata would be
“wealthy individuals” as described in the introduction.
Step 5 - SQL: In this final step, we take all the information that
was collected earlier and combine it into reasonable, executable
SQL statements. By “reasonable” statements we mean statements
which take into account possible join patterns. For example, con-
sidering foreign keys and inheritance patterns in the schema. By
“executable” statements we mean SQL statements that can be exe-
cuted on the data warehouse.

4. GENERATING SQL FROM PATTERNS
This section provides details on the patterns and algorithms used

in SODA. In particular, it shows how patterns are used to translate
from a keyword-based input query to full-fledged SQL. Metadata
graph patterns provide a flexible way to adapt the SODA algorithm
to different data warehouses. It is important to note that patterns
described in the following probably exist in all data warehouses,
but the structure depends on the modeling of the data warehouse.
Here, we describe the patterns that we used for Credit Suisse. To
port SODA to a different data warehouse involves adjusting the
patterns to the specific structures used in that data warehouse.

4.1 Why Patterns?
SODA uses patterns in two situations:

1) In Step 1 - Lookup (Figure 4): Instead of trying to use natural
language processing to understand the input, we have a set of so-
called input patterns that SODA understands. For example, every
operator is a little pattern which combines an operation (compari-
son or aggregation) with values or business entities.
2) In Step 3 - Tables and Step 4 - Filters (Figure 4): When deriv-
ing the tables and join conditions from a given set of so-called en-
try points (graph nodes which represent words of the input query),
SODA tests for so-called metadata graph pattern matches while
traversing the metadata graph. A matching pattern tells us when
we arrived at a special node which could be, for instance, a table, a
foreign key or an attribute with a filter condition.

935

Link

? Physical
Table

type

Tablename=...

Node

Value

Legend:

Node being tested?

Figure 7: Table Pattern.

Both types of patterns, input patterns and metadata graph pat-
terns, can be adapted to work for the given application. For exam-
ple, use different input operators for another set of users or modify
the metadata graph patterns according to the existing schema struc-
ture. While the patterns may have to be changed between different
applications, the algorithm always stays the same.

4.2 Credit Suisse Patterns
As discussed previously, SODA works with two types of pat-

terns: Input patterns and metadata graph patterns. Currently, input
patterns are only keywords extended with a small set of operators,
whereas our metadata graph patterns can match the complexity of
the Credit Suisse metadata warehouse [11].

4.2.1 Metadata Graph Patterns
In Step 3 - Tables and Step 4 - Filters (see Figure 4), we use

metadata graph patterns to discover tables, joins and filters stored
in the metadata.
Pattern Descriptions. To define the patterns, SODA uses a lan-
guage which was inspired by SPARQL [21] filter expressions: Each
triple either connects two nodes or connects a node with a text la-
bel. A node is either a static URI or a variable. Variables can be
assigned any URI, but within one match, a variable keeps its URI.
An edge is a static URI. A text label is simply a string. In the
following, we will use italic, dark gray font for variables, put t:
before text labels, and remove URI prefixes for brevity.

To match a pattern on a given graph, we assign the variable x to
the current node and try to match each triple in the pattern to the
graph accordingly.
Basic Patterns. These patterns describe how tables, columns, etc.
are represented in the metadata graph. SODA matches these pat-
terns against the metadata graph to identify the tables and columns
which participate in each result. Basic patterns are used at the be-
ginning of Step 3 - Tables of the SODA algorithm (see Figure 4).

The Table pattern can be written like this:

(x tablename t:y) &
(x type physical_table)

This pattern matches, if the current node (x) has a tablename

attribute pointing to a text label (t:y). In addition, x needs to have
a type attribute pointing to a node which has the URI physical
table. See Figure 7 for a graphical representation of these condi-
tions. The Column pattern could be:

(x columnname t:y) &
(x type physical_column) &
(z column x)

The first part of the column pattern specification is similar to the
table pattern. In the last line of the column pattern specification,
we ensure that each column (x in this example) has an incoming
column edge from another node (z).
More Complex Patterns. These patterns define join relationships
and inheritance structures. The simplest implementation of a join

Referenced Pattern

Link

? foreign key

Node

Legend:

Node being tested?
Column
pattern

Column
pattern

Figure 8: Foreign Key Pattern.

relationship is a direct edge between a foreign key attribute and a
primary key attribute. This is shown in the Foreign Key pattern:

(x foreign_key y) &
(x matches-column) &
(y matches-column)

The term “matches-column” references the Column pattern de-
scribed above. Figure 8 shows a visual representation of this pat-
tern. In the case of Credit Suisse, we use a more general Join-
Relationship pattern which has an explicit join node with outgoing
edges to primary key and foreign key. For testing a node if it is a
child in a inheritance structure, we use the Inheritance Child pat-
tern:

(y inheritance_child x) &
(y type inheritance_node) &
(y inheritance_parent p) &
(y inheritance_child c1) &
(y inheritance_child c2)

Here, x needs to have an incoming inheritance child edge
from an explicit inheritance node (y). The inheritance node, in turn,
has to be of type inheritance node and needs to have three out-
going edges: inheritance parent to the inheritance parent, and
two inheritance child edges to the inheritance children.
Application in SODA. The metadata graph patterns described so
far are all used in Step 3 - Tables of our algorithm (see Figure 4).
We traverse the metadata graph starting from the entry points of
a given query and recursively follow all outgoing edges. At each
node, we test the Table, Column and Inheritance Child patterns.
If the Table pattern matches, we collect the corresponding table
name. If the Column pattern matches, we collect the corresponding
column name as well as the table name. And if the Inheritance
Child pattern matches, we collect the table name of the inheritance
parent. We need to collect the table name of the inheritance parent
because this table is needed to produce correct SQL statements.

