
DBToaster: Higher-order Delta Processing for

Dynamic, Frequently Fresh Views∗

Yanif Ahmad Oliver Kennedy, Christoph Koch, and Milos Nikolic
yanif@jhu.edu {christoph.koch, oliver.kennedy, milos.nikolic}@epfl.ch

Johns Hopkins University École Polytechnique Fédérale de Lausanne

ABSTRACT
Applications ranging from algorithmic trading to scientific
data analysis require realtime analytics based on views over
databases that change at very high rates. Such views have
to be kept fresh at low maintenance cost and latencies. At
the same time, these views have to support classical SQL,
rather than window semantics, to enable applications that
combine current with aged or historical data.

In this paper, we present viewlet transforms, a recursive
finite differencing technique applied to queries. The viewlet
transform materializes a query and a set of its higher-order
deltas as views. These views support each other’s incremen-
tal maintenance, leading to a reduced overall view mainte-
nance cost. The viewlet transform of a query admits efficient
evaluation, the elimination of certain expensive query oper-
ations, and aggressive parallelization. We develop viewlet
transforms into a workable query execution technique, present
a heuristic and cost-based optimization framework, and re-
port on experiments with a prototype dynamic data man-
agement system that combines viewlet transforms with an
optimizing compilation technique. The system supports tens
of thousands of complete view refreshes a second for a wide
range of queries.

1. INTRODUCTION
Data analytics has been dominated by after-the-fact ex-

ploration in classical data warehouses for multiple decades.
This is now beginning to change: Today, businesses, engi-
neers and scientists are increasingly placing data analytics
engines earlier in their workflows to react to signals in fresh
data. These dynamic datasets exhibit a wide range of up-
date rates, volumes, anomalies and trends. Responsive an-
alytics is an essential component of computing in finance,
telecommunications, intelligence, and critical infrastructure
management, and is gaining adoption in operations, logis-
tics, scientific computing, and web and social media analysis.

Developing suitable analytics engines remains challenging.
The combination of frequent updates, long-running queries
and a large stateful working set precludes the exclusive use

∗This work was supported by ERC Grant 279804.

of OLAP, OLTP, or stream processors. Furthermore query
requirements on updates often do not fall singularly into
the functionality and semantics provided by the available
technologies, from CEP engines to triggers, active databases,
and database views.

Our work on dynamic data management systems (DDMS)
in the DBToaster project [3, 19, 18] studies the foundations,
algorithms and architectures of data management tools de-
signed for large datasets that evolve rapidly through high-
rate update streams. A DDMS focuses on long-running
queries as the norm, alongside sporadic exploratory query-
ing. A guiding design principle for DDMS is to take full
advantage of incremental processing techniques that max-
imally reuse prior work. Incremental computation is cen-
tral to both stream processing to minimize work as windows
slide, and to database views with incremental view mainte-
nance (IVM). DDMS aim to combine some of the advantages
of DBMS (expressive queries over both recent and histori-
cal data, without the restrictions of window semantics) and
CEP engines (low latency and high view refresh rates).

An example use case is algorithmic trading. Here, strategy
designers want to use analytics expressible in a declarative
language like SQL on order book data in their algorithms.
Order books consist of the orders waiting to be executed at a
stock exchange and change very frequently. However, some
orders may stay in the order book relatively long before they
are executed or revoked, precluding the use of stream engines
with window semantics. Applications such as scientific sim-
ulations and intelligence analysis also exhibit entities which
capture our attention for widely ranging periods of time,
resulting in large stateful and dynamic computation.

The technical focus of this paper is on an extreme form
of incremental view maintenance that we call higher-order
IVM. We make use of discrete forward differences (delta
queries) recursively, on multiple levels of derivation. That
is, we use delta queries (“first-order deltas”) to incremen-
tally maintain the view of the input query, then materialize
the delta queries as views too, maintain these views using
delta queries to the delta queries (“second-order deltas”),
and continue alternating between materializing views and
deriving higher-order delta queries for maintenance. The
technique’s use of higher-order deltas is quite different from
earlier work on trading off choices in which query subex-
pressions to materialize and incrementally maintain for best
performance [27]. Instead, our technique for constructing
higher-order delta views is somewhat reminiscent of discrete
wavelets and numerical differentiation methods, and we use
a superficial analogy to the Haar wavelet transform as mo-
tivation for calling the base technique a viewlet transform.

Example 1 Consider a query Q that counts the number
of tuples in the product of relations R and S. For now,
we only want to maintain the view of Q under insertions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 10
Copyright 2012 VLDB Endowment 2150-8097/12/06... $ 10.00.

968

Denote by ∆R (resp. ∆S) the change to a view as one tuple
is inserted into R (resp., S). Suppose we simultaneously
materialize the four views

• Q (0-th order),

• ∆RQ = count(S) and ∆SQ = count(R) (first order), and

• ∆R(∆SQ) = ∆S(∆RQ) = 1 (second order, a “delta of a
delta query”).

Then we can simultaneously maintain all these views using
each other, using exclusively summation and avoiding the
computation of any products. The fourth view is constant
and does not depend on the database. Each of the other
views is refreshed when a tuple is inserted by adding the
appropriate delta view. For instance, as a tuple is inserted
into R, we add ∆RQ to Q and ∆R∆SQ to ∆SQ. (No change
is required to ∆RQ, since ∆R∆RQ = 0.) Suppose R con-
tains 2 tuples and S contains 3 tuples. If we add a tuple to
S, we increment Q by 2 (∆SQ) to obtain 8 and ∆RQ by 1
(∆S∆RQ) to get 4. If we subsequently insert a tuple into
R, we increment Q by 4 (∆RQ) to 12 and ∆SQ by 1 to 3.
Two further inserts of S tuples yield the following sequence
of states of the materialized views:

time insert ∆R∆SQ,
point into ||R|| ||S|| Q ∆RQ ∆SQ ∆S∆RQ

0 – 2 3 6 3 2 1
1 S 2 4 8 4 2 1
2 R 3 4 12 4 3 1
3 S 3 5 15 5 3 1
4 S 3 6 18 6 3 1

Again, the main benefit of using the auxiliary views is that
we can avoid computing the product R × S (or in general,
joins) by simply summing up views. In this example, the
view values of the (k + 1)-th row can be computed by just
three pairwise additions of values from the k-th row. ✷

This is the simplest possible example query for which the
viewlet transform includes a second-order delta query, omit-
ting any complex query features (e.g., predicates, self-joins,
nested queries). Viewlet transforms can handle general up-
date workloads including deletions and updates, as well as
queries with multi-row results.