After this first part of step 3 in the algorithm, we now have the
table names for all given entry points. What remains to do in the
second part of step 3, is to identify joins that are needed to properly
connect the tables. Fortunately, a similar approach as for the table
names can be used: We again traverse the metadata graph starting
from the entry points of a given query and recursively follow all
outgoing edges. But, instead of testing the Table, Column and In-
heritance Child patterns as before, we now try to match the Foreign
Key pattern (or, in the case of Credit Suisse, the Join-Relationship
pattern). Of all the join conditions we discovered in this way, we
now use these which are on a direct path between the entry points.
Join conditions which are only “attached” to such a path are ig-
nored to keep the result small and precise. A user interface, how-
ever, could make such joins available to the user. See Figure 9.
Bridge Tables in Large Schemas. Joining the entry points as de-
scribed until now works fine in small data warehouses with simple

936

= Table

= Table with Entry Point

= Foreign Key

= Used Foreign Key

Figure 9: Joins on Direct Path.

schemas, i.e. in our example world, this works well. In a large
data warehouse, as for example the Credit Suisse data warehouse,
this is not enough. In a last part of step 3 of our algorithm, we
therefore look for bridge tables, i.e. physical implementations of
N-to-N relationships. Bridge tables connect two entities by hav-
ing two outgoing foreign keys. If we find a bridge table between
two of our entry points, we use it to add additional join conditions.
Bridge tables—as you might have guessed—can be described with
a pattern and identifying bridge tables therefore works similar to
identifying tables and joins.

4.2.2 Input Patterns
Input patterns are used in Step 1 - Lookup of the SODA algorithm

(see Figure 4). These patterns are matched against the query terms
to identify their meaning.
Keywords. The first type of input patterns are keywords. To pro-
cess keyword-only inputs, we look for longest word combinations.
We first try to match all the words in the input against our classi-
fication index. If we find a match, we are done. Otherwise, we
recursively try smaller word combinations. In the following exam-
ple, we find “Private customers” and “Switzerland”:

Private customers Switzerland

Keyword-only inputs are the simplest way to use SODA and
most people are familiar with using keywords for searching. The
following types of input patterns are for more advanced users. Of-
ten, one starts with keywords only and afterwards adds operators to
refine the query.
Comparison Operators. The second type of input patterns are
comparison operators. Each comparison operator is a small binary
pattern where the operator is in the middle and its operands are to
the left and to the right. We currently support >, >=, =, <=, <
and like.

To identify operators and its operands in the input, we run our
longest word combination algorithm as explained for Keywords
above. This works well, because operators are simply words in the
input and we can recognize them as such. The comparison operator
will later on be applied to the keywords before and after itself.
Aggregation Operators. The last type of input patterns are aggre-
gation operators. Here we currently use a very strict syntax, but
this could be relaxed by modifying the pattern. We currently sup-
port sum and count, however, there is nothing that would prevent
us from adding more when we need it.

4.3 Query Language
Our query language for processing keywords and comparison

operators can be formalized as follows:

<search keywords> [[AND|OR] <search keywords> |
<comparison operator> <search keyword>]

The optional parts are written in parenthesis, i.e. between [and].
The pipe sign indicates “or”. In order to express time-based range
queries, the following syntax needs to be applied:

<search keywords> [[AND | OR] <search keywords> |
<comparison operator> date(YYYY-MM-DD)]

The characters Y, M, D refer to year, month and date.
The formal specification for aggregate queries is as follows:

<aggregation operator> (<aggregation attribute>)
[<search keywords>]
[group by (<group-by attribute1, ,attributeN>)]

Example queries for all types of input patterns can be found later
in this section and in Section 5.

4.4 Patterns in Action - Examples
In this subsection we explain how we use patterns by looking

at examples. We first present several queries which contain filter
conditions. Afterwards we look at aggregation examples.

4.4.1 Examples with Filters
Assume that an end-user wants to find all information about Sara

Guttinger—a customer of the bank. The respective SODA query as
well as the SQL query are shown in Query 1.

SODA:

Sara Guttinger

SQL:

SELECT *
FROM parties, individuals
WHERE parties.id = individuals.id

AND individuals.firstName = ’Sara’
AND individuals.lastName = ’Guttinger’

Query 1: Keyword pattern example: SODA vs. SQL.

As we can see the SODA query is much easier to understand for
a typical end-user than the SQL query where one needs to take into
account the correct join and filter conditions.

In the second example we are looking for everyone who has a
salary above a given value and was born on a certain date. The
input query given to SODA is shown in the upper part of Query 2.

In this query we find three input patterns: a greater-equal com-
parison, an equality comparison, and a date() operator. The re-
maining keywords are processed with our metadata graph pattern
matching algorithm. Both, “salary” as well as “birthday”, would
match our column pattern and we would therefore include the cor-
responding table (e.g. persons) as well as the two attributes (per-
sons.salary and persons.birthday). “and” might be unknown and
we therefore ignore it. For completeness, a possible SQL query
which does the same is also shown in Query 2.

4.4.2 Examples with Aggregation
Assume that a business analyst wants to find the top n customers

with the highest trading volume in 2010. Ideally, the input query
would look like

Top 10 trading volume customer
between January 2010 and December 2010

937

SODA:

salary >= x and birthday = date(1981-04-23)

SQL:

SELECT *
FROM persons
WHERE persons.salary >= x

AND persons.birthday = 1981-04-23

Query 2: Input pattern example: SODA vs. SQL.

Unfortunately, the first problem is that the given date range could
refer either to trading volume or to customer. To resolve this ambi-
guity, one could write the query as a)

Top 10 trading volume customer transaction date
between date(2010-01-01) date(2010-12-31)

In this case, we would find customers with top trading volume with
executed transactions in a certain time frame. On the other hand, if
we wanted to find young costumers with high trading volumes, we
would write the query as b)

Top 10 trading volume customer birth date
between date(1980-01-01) date(1990-01-01)

For this problem, it suffices to show both results to the business
analyst and let her choose the result that matches her intent. The
second problem, however, is more difficult to tackle: How to in-
fer from “trading volume” to “aggregation of transaction amount”?
One way to solve this problem is to let the user write a more precise
query with explicit aggregation operator, e.g.

Top 10 sum(amount) customer transaction date
between date(1980-01-01) date(1990-01-01)

Since this is rather unintuitive, another way to handle such cases
is to introduce a domain ontology. A domain ontology in our case
defines a classification for a given domain.

To give a concrete example, we assume that we are interested in
the amount of the transactions per trading day. The corresponding
SQL statement and its SODA counterpart are shown in Query 3.

SODA:

sum (amount) group by (transaction date)

SQL:

SELECT sum(amount), transactiondate
FROM fi_transactions
GROUP BY transactiondate

Query 3: Aggregation pattern example: SODA vs. SQL.

The advantage of the SODA aggregation approach over standard
SQL becomes even more apparent for aggregation queries that re-
quire a multi-table join. Since SODA automatically identifies the
join predicates, the end-user does not need to worry about writing
full SQL, which is often hard for typical non-tech savvy business
analysts and hence SODA takes over that burden to enable user-
friendly data warehouse search.

Consider, for instance, the example where we want to rank the
organizations by trading volume. Query 4 shows the SODA query
and the corresponding proper SQL statement. From the point of
view of a business analyst, the SODA query is more intuitive, easier
and much faster to write.

SODA:

count (transactions) group by (company name)

SQL:

SELECT count(fi_transactions.id), companyname
FROM transactions,fi_transactions,organizations
WHERE transactions.id = fi_transactions.id
AND transactions.toParty = organizations.id

GROUP BY organizations.companyname
ORDER BY count(fi_transactions.id) desc

Query 4: Organizations ranked by trading volume example:
SODA vs. SQL.

5. EXPERIMENTS & RESULTS
In this section we report on the experiments that we carried out

with SODA on Credit Suisse’s central data warehouse, which is
among the largest and most complex data warehouses in the finan-
cial industry. Our experimental results demonstrate that SODA’s
keyword search algorithm generates executable SQL queries with
high precision and recall compared to the manually written gold
standard queries. (Gold standard queries have been manually writ-
ten by domain experts.) SODA reveals ambiguities of the query
keywords by understanding different patterns of the schema graph
and by searching the base data using an inverted index. In addition
to simple keyword search, SODA also supports conjunctive range
queries as well as aggregations. As we will see in this section,
the results clearly show that SODA not only works well for small
schemas with several tables but also for large schemas with com-
plex inheritance and join relationships of a modern enterprise data
warehouse from the financial services industry. Moreover, we will
highlight our experiences and challenges we faced when working
with large and complex data sets.

5.1 Experimental Setup

5.1.1 The Credit Suisse Data Warehouse
The Credit Suisse data warehouse is an enterprise data ware-

house that consists of three main layers, namely integration layer,
enrichment layer, and analysis layer [8]. The integration layer re-
ceives data from some 2,500 different source systems covering all
areas of the bank such as information about customers, investment
products, trades, etc. The total data volume covering three test en-
vironments and one production environment fully replicated over
physically separated data centers is currently around 700 terabytes.
The unintegrated data comprises several thousands of tables with
some 30,000 attributes. The main goal of the integration layer is
to take the data from the heterogeneous data sources and integrate
them into a carefully modeled enterprise data warehouse with bi-
temporal historization [5]. In other words, the data warehouse is a
temporal database system with time dimensions covering the valid-
ity time and the system time [20].

Once the data is fully historized and quality controlled, the en-
richment layer is used for storing so-called reusable measures and
dimensions that are calculated based on previously integrated data.
A typical example of data enrichment are SOX, Basel II, and Basel
III calculations that compute complex base key figures that are ma-
terialized for efficiency reasons. The actual data analysis takes
place in the analysis layer which consists of several business spe-
cific physical data marts fed either from the integration layer or the
enrichment layer. Typical examples of these business applications
are dedicated data marts for risk calculations, legal and compliance
assessments or profitability calculations.

938

In addition to the actual data warehouse, Credit Suisse also has a
metadata warehouse [11] that allows navigating and searching the
complex schema of the various data warehouse layers. This meta-
data warehouse enables business users, requirements engineers, and
software architects to get a better understanding of the complex re-
lationships between the various data items. SODA builds on top
of the metadata warehouse and provides additional functionality,
namely automatic SQL generation and hence interactive data ex-
ploration based on keywords.