For a large fragment of SQL, higher-order IVM avoids
join processing in any form, reducing all the view refresh-
ment work to summation. Indeed, joins are only needed
in the presence of inequality joins and nested aggregates in
view definitions. The viewlet transform performs repeated
(recursive) delta rewrites. Nested aggregates aside, each k-
th order delta is structurally simpler than the (k − 1)-th
order delta query. The viewlet transform terminates, as for
some n, the n-th order delta is guaranteed to be constant,
only depending on the update but not on the database. In
the above example, the second-order delta is constant, not
using any database relation.

Our higher-order IVM framework, DBToaster, realizes as-
incremental-as-possible query evaluation over SQL with a
query language extending the bag relational algebra, query
compilation and a variety of novel materialization and opti-
mization strategies. DBToaster bears the promise of provid-
ing materialized views of complex long-running SQL queries,
without window semantics or other restrictions, at very high
view refresh rates. The data may change rapidly, and still
part of it may be long-lived. A DDMS can use this func-
tionality as the basis for richer query constructs than those
supported by stream engines. DBToaster takes as input
SQL view queries, and automatically incrementalizes them
into procedural C++ trigger code where all work reduces to
fine-grained, low-cost updates of materialized views.

Example 2 Consider the query

Q = select sum(LI.PRICE * O.XCH)
from Orders O, LineItem LI where O.ORDK = LI.ORDK;

on a TPC-H like schema of Orders and Lineitem in which
lineitems have prices and orders have currency exchange
rates. The query asks for total sales across all orders weighted
by exchange rates. We materialize the views for query Q as
well as the first-order views Q LI (∆LIQ) and Q O (∆OQ).
The second-order deltas are constant w.r.t. the database and
have been inlined in the following insert trigger programs
that our approach produces for query Q.

on insert into O values (ordk, custk, xch) do {
Q += xch * Q_O[ordk];
Q_LI[ordk] += xch;

}
on insert into LI values (ordk, partk, price) do {

Q += price * Q_LI[ordk];
Q_O[ordk] += price;

}

The query result is again scalar, but the auxiliary views are
not, and our language generalizes them from SQL’s multi-
sets to maps that associate multiplicities with tuples. This
is again a very simple example (more involved ones are pre-
sented throughout the paper), but it illustrates something
notable: while classical incremental view maintenance has to
evaluate the first-order deltas, which takes linear time (e.g.,
(∆OQ)[ordk] is select sum(LI.PRICE) from Lineitem LI
where LI.ORDK=ordk), we get around this by performing
IVM of the deltas. This way our triggers can be evaluated
in constant time for single-tuple inserts in this example.

The delete triggers for Q are the same as the insert triggers
with += replaced by -= everywhere. ✷

This example presents single-tuple update triggers. View-
let transforms are not limited to this but support bulk up-
dates. However, delta queries for single-tuple updates have
considerable additional optimization potential, which our
compiler leverages to create very efficient code that refreshes
views whenever a new update arrives. We do not queue up-
dates for bulk processing, and so maximize view availability
and minimize view refresh latency, enabling ultra-low la-
tency monitoring and algorithmic trading applications.

On paper, higher-order IVM clearly dominates classical
IVM. If classical IVM is a good idea, then doing it recur-
sively is an even better idea. The same efficiency improve-
ment argument in favor of IVM of the base query also holds
for IVM of the delta query. Considering that joins are expen-
sive and this approach eliminates them, higher-order IVM
has the potential for excellent query performance.

In practice, how well do our expectations of higher-order
IVM translate into real performance gains? A priori, the
costs associated with storing and managing additional auxil-
iary materialized views for higher-order delta queries might
be more considerable than expected. This paper presents
the lessons learned in an effort to realize higher-order IVM,
and to understand its strengths and drawbacks. Our contri-
butions are as follows:

1. We present the concept of higher-order IVM and describe
the viewlet transform. This part of the paper generalizes
and consolidates our earlier work [3, 19].

2. There are cases (inequality joins and certain nesting pat-
terns) when a naive viewlet transform is too aggressive,
and certain parts of queries are better re-evaluated than
incrementally maintained. We develop heuristics and a
cost-based optimization framework for trading off mate-
rialization and lazy evaluation for best performance.

969

3. We have built the DBToaster system which implements
higher-order IVM. It combines an optimizing compiler
that creates efficient update triggers based on the tech-
niques discussed above, and a runtime system (currently
single-core and main-memory based1) to keep views con-
tinuously fresh as updates stream in at high data rates.

4. We present the first set of extensive experimental re-
sults on higher-order IVM obtained using DBToaster.
Our experiments indicate that frequently, particularly
for queries that consist of many joins or nested aggrega-
tion subqueries, our compilation approach dominates the
state of the art, often by multiple orders of magnitude.
On a workload of automated trading and ETL queries,
we show that current systems cannot sustain fresh views
at the rates required in algorithmic trading and real-time
analytics, while higher-order IVM takes a significant step
to making these applications viable.

Most of our benchmark queries contain features such as
nested subqueries that no commercial IVM implementation
supports, while our approach handles them all.

2. RELATED WORK
2.1 A Brief Survey of IVM Techniques

Database view management is a well-studied area with
over three decades of supporting literature. We focus on the
aspects of view materialization most pertinent to DDMS.

Incremental Maintenance Algorithms, and Formal
Semantics. Maintaining query answers has been consid-
ered under both the set [6, 7] and bag [8, 14] relational alge-
bra. Generally, given a query on N relations Q(R1, . . . , RN),
classical IVM uses a first-order delta query ∆R1Q = Q(R1∪
∆R1, R2, . . . RN) − Q(R1, . . . , RN) for each input relation
Ri in turn. The creation of delta queries has been studied
for query languages with aggregation [25] and bag seman-
tics [14], but we know of no work that investigates delta
queries of nested and correlated subqueries. [17] has con-
sidered view maintenance in the nested relational algebra
(NRA), however this has not been widely adopted in any
commercial DBMS. Finally, [33] considered temporal views,
and [22] outer joins and nulls, all for flat SPJAG queries
without generalizing to subqueries, the full compositional-
ity of SQL, or the range of standard aggregates.