5.1.2 Software and Hardware Used
SODA is implemented in Java 1.6 with a generic database back-

end that we tested with three different database systems: Derby,
MySQL, and Oracle. Our experiments with real data were executed
using Oracle 11gR1 on a Sun M5000 shared memory machine with
32 cores, 128 GB of main memory, and an enterprise-scale storage
back-end that is attached to several data warehouse servers. The
operating system is Solaris 10. Our data set is based on the full
schema of the integration layer consisting of 472 tables with a re-
duced and anonymized data volume of 220 GB. The top 10% of
these tables have above 107 records with the largest table compris-
ing 6.7 x 108 rows. Moreover, the complex schema of the data
warehouse consists of dozens of inheritance relationships with sev-
eral levels.

Since our test environment is shared with other applications, our
experiments were restricted to 4 cores and a maximum of 32 GB
of main memory. Building up the inverted index for all 472 base
data tables took 24 hours on a single core. The total size of the
inverted index over all base tables is 9.5 GB comprising 1.4 x 108

non-unique records. Note that the inverted index is only built on
table columns of data type “text”. In other words, base data table
columns with numerical data types are not contained in our inverted
index.

Table 1 shows the complexity of the schema graph in terms of the
number of entities and attributes. Note that the cardinality of con-
ceptual entities which represents the business world is 226, while
the cardinality for logical entities and physical tables is 436 and
472, respectively. These numbers indicate that the complexity of
the technical world increases with respect to the business world.
Also note that the total number of attributes increases from 985 for
the business world, that is, the conceptual attributes, to 2700 and
3181 for the technical world, that is, logical attributes and physical
columns, respectively. The total size of schema graph is 37 MB
which is relatively small compared to the total size of the base data
which is 220 GB.

The great challenge that every business analyst faces who wants
to query the data warehouse, is to understand the meaning of all
these 436 entities and 472 tables and to correctly correlate them to
each other (i.e. to understand the relationships among each other).
As we can see in Section 5.3.2, SODA is considered as an impor-
tant step to enable end-users to explore the data warehouse in an
intuitive way.

5.1.3 Queries
Our query workload consists of a mix of queries taken from the

query logs, queries proposed by our business users and synthetic
queries to cover corner cases of our algorithms—such as complex
aggregations with joins. Inspired by the 20 queries for astrophysics
proposed by Jim Gray et al. [22], this paper shows the results for
the 10+ most interesting queries we executed against one of the
Credit Suisse data warehouses. These queries that are shown in
Table 2 cover various query types such as queries against base data
(B), against the schema (S) or domain onotolgy (D). Others handle

Table 1: Complexity of the schema graph including conceptual,
logical and physical schema.

Type Cardinality
#Conceptual entities 226

#Conceptual attributes 985
#Conceptual relationships 243

#Logical entities 436
#Logical attributes 2700

#Logical relationships 254
#Physical tables 472

#Physical columns 3181

inheritance (I), predicates (P) or aggregates (A). The abbreviations
for the query types are shown in the column ”Comments”. Note
that these different queries types are later on used for comparison
with other systems (see Table 5)).

Column 2 shows the queries expressed in terms of keywords and
column 3 gives additional comments about the queries. For in-
stance, query Q1.0 is answered by finding a match of “private cus-
tomers” in the customer domain ontology as well as finding a match
of “family name” in the schema graph. Query Q2.1 is evaluated by
using “Sara” as a filter criterion on the base data. Queries Q2.2 and
Q2.3 are additional refinements of query Q2.1 to yield more precise
answers. Queries Q3.1 and Q3.2 show the ambiguity of the query
“Credit Suisse”. The user could either be interested in Credit Su-
isse as an organization or as an entity that is part of an agreement.
Query Q5.0 is interesting since it needs to correctly identify in-
heritance relationships (by applying the inheritance pattern), while
queries Q9.0 and Q10.0 are aggregation queries.

For each of these queries we manually wrote so-called gold stan-
dard queries (see column 4), i.e. executable SQL statements that
return the best results for the given queries. The gold standard
queries serve as the yard stick for measuring precision and recall
of the SODA queries.

5.2 Results

5.2.1 Precision and Recall
For each input query Qi, we compute precision and recall for all

j SQL statements Rij SODA produces. To compute precision, we
compared the result tuples of a produced SQL statement of SODA
#Rij with the result tuples of the Gold Standard query #Gi. A
precision of 1.0 means, that a SQL statement produced by SODA
returned only tuples that also appear in the Gold Standard result
#Rij ⊆ #Gi. Similarly, a recall of 1.0 means, that a SQL state-
ment produced by SODA returned all tuples of the Gold Standard
result #Gi ⊆ #Rij . In Table 3 we show precision and recall of
the best SQL statement produced by SODA. We also calculated the
number of SODA results with precision and recall greater than 0
and equal to 0. Table 3 shows the results.

We can see that for a majority of the queries, SODA produces a
precision of 1.0 while the recall is either 1.0 or 0.2 (see Q2.1 and
Q2.2). The reason for the sometimes low recall is due to the fact
that the data warehouse uses bi-temporal historization where the
actual join keys are not properly reflected in the schema graph. In
order to mitigate this problem, the schema graph needs to be anno-
tated with join relationships that reflect bi-temporal historization.
Note that SODA provides a very flexible way of incorporating these
changes that are typically required for modern data warehouses that
constantly evolve over time—both in size and complexity.

Another interesting observation is that for some queries the pre-
cision is close to 0 or even 0 (see Q5.0 and Q9.0). These results are

939

Table 2: Experiment queries.
Q Keyword Comment Gold standard

1.0 private customers family name Use customer domain ontology (D) and
combine with attribute from schema (S). 3-way join incl. inheritance (I).

2.1 Sara Use base data (B) as a filter criterion. 3-way join incl. inheritance (I)
with where-clause on given name.

2.2 Sara given name Same as for Q 2.1 + Same as for Q 2.1.
restriction on given name (S).

2.3 Sara birth date Restriction on birth date to focus Same as for Q 2.1.
on specific table (S).

3.1 Credit Suisse Use base data (B) as a filter criterion Single table containing information
to find the organization. about organizations with

where-clause on org name.
3.2 Credit Suisse Use base data (B) as a filter criterion Single table containing information

to find Credit Suisse agreements. about deals with
where-clause on agreement name.

4.0 gold agreement Use base data (B) as filter and match 2-way join.
with schema attribute (S).

5.0 customers names Identify inheritance relationships (I) Two separate 3-way join queries
and use names domain ontology (D). for private and corporate clients.

6.0 trade order period > Time-base range query (P) on given 3-way join with where-clause
date(2011-09-01) column (S). incl. inheritance (I).

7.0 YEN trade order Use base data (B) filters and 5-way join with 2 where-clauses
schema (S). incl. inheritance (I).

8.0 trade order investment product Base data (B) + schema (S). 5-way join with where-clause
Lehman XYZ incl. inheritance (I).

9.0 select count() Base data (B)+ domain ontology (D) + 5-way join + aggregation
private customers Switzerland aggregation (A) incl. inheritance (I).

10.0 sum(investments) Aggregation (A) with explicit 5-way join + aggregation +
group by (currency) grouping and schema (S). group by.

Table 3: Precision and recall for experiment queries including
inverted index for base data.

Q Best Result #Results #Results
Precision (P) Recall (R) P,R > 0 P,R = 0

1.0 1.00 1.00 1 0
2.1 1.00 0.20 1 3
2.2 1.00 0.20 1 1
2.3 1.00 1.00 1 2
3.1 1.00 1.00 2 4
3.2 1.00 1.00 3 3
4.0 1.00 1.00 1 3
5.0 0.12 0.56 1 4
6.0 1.00 1.00 2 0
7.0 0.50 1.00 1 3
8.0 1.00 1.00 2 2
9.0 0.00 0.00 0 6

10.0 1.00 1.00 1 5

due to the complex nature of the data model with several bridge ta-
bles where SODA is not able to identify the correct join conditions.

5.2.2 Query Complexity and Runtime
After measuring the precision and recall of the queries, we now

analyze the query complexity and the runtime.
The query complexity is defined as the number of combinations

that can potentially lead to a query result. For instance, recall the
query “customers Zurich financial instruments” shown in Figure 5.
This query has a complexity of 1 x 1 x 2 = 2 which is explained as
follows: The term “customers” occurs 1 time in the domain ontol-

ogy, the term “Zurich” occurs 1 time in the base data and the term
“financial instruments” occurs 2 times (once in the conceptual and
once in the logical schema). In general, the number of results after
the lookup phase grows quickly due to the combinatorial product
of all entry points. The remaining steps, however, are all linear in
the size of the meta-data.

The end-to-end execution time of a SODA query is split up into
time fractions that correspond to the algorithmic steps: (1) lookup,
(2) rank, (3) tables, (4) SQL and (5) grouping. The total time to
execute these 10+ queries was roughly one hour where the majority
of the time was spent on executing the generated SQL queries. The
time for SODA to analyze the query and to produce proper SQL
is in the range of seconds. Detailed numbers are given in Table 4.
We can see that the SODA runtimes are between 0.73 and 7.31
seconds while the total runtime for executing the SQL query on the
database ranges between 1 and 40 minutes. Note that query Q10.0
has the largest total runtime of 40 minutes due to the aggregation
and group by operations that need to be performed along with a 5-
way join on large tables. These numbers indicate that the overhead
for the SODA query processing is a small fraction compared to the
total query execution time.

5.3 War Stories

5.3.1 Experience and Challenges
In this section we discuss our experience and challenges we faced

when working with the enterprise data warehouse of Credit Su-
isse. Perhaps one of the biggest challenges in a real data ware-
house is data quality. On the one hand, the number of source sys-
tems and the constantly changing business requirements make it

940

Table 4: Query complexity and runtime information of SODA
algorithm (sec) and total end-to-end query processing (min).

Q Complexity #Results SODA Total
runtime runtime

(sec) (min)
1.0 3 1 1.54 6
2.1 4 4 0.81 1
2.2 12 2 1.60 3
2.3 12 3 1.69 3
3.1 12 6 3.78 2
3.2 12 6 3.78 2
4.0 16 4 4.89 4
5.0 4 4 1.24 6
6.0 5 2 0.73 1
7.0 20 4 4.94 1
8.0 8 4 2.94 2
9.0 30 6 7.31 1

10.0 25 6 2.83 40

party

individual

individual_name_hist

organization

organization_name_hist

associate_employment

X

Figure 10: Complex Schema Hierarchy

almost impossible to have a perfectly matching schema description
that 100% reflects the physical database implementation. More-
over, data warehouses are actually never really finished, since new
feeder files are ingested into the data warehouse on a regular basis.
These, in turn, need to be modeled and integrated into the existing
enterprise data model.

Another real challenge is the complexity of the schema which in-
cludes inheritance relationships of several levels. The complexity
increases when there are several relations (physical bridge tables)
between siblings of an inheritance relationship (see entity “asso-
ciate employment” Figure 10). These bridge tables between sib-
lings are common in several areas of the schema. Hence, auto-
matic generation of SQL that takes into account these complexities
is non-trivial—especially when some of the primary/foreign key re-
lationships are not always implemented or the data is not populated
yet. These issues often lead to queries with low precision and recall
as we have seen for query Q5.0.