Materialization and Query Optimization Strategies.
Selecting queries to materialize and reuse during processing
has spanned fine-grained approaches from subqueries [27]
and partial materialization [20, 28], to coarse-grained meth-
ods as part of multiquery optimization and common subex-
pressions [16, 35]. Picking views from a workload of queries
typically uses the AND-OR graph representations from mul-
tiquery optimization [16, 27], or adopts signature and sub-
sumption methods for common subexpressions [35]. [27]
picks additional views to materialize amongst subqueries of
the view definition, but only performs first-order mainte-
nance and does not consider the full framework (binding
patterns, etc) required with higher-order deltas. Further-
more, the optimal set of views is chosen based on the main-
tenance costs alone, from a search space that can be doubly
exponential in the number of query relations.

Physical DB designers [2, 36] often use the query opti-
mizer as a subcomponent to manage the search space of
equivalent views, reusing its rewriting and pruning mecha-
nisms. For partial materialization methods, ViewCache [28]
1This is not an intrinsic limitation of our method, in fact our
trigger programs are particularly nicely parallelizable [19].

and DynaMat [20] use materialized view fragments, the for-
mer materializing join results by storing pointers back to
input tuples, the latter subject to a caching policy based on
refresh time and cache space overhead constraints.

Evaluation Strategies. To realize efficient maintenance
with first-order delta queries, [9, 34] studied eager and lazy
evaluation to balance query and update workloads, and as
background asynchronous processes [29], to achieve a vari-
ety of view freshness models and constraints [10]. Evaluat-
ing maintenance queries has also been studied extensively
in Datalog with semi-naive evaluation (which also uses first-
order deltas) and DRed (delete-rederive) [15]. Finally, [13]
argues for view maintenance in stream processing, which
reinforces our position of IVM as a general-purpose change
propagation mechanism for collections, on top of which win-
dow and pattern constructs can be defined.

2.2 Update Processing Mechanisms
Triggers and Active Databases. Triggers, active database
and event-condition-action (ECA) mechanisms [4] provide
general purpose reactive behavior in a DBMS. The litera-
ture considers recursive and cascading trigger firings, and
restrictions to ensure restricted propagation. Trigger-based
approaches require developers to manually convert queries
to delta form, a painful and error-prone process especially
in the higher-order setting. Without manual incremental-
ization, triggers suffer from poor performance and cannot
be optimized by a DBMS when written in C or Java.

Data Stream Processing. Data stream processing [1, 24]
and streaming algorithms combine two aspects of handling
updates: i) shared, incremental processing (e.g. sliding win-
dows, paired vs paned windows), ii) sublinear algorithms
(i.e. polylogarithmic space bounds). The latter are approx-
imate processing techniques that are difficult to program
and compose, and have had limited adoption in commercial
DBMS. Advanced processing techniques in the streaming
community also focus almost entirely on approximate tech-
niques when processing cannot keep up with stream rates
(e.g. load shedding, prioritization [30]), on shared process-
ing (e.g. on-the-fly aggregation [21]), or specialized algo-
rithms and data structures [11]. Our approach to stream-
ing is about generalizing incremental processing to (non-
windowed) SQL semantics (including nested subqueries and
aggregates). Of course, windows can be expressed in this
semantics if desired. Similar principles are discussed in [13].
Automatic Differentiation and Incrementalization,
and Applications. Beyond the database literature, the
programming language literature has studied automatic in-
crementalization [23], and automatic differentiation. Au-
tomatic incrementalization is by no means a solved chal-
lenge, especially when considering general recursion and un-
bounded iteration. Automatic differentiation considers deltas
of functions applied over scalars rather than sets or collec-
tions, and lately in higher-order fashion [26]. Bridging these
two areas of research would be fruitful for DDMS to support
UDFs and general computation on scalars and collections.

3. QUERIES AND DELTAS
In this section, we fix a formalism for queries that makes

it easy to talk cleanly and concisely about delta processing,
and we describe the construction of delta queries.

3.1 Data Model and Query Language
Our data model generalizes multiset relations (as in SQL)

to tuple multiplicities that are rational numbers. This for
one allows us to treat databases and updates uniformly (for

970

R �A, B� #
�a, b1� �→ 2
�a, b2� �→ −3

S1 �B, C� #
�b1, c1� �→ 2
�b1, c2� �→ −10

S2 �B, C� #
�b1, c1� �→ 3
�b1, c2� �→ 3
�b2, c1� �→ −11

S1 + S2 �B, C� #
�b1, c1� �→ 5
�b1, c2� �→ −7
�b2, c1� �→ −11

R �� (S1 + S2) �A, B, C� #
�a, b1, c1� �→ 10
�a, b1, c2� �→ −14
�a, b2, c1� �→ 33

SumAC;1/2(R �� (S1 + S2)) �A, C� #
�a, c1� �→ 21.5
�a, c2� �→ −7

Figure 1: Examples of union, join, and aggregation
of generalized multiset relations with rational num-
ber tuple multiplicities.

instance, a delete is a relation with negative multiplicities,
and applying it to a database means unioning/adding it to
the database). It also allows us to use multiplicities to rep-
resent aggregate query results (which do not need to be inte-
gers). As a consequence, when performing delta-processing
on aggregate queries, growing an aggregate means adding
to the aggregate value rather than to delete the tuple with
the old aggregate value and insert a tuple with the new ag-
gregate value. Maintaining aggregates in the multiplicities
allows for simpler and cleaner bookkeeping. It is a cosmetic
change that does not keep us from supporting SQL queries.

Formally, a thus generalized multiset relation (GMR) is a
function from tuples to rational numbers, with finite support
(i.e., only a finite number of tuples have nonzero multiplic-
ity). The union, join, selection, and grouping-sum-aggregate
operations are defined in the way that naturally generalizes
the same operations on multiset relations:

R + S : �t �→ R(�t) + S(�t)

R �� S : �t �→

8
<

:

R(πsch(R)�t) ∗ S(πsch(S)�t)
. . . �t = πsch(R)∪sch(S)(�t)

0 . . . otherwise

σθR : �t �→

R(�t) . . . θ(�t) is true
0 . . . otherwise

Sum �A;fR : �a �→
X

π �A
(�t)=�a

R(�t) ∗ f(�t)

Here, π is the projection of records, rather than relations,
removing fields of �t whose labels are not among the column
names �A, and sch(R) denotes the list of column names of
GMR R. An aggregation Sum �A;fR almost works like the

SQL query select �A, sum(f) from R group by �A, with
the difference that SQL puts the aggregate value into a new
column, while Sum �A;fR puts it into the multiplicity of the
group-by tuple. Aggregations can also serve as multiplicity-
preserving projections, and a query Sum �A;1(R) corresponds

equivalently to SQL queries select �A from R and select
�A, sum(1) from R group by �A. Examples of join, union,
and aggregation are shown in Figure 1.

Our query language includes relational atoms R, constant
singleton relations, natural join, union (denoted +), selec-
tion, grouping sum-aggregates, and column renaming ρ:

Q ::= R | { �A : �a �→ c} |Q �� Q |Q + Q |σφQ | Sum �A;fQ | ρ �A
Q

where the c are rational numbers, f are terms, and φ are
conditions over terms. Terms are define using arithmetics
over rational constants and column names. Additionally
we can use non-grouping aggregates as terms (the value is

the multiplicity), specifically in selection conditions. That
way we can express queries with nested aggregates. Nested
aggregates may be correlated with the outside in the way we
are used to from SQL. For example, we write σC<SumA;BRS

for the SQL query

select * from S
where S.C < (select sum(B) from R where R.A=S.A)

We can perform deletions writing R − S, and this is no
fundamentally new operation since we can define R − S :=
R + (S �� {�� �→ −1}). Here {�� �→ −1} is a nullary case of
singleton GMR construction { �A : �a �→ c}.

There is no explicit syntax for universal quantification/re-
lational difference or aggregates other than Sum, but all
these features can be expressed using (nested) sum-aggregate
queries (a popular homework exercise in database courses).
Special handling of these features in delta processing and
query optimization could yield performance better than what
we report in our experiments. However, granting these de-
finable features specialized treatment is beyond the scope of
this paper. As a consequence, our implementation provides
native support for only the fragment presented above and
the experiment use only techniques described in the paper.

We will use relational algebra and SQL syntax interchange-
ably as we are used to from bag relational algebra and SQL.

3.2 Computing the Delta of a Query
We next show how to construct delta queries. The reader

familiar with incremental view maintenance may skip this
section, but note that the algebra just fixed has the nice
property of being closed under taking deltas. For each query
expression Q, there is an expression ∆Q of the same algebra
that expresses how the result of Q changes as the database
D is changed by update workload ∆D,

∆Q(D, ∆D) := Q(D + ∆D)−Q(D).

Thanks to the strong compositionality of the language,
we only have to give delta rules for the individual operators.
These rules are given and studied in detail in [19]. In short,

∆(Q1 + Q2) := (∆Q1) + (∆Q2),

∆(Sum �A;f Q) := Sum �A;f (∆Q),

∆(Q1 �� Q2) := ((∆Q1) �� Q2) + (Q1 �� (∆Q2))

+ ((∆Q1) �� (∆Q2)),

∆(σθQ) := σθ(∆Q).

∆R is the update to R. In the case that the update does
not change R (but other relation(s)), ∆R is empty.

Here we assume that f and θ do not contain nested ag-
gregates. Achieving the full generality is not a technical
problem, but requires notation beyond the scope of this
paper; we refer to [19] for the general case. We will see
in Section 5 that, in practice, we will not need deltas for
conditions with nested aggregates, as we will decide to re-
evaluate rather than materialize and incrementally maintain
such conditions.

Example 3 Given schema R(AB), S(CD), and query

select sum(A * D) from R, S where B = C

or, in the algebra, Sum��;A∗D(σB=C(R �� S)). Modulo names,
this is the query of Example 2. The delta for this query as

971

we apply a change ∆R to relation R but leave S unchanged
(∆S is empty) is

∆Sum��;A∗D(σB=C(R �� S)) =

Sum��;A∗D∆(σB=C(R �� S)) =

Sum��;A∗D(σB=C∆(R �� S))

and by the delta rule for ��,

∆(R �� S) = (∆R) �� S + R �� (∆S) + (∆R) �� (∆S).

Thus the delta query is Sum��;A∗D(σB=C((∆R) �� S)). ✷

The delta rules work for bulk updates. The special case
of single-tuple updates is interesting since it allows us to
simplify delta queries further and to generate particularly
efficient view refresh code.

Example 4 We continue the Example 3, but now assume
that ∆R is an insertion of a single tuple �A : x, B : y�. The
delta query Sum��;A∗D(σB=C({�A : x, B : y�} �� S)) can be
simplified to Sum��;x∗D(σy=CS). ✷

3.3 Binding Patterns
Query expressions have binding patterns: There are in-

put variables or parameters without which we cannot eval-
uate these expressions, and there are output variables, the
columns of the schema of the query result. Each expres-
sion Q has input variables or parameters �xin and a set of
output variables �xout, which form the schema of the query
result. We denote such an expression as Q[�xin][�xout]. The
input variables are those that are not range-restricted in a
calculus formulation, or equivalently have to be understood
as parameters in an SQL query because their values cannot
be computed from the database: They have to be provided
so that the query can be evaluated.

The most interesting case of input variables occurs in a
correlated nested subquery, viewed in isolation. In such a
subquery, the correlation variable from the outside is such
an input variable. The subquery can only be computed if a
value for the input variable is given.

Example 5 We illustrate this by an example. Assume re-
lation R has columns A, B and relation S has columns C, D.
The SQL query

select * from R
where B < (select sum(D) from S where A > C)

is equivalent to Sum∗;1(σB<Sum��;D(σA>C(S))R) in the al-
gebra. Here, all columns of the schema of R are output
variables. In the subexpression Sum��;D(σA>C(S)), A is an
input variable; there are no output variables since the ag-
gregate is non-grouping. ✷

Also note that taking a delta adds input variables param-
eterizing the query with the update. In Example 4 for in-
stance, the delta query has input variables x and y to pass
in the update. Delta queries for bulk updates have relation-
valued parameters.

4. THE VIEWLET TRANSFORM
We are now ready for the viewlet transform. If we restrict

the query language to exclude aggregates nested into con-
ditions2 (for which the delta query was complicated), the
query language fragment has the following nice property.

2We will eliminate this restriction on the technique in the
next section.