The strength of SODA is that these data quality issues or schema
complexities can be mitigated by annotating the schema graph or by
extending the graph patterns. For instance, if we know from—let’s
say the Testing Team—that some database tables that are part of
a bridge tables between siblings are not populated yet, the schema
can be annotated indicating that the respective relationship should
be ignored. Once the underlying database tables are populated, the
annotation can be updated so that SODA can take this relation into
account when generating queries.

Another open issue of SODA is how to deal with temporal as-
pects of the data warehouse, i.e. bi-temporal historization. At
the moment, SODA has no special support for temporal operators.
Time is processed by SODA just like any other dimension. That is,
SODA can generate queries that involve time (via range predicates
on “valid-date” in a bi-temporal database or by restricting a year or

a quarter), but SODA does not support, say, temporal aggregations
or history joins. We plan to implement those as part of future work
if business users ask for it.

Finally, SODA does not blindly produce all theoretically possi-
ble join paths, but rather combines a directed graph traversal with a
given set of patterns to find useful tables and joins. While this has
the advantage of being less computationally intensive and usually
still leads to the intended results, there is no guarantee that we are
not missing a required join path. E.g. we might not be able to find a
join path between two entities which are too far apart in the schema
graph. In this situation, “far-fetching” patterns might help. In other
situations, however, “far-fetching” patterns might produce so many
results that even ranking them becomes infeasible.

5.3.2 Feedback from Various Audiences
We demonstrated SODA to various people inside and outside of

Credit Suisse to get feedback about our system. The people were
both computer scientists as well as business users. One of the inter-
esting observations is that different users see potentially completely
different usage scenarios for SODA.

One group of people is impressed by the feature of the inverted
index on the base data which allows identifying data items spread
across several tables in the data warehouse that they were not even
aware of. The reason for the data items to be located in different
tables is due to the different data semantics.

Another group of people sees the potential of using SODA as
an exploratory tool to analyze the schema and learn patterns in the
schema in order to find out which entities are related with others.
These types of users would issue a query and get a table as a result.
Next, they would use the SODA schema browser to dive deeper. By
an interactive approach of generating automatic queries based on
keywords and analyzing the schema, they would identify potential
flaws in the schema design or data quality issues.

A third group of users would use SODA to help creating SQL
statements. They appreciate the feature that SODA automatically
discovers join relationships between tables. Typically, end-users
would just say “Give me tables X, Y and Z and show me the differ-
ences in calculations with respect to the previous months”. These
types of business users are not willing to define the complex join
conditions by themselves. In fact, within Credit Suisse we incorpo-
rated some of the SODA functionality in the so-called Adjustment-
Engine—a system that enables business users to adjust data in the
data warehouse by themselves.

Finally, a forth group of people is looking into the possibility of
using SODA as a way to help document legacy systems by reverse
engineering the conceptual, logical and physical schema based on
the existing physical implementation of the data warehouse. After
the reverse engineering is completed, the RDF schema graph can
be generated and annotated accordingly. SODA would give them
the possibility to explore legacy systems where documentation is
very scarce or does not even exist.

As we can see from the various types of feedback illustrated
above, SODA can be used for different tasks that were originally
not even foreseen when we designed SODA.

6. RELATED WORK

6.1 Search in Relational Databases
The design of SODA is based on the experience gained with a

number of related systems that were developed over the last decade.
The first systems to support keyword search in relational databases
were DBExplorer [1], DISCOVER [10], and BANKS [3]. The key
idea of these systems was to build an inverted index on the base

941

data and to consider key/foreign key relationships when building
query results. The inverted index is used to find all occurrences of
the keywords of a query in tuples of the database. The key/foreign
key relationships are used to compute join paths to construct busi-
ness objects from the tuples that match different keywords of the
query. The results of DISCOVER and BANKS are in the granular-
ity of specific instances (i.e., individual business objects assembled
from individual tuples that match the keywords). DBExplorer gen-
erates results in the granularity of sets of business objects. All three
approaches differ in the way they generate the join paths.

Based on the foundations laid with this early work on keyword
search in relational databases, a number of more sophisticated sys-
tems have been developed in the recent past. Keymantic [2] shows
how to support search on the “Hidden Web”. In the “Hidden Web”,
no inverted indexes can be constructed because the base data is
not crawlable. The only information that is known to Keymantic
is metadata such as the names of input fields from, e.g., crawl-
ing the Web forms of a “Hidden Web” database. So, a keyword
query is processed as follows: First, all keywords that correspond
to metadata items (e.g., field names) are extracted. The remaining
keywords are considered as possible input fields. Second, the like-
lihood of a remaining keyword to a metadata item is computed in
order to rank different options to execute the keyword query on the
“Hidden Web” database.

The work that is most closely related to SODA is SQAK [23].
SQAK is the only system that we are aware of that is able to gen-
erate aggregate queries. It is, therefore, well suited for data ware-
houses. SQAK has, furthermore, a special way to compute join
paths that respects the direction of key/foreign key relationships.
Unfortunately, all these techniques are hard-coded into the SQAK
approach. As a result, SQAK is not able to process any queries that
go beyond the pre-defined SQAK pattern of SELECT-PROJECT-
JOIN-GROUP-BY queries. Furthermore, SQAK is not able to inte-
grate metadata in the flexible and general way that SODA can.

6.2 Evaluation of Related Systems
Table 5 gives an overview of which features are supported by

the related systems described in the previous sub-section. It shows
the features that are supported by the individual systems and which
benchmark queries involve these features. Keymantic was the only
system that we could evaluate experimentally because executable
binaries were available from the authors; for the other systems, the
overview of Table 5 is based on the description from the papers.

Simple queries that involve keywords found in the base data
(e.g., “Sara” or “Credit Suisse”) are obviously well supported by
DBExplorer, DISCOVER, and BANKS, as shown in the first line of
Table 5. Since SQAK specifically targets aggregate queries, it can-
not handle simple keyword queries; such simple SELECT queries
just do not match SQAK’s predefined pattern. In principle, Key-
mantic can handle such simple keyword queries, but for complex
schemas with thousands of columns like that of the Credit Suisse
data warehouse, Keymantic is not able to select the right columns
to query even when given all the available metadata. It should be
noted that DBExplorer as well as DISCOVER cannot handle even
simple queries if the schema involves cycles. So, these two sys-
tems sometimes have issues for simple keyword queries on base
data (indicated by a check mark in parenthesis in Table 5).

The advantages of SODA only become apparent for more com-
plex queries and for queries that mix several features and involve
metadata. While DBExplorer, DISCOVER, and BANKS do sup-
port look up of keywords in base data, these systems are never-
theless not able to process, e.g., Query 9 because that query also
involves the right treatment of inheritance, domain ontologies, and

group-by / aggregation. As a result, each of the systems listed in
Table 5 (except SODA) can handle only a few of the benchmark
queries (and those with caveats).

The only other system that is able to integrate metadata beyond
key/foreign key relationships is Keymantic. To some extent it can
handle queries that involve synonyms and homonyms (i.e., queries
that involve a domain ontology or DBpedia data). But, even Key-
mantic cannot handle any queries that involve inheritance. Model-
ing inheritance involves the modeling of mutually exclusive rela-
tionships. Even within Credit Suisse such inheritance relationships
are not modeled in a consistent way; that is why a flexible pattern
matching approach is needed as used in SODA in which different
patterns can be specified for the same concept. Flexible pattern
matching is even more important in a generic search tool that is
supposed to be used in different organization with highly varying
modeling conventions.

It is worth mentioning that in data warehouses such as those
found at Credit Suisse, physical column and table names never
correspond to those documented as part of a conceptual or logical
schema. At Credit Suisse, for example, “birth date” is shortened
to “birth dt”; furthermore, entity names (such as agreement or in-
vestments) are suffixed with “td”. The best way to discover such
matches is to keep metadata at multiple schema levels and to apply
pattern matching across those levels as done in SODA (Figure 3).

SODA is also the only system that can properly deal with predi-
cates. While it is conceivable that some of the systems be extended
to deal with certain kinds of range predicates (e.g., date ranges),
SODA is the only system that is able to handle predicates induced
by the metadata (e.g., wealthy customers as customers that have an
annual income that is higher than a certain threshold defined as part
of the domain ontology or other metadata).

6.3 Other Related Work
The systems discussed in the previous two sub-sections are not

the only related work. Various aspects of generating SQL from
keywords have been studied in the literature. For instance, [9] stud-
ies alternative ranking algorithms; [15] addresses physical database
optimization by using more efficient index structures; [19] supports
complex queries by a more sophisticated approach to process nat-
ural language; and [18] provides tuple reduction. Other works use
principles from information theory and statistics to summarize the
relational schemas [24].

Another line of research studies the use of query refinement and
query disambiguation approaches [17, 6, 7]. Ortega-Binderberger
et al. [17] studies the importance of user subjectivity and achieves
query refinement through relevance feedback. Similarly, SODA
presents several possible solutions to its users and allows them to
like (or dislike) each result. Elena Demidova et al. [6, 7] use query
disambiguation techniques to process keyword queries automati-
cally extracted from documents.

SnipSuggest [12] is a system that enables context-aware auto
completion for SQL by taking into account previous query work-
loads which are, in turn, represented as workload DAG. When a
user types a query, possible additions are suggested based on the
highest ranked node in the DAG. Query suggestions include tables,
views, functions in the FROM-clause, columns in the SELECT and
GROUP BY clauses as well as predicates in the WHERE clause.
The main difference to our approach is that SnipSuggest makes it
easier for end-users to interactively build and improve SQL state-
ments while SODA does not require any SQL knowledge at all.
Moreover, SODA does also not rely on query logs.

Keyword search [16] and natural language processing [14] have
also been applied to XML databases. [16] presents a survey that

942

Table 5: Qualitative comparison.
Query type Experiment Queries DBExplorer DISCOVER BANKS SQAK Keymantic SODA
Base data 2.*, 3.*, 4, 7, 8, 9 (X) (X) X NO (NO) X
Schema 1, 2.2, 2.3, 4, 6, 7, 8, 10 NO NO X NO X X
Inheritance 1, 2.*, 5, 6, 7, 8, 9 NO NO NO NO NO X
Domain ontology 1, 5, 9 NO NO NO NO (X) X
Predicates 6 NO NO NO NO NO X
Aggregates 9, 10 NO NO NO X NO X

classifies search methods into four categories: a) Tree-based meth-
ods, where the result is based on the notion of LCA (lowest com-
mon ancestor). b) Statistics-based approaches, which work with
statistics on the data distribution. c) Graph-based methods, which
look for connecting subgraphs containing all keywords. d) Methods
on RDF graphs, where the additional semantics of an RDF graph
are utilized. SODA is closely related to methods that fall into cat-
egories (c) and (d). While the presented approaches can work with
RDF graphs, they are not really making use of the additional se-
mantics. The patterns in SODA, however, allow us to capture this
information. The NaLIX system [14] takes natural language query
as input and translates it into XQuery. One of the strengths of the
system is that it provides feedback to the user if the query terms
cannot be classified and hence translated. In these cases, the sys-
tem suggests different ways of reformulating the queries.