∆Q is structurally strictly simpler than Q when query com-
plexity is measured as follows. For union(+)-free queries,
the degree deg(Q) of query Q is the number of relations
joined together. We can use distributivity to push unions
above joins and so give a degree to queries with unions: the
maximum degree of the union-free subqueries. Queries are
strongly analogous to polynomials, and the degree of queries
is defined precisely as it is defined for polynomials (where
the relation atoms of the query correspond to the variables
of the polynomial).

Theorem 1 ([19]) If deg(Q) > 0, then

deg(∆Q) = deg(Q)− 1.

The viewlet transform makes use of the simple fact that
a delta query is a query too. Thus it can be incrementally
maintained, making use of a delta query to the delta query,
which again can be materialized and incrementally main-
tained, and so on, recursively. By the above theorem, this
recursive query transformation terminates in the deg(Q)-th
recursion level, when the rewritten query is a “constant” in-
dependent of the database, and dependent only on updates.

All queries, aggregate or not, map tuples to rational num-
bers (= define GMRs). Thus it is natural to think of the
views as map data structures (dictionaries). In this section,
we make no notational difference between queries and (ma-
terialized) views, but it will be clear from the context that
we are using views when we increment them.

Definition 1 The viewlet transform turns a query into a
set of update triggers that together maintain the view of
the query and a set of auxiliary views. Assume the query
Q has input variables (parameters) �xin. For each relation R

used in the query, the viewlet transform creates a trigger

on update R values DR do TR.

where DR is the update – a generalized multiset relation –
to the relation named R and TR is the trigger body, a set of
statements. The trigger bodies are most easily defined by
their computation by a recursive imperative procedure V T

defined below (initially, the statement lists TR are empty):

procedure VT(Q, �xin):
foreach relation name R used in Q do {

TR += (foreach �xin do Q[�xin] += ∆RQ[�xinDR])
if deg(Q) > 0 then {

let D be a new variable of type relation of schema R;
VT(∆RQ, �xinD)

} }

Here, += on TR appends a statement to an imperative code
block, and += on generalized multiset relations uses the + of
Section 3.1. Exactly those queries occurring in triggers that
have degree greater than zero are materialized. Of course,
these are exactly those queries that are added to by trigger
statements: those that are incrementally maintained. ✷

Example 6 For example, if the schema contains two rela-
tions R and S and query Q has degree 2, then VT(Q, ��)
returns as TR the code block

Q += ∆RQ[DR];
foreach D1 do ∆RQ[D1] += ∆R∆RQ[D1, DR];
foreach D2 do ∆SQ[D2] += ∆R∆SQ[D2, DR]

The body for the update trigger of S, TS , is analogous. Note
that the order of the first two statements matters. For cor-
rectness, we read the old versions of views in a trigger. ✷

972

The viewlet transform bears a superficial analogy with
the Haar wavelet transform, which also materializes a hi-
erarchy of differences; however, these are not differences of
differences but differences of recursively computed sums.

At runtime, each trigger statement loops over a relevant
subset of the possible valuations of the parameters of the
views used in the statement. For relation-typed parame-
ters, this is a priori astronomically expensive. There are
various ways of bounding the domains to make this feasible.
Furthermore, parameters can frequently be optimized away.
Nevertheless, single-tuple updates offer particular optimiza-
tion potential, and we focus on these in this paper.

We will study single-tuple insertions, denoted +R(�t) for
the insertion of tuple �t into relation R, and single-tuple dele-
tions −R(�t). Here we create insert and delete triggers in
which the argument is the tuple, rather than a generalized
multiset relation, and we avoid looping over relation-typed
variables.

Example 7 We return to the query Q of Example 4, with
single-tuple updates. The query has degree two. The second-
order deltas (∆sgnRR(x,y)∆sgnSS(z,u)Q)[x, y, z, u] have value
sgn

R
sgn

S
Sum��;x∗u(σy=z{��}), which is equivalent to �� �→

sgn
R
sgn

S
if y = z then x ∗ u else 0; here sgn

R
, sgn

S
∈ {+,−}.

Variables x and y are arguments of the trigger and are bound
at runtime, but variables z and u need to be looped over.
On the other hand, the right-hand side of the trigger is only
non-zero in case that y = z. So we can substitute z by y

everywhere and eliminate z. Using this simplification, the
on-insert into R trigger +R(x, y) according to the viewlet
transform is the program

Q += ∆+R(x,y)Q[x, y];
foreach u do ∆+S(y,u)Q[y, u] += {�� �→ x ∗ u};
foreach u do ∆−S(y,u)Q[y, u] -= {�� �→ x ∗ u}
The remaining triggers are constructed analogously. The
trigger contains an update rule for the (in this case, scalar)
view Q for the overall query result, which uses the auxiliary
view ∆±R(x,y)Q which is maintained in the update triggers
for S, plus update rules for the auxiliary views ∆±S(z,u)Q

that are used to update Q in the insertion and deletion trig-
gers on updates to S.

The reason why we did not show deltas ∆±R(...)∆±R(...)Q

or ∆±S(...)∆±S(...)Q is that these are guaranteed to be 0,
as the query does not have a self-join.

A further optimization, exploiting distributivity and pre-
sented in the next section, eliminates the loops on u and
leads us to the triggers of Example 2. ✷

We observe that the structure of the work that needs to be
done is extremely regular and (conceptually) simple. More-
over, there are no classical large-granularity operators left,
so it does not make sense to give this workload to a classical
query optimizer. There are for-loops over many variables,
which have the potential to be very expensive. But the
work is also perfectly data-parallel, and there are no data
dependencies comparable to those present in joins. All this
provides justification for making heavy use of compilation.

Note that there are many optimizations not exploited in
the presentation of viewlet transforms. Thus, we will refer
to the viewlet transform as presented in this section as naive
recursive IVM in the experiments section. We will present
improvements and optimizations next.

5. OPTIMIZING VIEWLETS
In this section, we present optimizations of the viewlet

transform as well as heuristics and a cost model that allow
us to avoid materializing views with high maintenance cost.

Query Decomposition

M(Sum �A �B:f1∗f2
(Q1 �� Q2)) ⇒

M(Sum �A:f1
(Q1)) �� M(Sum�B:f2

(Q2)) (1)

Q1 and Q2 have no common columns
�A and �B are the group-by terms of each

Factorization and Polynomial Expansion

M(QL �� (Q1 + Q2 + . . .) �� QR) ⇔
M(QL �� Q1 �� QR) +M(QL �� Q2 �� QR) + . . . (2)

Input Variables

M(Sum �A;f(�B �C)(σθ(�B �C)(Q))) ⇒

Sum �A;f(�B �C)(σθ(�B �C)(M(Sum �A �B;1(Q)))) (3)

f, θ are functions over terms
�A is the group-by variables of the aggregate over Q

�B is the output variables of Q used by f, θ

�C is the input variables that do not appear in Q

Nested Aggregates and Decorrelation

M(Sum �A;f (σ
θ(QN , �B)(QO))) ⇒

Sum �A;1(σ
θ(M(QN), �B)(M(Sum �A �B;f (QO)))) (4)

QN is a non-grouping aggregate term
f, θ are functions over terms
�A is the group-by variables of the aggregate over QO

�B is the output variables of QO used by f, θ and QN

Figure 2: Rewrite rules for partial materialization.

Bidirectional arrows indicate rules that are applied

heuristically or using the cost model from Section 5.1.

5.1 Materialization Decisions
For any query Q, the naive viewlet transform produces a

single materialized view MQ. However, it is frequently more
efficient to materialize Q piecewise, as a collection of incre-
mentally maintained materialized views �MQ and an equiva-
lent query Q

� that is evaluated over these materialized views.
We refer to the rewritten query and its piecewise maps as a
materialization decision for Q, denoted �Q�

, �MQ�.
DBToaster selects a materialization decision for a query

Q iteratively, by starting with the naive materialization de-
cision �(MQ,1), (MQ,1 := Q)� and applying several rewrite
rules up to a fixed point. These rewrite rules are presented
in Figure 2, and are discussed individually below. Figure
3 shows the applicability of these rules to the experimental
workload discussed in Section 6 and Appendix A.

For clarity, we will use a materialization operator M to
show materialization decisions juxtaposed with their corre-
sponding queries. For example, one possible materialization
decision for the query Q := Q1 �� Q2 is:

M(Q1) �� M(Q2) ≡ �(MQ,1 �� MQ,2), {MQ,i := Qi}�.

We will first discuss the use of these rules in a heuristic
optimizer, which when applied as aggressively as possible
produces near-optimal trigger programs for maintaining the
vast majority of queries. We also briefly discuss a cost-based
optimization strategy to further improve performance.
Duplicate View Elimination. As the simplest optimiza-
tion, we observe that the naive viewlet transform produces
many duplicate views. This is primarily because the delta
operation typically commutes with itself; ∆R∆SQ = ∆S∆RQ

for any Q that does not contain nested aggregates over R or
S. Even simple structural equivalence effectively identifies
this sort of view duplication. View de-duplication substan-
tially reduces the number of views created.

973

Query Decomposition. DBToaster makes extensive use
of the generalized distributive law[5] (which plays an impor-
tant role for probabilistic inference with graphical models)
to decompose the materialization of expressions with dis-
connected join graphs. This rule is presented in Figure 2.1.

If the join graph of Q includes multiple disconnected com-
ponents �Qi, Q2, . . . (i.e., Q := Q1 × Q2 × . . .), it is better
to materialize each component independently. The cost of
selecting from, or iterating over Q is identical for both ma-
terialization strategies. Furthermore, maintaining each indi-
vidual Qi is less computationally expensive; the decomposed
materialization stores (and maintains) only

P
i
|Qi| values,

while the combined materialization handles
Q

i
|Qi| values.

This optimization plays a major role in the efficiency of
DBToaster, and in the justification of compilation. Taking
a delta of a query with respect to a single-tuple update re-
places a relation in the query by a singleton constant tuple,
effectively eliminating one hyperedge from the join graph
and creating new disconnected components that can be fur-
ther decomposed. Query decomposition is also critical for
ensuring that the number of maps created for any acyclic
query is polynomial.

Polynomial Expansion and Factorization. As described
above, query decomposition operates exclusively over con-
junctive queries. In order to decompose across unions, we
observe that the union operation can be pushed through ag-
gregate sums (i.e, Sum(Q1 + Q2) = Sum(Q1) + Sum(Q2)),
and distributed over joins.

Any query expression can be expanded into a flattened
polynomial representation, which consists of a union of purely
conjunctive queries. Query decomposition is then applied to
each conjunctive query individually. This rewriting rule is
presented in Figure 2.2.

Note that this rewrite rule can also be applied in reverse.
A polynomial expression can be factorized into a smaller rep-
resentation by identifying common subexpressions (QL and
QR in the rewrite rule) and pulling them out of the union.
The cost-based optimizer makes extensive use of factoriza-
tion to fully explore the space of possible materialization
decisions. The heuristic optimizer does not attempt to fac-
torize while making a materialization decision. However,
after a materialization decision �MQ, {. . .}� is finalized, the
materialized query MQ itself is simplified by factorization.

Input Variables. Queries with input variables have in-
finite domains and cannot be fully materialized. By de-
fault, DBToaster’s heuristics ensures that input variables
are avoided, in the query and all its subexpressions.

Input variables are originally introduced into an expres-
sion by nested aggregates, and as part of deltas. They ap-
pear exclusively in selection and aggregation operators.

The rewrite rule shown in Figure 2.3 ensures that mate-
rialized expressions do not have input variables by pulling
operators with input variables out of the materialized ex-
pression. If an operator can be partitioned into components
with output variables only and components with input vari-
ables, only the latter are pulled out of the expression.

In addition to this heuristic approach, the cost-based op-
timizer explores alternative materialization decisions where
some (or all) of the input variables in an expression are kept
in the materialized expression. With respect to Figure 2.3,
these input variables are treated as elements of �A instead of
�C. At runtime, only a finite portion of the domain of these
input variables is maintained in the materialized view.

A materialized view with input variables acts, in effect, as
a cache for the query results. Unlike a traditional cache how-
ever, the contents of this map are not invalidated when the
underlying data changes, but instead maintained incremen-

tally. These sorts of view caches are analogous to partially
materialized views [20, 28].

View caches are only beneficial when the size of the active
domain of an input variable is small, and so the heuristic
optimizer does not attempt to create them3.