7. CONCLUSIONS
In this paper we demonstrated that SODA (Search Over DAta

Warehouse) is one step towards enabling end-users to interactively
explore large data warehouses with complex schemas in a Google-
like fashion. The key idea of SODA is to use a graph pattern match-
ing algorithm to generate SQL based on simple key words. Our
experiments—with both synthetic data as well as with a large data
warehouse of a global player in the financial services industry—
show that the generated queries have high precision and recall com-
pared to the manually written gold standard queries. One of the
strengths of SODA is that it can disambiguate the meaning of words
by taking into account join and inheritance relationships among the
matching tables. Moreover, SODA allows mitigating inconsisten-
cies in the schema or data as well as data quality issues by updating
the respective metadata graph or by extending the graph pattern
match algorithm.

As part of our future work we will evaluate the impacts of using
DBpedia for matching keyword queries against various synonyms
found in our classification. Since the use of DBpedia will naturally
increase the number of possible query results—the query complex-
ity, we will study more advanced ranking algorithms. Furthermore,
the current GUI of SODA could be extended in several ways to en-
gage the user in selecting and ranking the different results. Finally,
we plan to use additional metadata graph patterns, for example,
to better cope with bi-temporal historization or data lineage across
different layers of the Credit Suisse data warehouses.

8. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBExplorer: A

System for Keyword-Based Search over Relational
Databases. In ICDE, pages 5–16, 2002.

[2] S. Bergamaschi, E. Domnori, F. Guerra, R. T. Lado, and
Y. Velegrakis. Keyword Search over Relational Databases: A
Metadata Approach. In SIGMOD, pages 565–576, 2011.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword Searching and Browsing in
Databases using BANKS. In ICDE, pages 431–440, 2002.

[4] L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and
K. Stockinger. Data-Thirsty Business Analysts need SODA -
Search Over DAta Warehouse. In CIKM (demo), pages
2525–2528, 2011.

[5] G. Brunner and K. Stockinger. Data Warehouse Historization
Concept. Credit Suisse internal architecture document, 2008.

[6] E. Demidova, I. Oelze, and P. Fankhauser. Do We Mean the
Same?: Disambiguation of Extracted Keyword Queries for
Database Search. In KEYS, pages 33–38, 2009.

[7] E. Demidova, X. Zhou, I. Oelze, and W. Nejdl. Evaluating
Evidences for Keyword Query Disambiguation in Entity
Centric Database Search. In DEXA (2), pages 240–247, 2010.

[8] A. Geppert, L. Baumgartner, and D. Jonscher. The Data
Warehouse Reference Architecture. Credit Suisse internal
architecture document, 2008.

[9] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: Ranked
Keyword Searches on Graphs. In SIGMOD, pages 305–316,
2007.

[10] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword
Search in Relational Databases. In VLDB, pages 670–681,
2002.

[11] C. Jossen, L. Blunschi, M. Mori, D. Kossmann, and
K. Stockinger. The Credit Suisse Meta-data Warehouse. In
ICDE, 2012.

[12] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
SnipSuggest: Context-Aware Autocompletion for SQL.
PVLDB, 4(1):22–33, 2010.

[13] R. Kimball. The Data Warehouse Toolkit: Practical
Techniques for Building Dimensional Data Warehouses.
John Wiley, 1996.

[14] Y. Li, H. Yang, and H. V. Jagadish. NaLIX: Generic Natural
Language Search Environment for XML Data. Transactions
on Database Systems, 32(4), 2007.

[15] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective
Keyword Search in Relational Databases. In SIGMOD, pages
563–574, 2006.

[16] Z. Liu and Y. Chen. Processing Keyword Search on XML: A
Survey. World Wide Web, 14(5-6):671–707, 2011.

[17] M. Ortega-Binderberger, K. Chakrabarti, and S. Mehrotra.
An Approach to Integrating Query Refinement in SQL. In
EDBT, pages 15–33, 2002.

[18] L. Qin, J. X. Yu, and L. Chang. Keyword Search in
Databases: The Power of RDBMS. In SIGMOD, pages
681–694, 2009.

[19] A. Simitsis, G. Koutrika, and Y. Ioannidis. Précis: From
Unstructured Keywords as Queries to Structured Databases
as Answers. VLDB Journal, 17(1):117–149, 2008.

[20] R. T. Snodgrass. Developing Time-Oriented Database
Applications in SQL. Morgan Kaufmann, 1999.

[21] http://www.w3.org/TR/rdf-sparql-query/.
SPARQL Query Language for RDF.

[22] A. S. Szalay, J. Gray, A. Thakar, P. Z. Kunszt, T. Malik,
J. Raddick, C. Stoughton, and J. vandenBerg. The SDSS
Skyserver: Public Access to the Sloan Digital Sky Server
Data. In SIGMOD, pages 570–581, 2002.

[23] S. Tata and G. M. Lohman. SQAK: Doing More with
Keywords. In SIGMOD, pages 889–902, 2008.

[24] X. Yang, C. M. Procopiuc, and D. Srivastava. Summarizing
Relational Database. PVLDB, 2(1):634–645, 2009.

943