Deltas of Nested Aggregates. Thus far, we have ignored
queries containing nested subqueries. When the delta of the
nested subquery is nonzero, the delta of the entire query is
not simpler than the original. The full delta rule for nested
presented in [19] effectively computes the nested aggregate
twice: once to obtain the original value, and once to obtain
the value after incorporating the delta.

Example 8 Consider the following query, with relations R

and S with columns A and B respectively:

Q := Sum��;1(σSum��;1(S)=A(R))

By the delta rule for nested aggregates,

∆+S(B�) := Sum��;1(σSum��;1(S)+1)=A(R))−
Sum��;1(σSum��;1(S)=A(R))

Because the original nested query appears in the delta
expression, the naive viewlet transform will not terminate
here. To address this, the delta query is is decorrelated into
separate materialized expressions for the nested subquery
and the outer query. The rewrite rule of Figure 2.4 is applied
twice (once to each instance). Each materialized expression
now has a lower degree than the original query.

Although this rule is necessary for termination, it intro-
duces a computation cost when evaluating the delta query.
Note however, that this rule is only required (and thus, only
used) when the delta of the nested subquery is nonzero.

Example 9 Continuing Example 8, the materialization de-
cision for ∆+S(B�)Q uses two materialized views:
MQ,1 := Sum��;1(S) and MQ,2 := R, and uses each twice.
However, ∆+R(A�)Q naturally has a lower degree than Q,
and is thus materialized in its entirety.

Additionally, we observe that for some queries, it is more
efficient to entirely recompute the query Q on certain up-
dates. Consider the general form of a nested aggregate:

Q := Sum �A;f1
(σ(Sum �A �B;f2

(QO)))

The delta of Q evaluates two nearly identical expressions.
Naively, computing the delta costs twice as much as the orig-
inal query and so re-evaluation is more efficient. However, if
the delta’s trigger arguments bind one or more variables in
�B, then the delta query only aggregates over a subset of the
tuples in QO and will therefore be faster. Based on this anal-
ysis, the heuristic optimizer decides whether to re-evaluate
or incrementally maintain any given delta query.

Cost Model. While DBToaster’s full cost-based optimizer
is beyond the scope of this paper, we now briefly discuss
its cost model. The dominant processing overheads are: (1)
Updating maps with query results, and (2) Sum aggregates,
which compound tuples into aggregate values.

The cost of a materialization decision �Q�
, �MQ� includes

both an evaluation component (coste) and a maintenance
component (costm) for both the view materialized for the
original query and all of the higher-order views.
3View caching is required for any materialized expression
without finite support. This includes some forms of nested
aggregates without input variables. A precise characteriza-
tion of these expressions is beyond the scope of this paper.

974

Rule (1) Rule (2) Rule (3) Rule (4)

Query (S)ubquery (R)e-eval

(C)ache (I)ncremental

F
in

a
n
c
e

AXF - ✓ S -

BSP - ✓ - -

BSV - ✓ - -

MST - ✓ S R,I

PSP - ✓ S R,I

VWAP - ✓ C R

T
P
C

H

Q3 ✓ ✓ - -

Q11 - - - -

Q17 ✓ ✓ S I

Q18 ✓ ✓ S I

Q22 ✓ ✓ S R,I

SSB4 ✓ - - -

Figure 3: Rewrite rules applied to our workload.

DBToaster uses standard cardinality estimation [12, 32]
for the number of distinct tuples when projecting the result
of query Q down to columns �A. We refer to this as the size
of the domain of �A in Q (|dom �A

(Q)|). If �A is the full set of
output variables of Q, then we refer to this as the complete
domain of Q (|dom(Q)|).

Let Q be the set of all subexpressions of Q. The cost of
query Q is the sum of the sizes of the complete domains of
the outer query Q and all queries nested immediately inside
aggregate sums Qi in Q:

coste(Q) = |dom(Q)| +
X

{Qi|Sum(Qi)∈Q}
|dom(Qi)|

The maintenance cost of Q is based on the cost of main-
taining all the MQ,i ∈ �MQ. Every MQ,i must be updated for
every change to a relation Rj that appears in it. If the delta
query of MQ,i is materialized using materialization decision
�Q�

i,j ,
�MQi,j

�, and the rate of insertions into Rj is rateRj
,

then the cost of maintaining MQ,i is

costm(MQ,i) =
X

Rj

rateRj
·coste(Q

�
i,j)+

X

M∈ �MQi,j

costm(M)

This definition recurs on the cost of maintaining the maps
required to evaluate Qi,j . The maintenance cost of a map
that is already being materialized by another query is zero.

The full cost of processing query Q is now

cost(Q) = (raterefresh · coste(Q
�)) + (

X

i

costm(MQ,i))

where the refresh rate of Q depends on how frequently a
fresh view must be made available. For the typical usage
scenario a refresh occurs on every update, and raterefresh =P

j
rateRj

.

5.2 Optimized Viewlet Transform Example
Figure 4 shows the trigger program compiled from query

Q18 from our test workload (see Appendix A).
For simplicity, we use the condensed schema C(CK),

O(CK, OK), and LI(OK, QTY). The query Q[][CK] is:

SumCK;QTY (

σ100<Sum��;QT Y � (σOK=OK� (ρOK�,QT Y �LI))(C �� O �� LI))

Due to space limitations we only show the derivation of in-
sertions into Orders O and Lineitem LI. Insertions into
Customer C are a simple extension, while deletions are du-
als of insertions and are omitted entirely.

Insertions into Orders. The first-order delta of Q for
insertion of a single tuple �CK : ck, OK : ok� is

∆+O�ck,ok�Q := SumCK;QTY (σOK=ok∧CK=ck∧Qns(C �� LI))

where Qns =(100 < Sum��;QTY �(σok=OK�ρOK�,QTY �LI))

on insert into C values (ck) do {
01 Q[][ck] += QC [][ck]

02 foreach OK do QLI [][ck, OK] += QLI,C [][ck, OK]

03 QO1[][ck] += 1

}
on insert into O values (ck,ok) do {
04 Q[][ck] += QO1[][ck] �� QO2[][ok] �� σ100<QO2[][ok](1)

05 QLI [][ck, ok] += QO1[][ck]

06 QLI,C [][ck, ok] += 1

07 QC [][ck] += QO2[][ok] �� σ100<QO2[][ok](1)

}
on insert into LI values (ok,qty) do {
08 foreach CK do

Q[][CK] += QLI [][CK, ok] �� (

((QO2[][ok] + {�� �→ qty}) �� σ100<qty+QO2[][ok](1))

− (QO2[][ok] �� σ100<QO2[][ok](1)))

09 foreach CK do

QC [][CK] += QLI,C [][CK, ok] �� (

((QO2[][ok] + {�� �→ qty}) �� σ100<qty+QO2[][ok](1))

− (QO2[][ok] �� σ100<QO2[][ok](1)))
10 QO2[][ok] += qty

}

Figure 4: DBToaster insert trigger program for Q18.

By rewrite rule 1, this delta expression can be decomposed
into two separate maps, since C and LI share no common
columns. Furthermore, the nested subexpression does not
contain relation O, so we do not apply rewrite rule 4 here.
The delta expression can be materialized as follows:

M(Sum�CK�;1(σCK=ckC)) �� M(Sum��;QTY (

σOK=ok∧(100<Sum��;QT Y � (σok=OK� (ρOK�,QT Y �LI)))LI))

The second materialized map can be simplified further by
rules 1 and 4. OK is bound to trigger parameter ok, which
breaks the join graph between the selection predicate and
LI. Then, since the selection predicate is being applied to
a singleton, we can safely materialize only the aggregate in
the predicate. Applying these optimizations gives us the
following materialization decision (with 1 := {�� �→ 1}):

M(Sum�CK�;1(σCK=ckC)) ��

M(Sum��;QTY (σOK=okLI)) ��

Sum��;1(σ100<M(Sum��;QT Y (σok=OKLI))(1))

Trigger statement 04 uses the following set of views (note
that QO2 is used twice):

QO1 := SumCK;1(C) QO2 := SumOK;QTY (LI)

QO1[][CK] is maintained on insertions into C with:

∆+C�ck�QO1 := {�CK : ck� �→ 1}
which corresponds to trigger statement 03. QO2[][OK] is
maintained similarly with trigger statement 10.

Insertions into Lineitem. The first-order delta of Q for
insertion of a single tuple �OK : ok, QTY : qty� is

∆+LI�ok,qty�Q := SumCK;QTY

`
σOK=ok∧100<qty+Qns (

C �� O �� (LI + {�OK : ok, QTY : qty� �→ 1}))
− σOK=ok∧100<Qns (C �� O �� LI)

´

When computing the above delta, we extend the delta rule
of [19] for nested aggregates. The delta of a (decorrelated)

975

 0.1

 1

 10

 100

 1000

 10000

 100000

Q3 Q11 Q17 Q18 Q22 SSB4
BSV BSP AXF PSP MST

VWAP

Av
er

ag
e

R
ef

re
sh

 R
at

e
(R

el
at

iv
e

To
 R

ep
ea

te
d

Ev
al

ua
tio

n)
DBX
SPY

Depth 0 (Repeated)
Depth 1 (IVM)

Naive Recursive*
DBToaster

Figure 5: DBToaster performance overview. Note the

logscale on the y-axis. (*) For VWAP, where DBToaster

uses naive recursive compilation, we compare against a

strategy that avoids input variables.

nested aggregate loops over the full domain of that aggre-
gate even when only a small subset of the domain is af-
fected. We can exploit this to range-restrict variables of
the nested subquery. In this example, this is done by the
predicate OK = ok. If the nested subquery is correlated
with the outer query on an equality, this range-restriction
is propagated to the outer level, significantly reducing the
computational cost.

Repeated application of rewriting rules 2, 3, 4 and 1 with
the trigger variable optimization, and pushing down selec-
tions results in the following materialization decision:

M(SumCK;1(σOK=ok(C �� O))) �� (

(M(Q2) + {�� �→ qty}) �� σ100<qty+M(Q2)(1)

−M(Q2) �� σ100<M(Q2)(1))

where Q2 = Sum��;QTY (σOK=okLI)

Apart from the outermost materialization (of C �� O),
the remaining four materializations in this expression are not
only equivalent, but identical to QO2, which is already being
maintained. Only one view: QLI := SumCK;1(σOK=ok(C ��

O)) is materialized. Rewriting the materialization decision
produces trigger statement 08.

Note that this statement requires a loop. We update Q

iterating over domCK(∆+LIQ) = domCK(QLI). For this
example, the loop never encounters more than one tuple
due to the foreign key dependency from O to C.

QLI can be maintained in a manner analogous to that of
Example 3, resulting in trigger statements 03, 05, and 06.

6. EXPERIMENTAL RESULTS
The DBToaster compiler produces trigger programs as

C++ code with views implemented by Boost MultiIndexes, a
flexible main-memory collection data structure supporting
a variety of secondary index types. Our compiler internals
are ongoing research and outside the scope of this paper.
We evaluate the experimental performance of DBToaster on
Redhat Enterprise Linux with 16 GB of RAM, and an Intel
Xeon E5620 2.4 GHz processor (on a single-core).
Data and Query Workload. Our workload captures al-
gorithmic order book trading and online business decision
support scenarios that involve computing a variety of statis-
tics to guide actions. Figure 6 lists the processing properties
of our workload, with SQL code in Appendix A.

The financial queries VWAP, MST, AXF, BSP, PSP, and
BSV were run on a 2.63 million tuple trace of an order book
update stream, representing one day of stock market activ-
ity for MSFT. These are updates to a Bids and Asks table
with a schema of a timestamp, an order id, a broker id, a

Tables, Where- Group- # Subqueries

join type. clause bys and depth

Query =: equi

x: cross

F
in

a
n
c
e

AXF 2, = ∨, < yes 0 / 0

BSP 2, = ∧, < yes 0 / 0

BSV 2, = None no 0 / 0

MST 2, x ∧, < yes 2 / 1

PSP 2, x ∧, < no 2 / 1

VWAP 1 < no 2 / 1

T
P
C

H

Q3 3, = ∧, < yes 0 / 0

Q11 2, = None yes 0 / 0

Q17 2, = < no 1 / 1

Q18 3, = < yes 1 / 2

Q22 1 =, < yes 2 / 1

SSB4 7, = < yes 0 / 0

Figure 6: Features of the algorithmic trading and online

decision support workloads used for experiments.

Query Depth 0 DBX DBX SPY DBToaster
IVM

TPCH3 15.00 41.12 4.01 59.69 22049.06
TPCH11 20.67 19.91 8.31 13.11 41842.62
TPCH17 17.15 10.72 — 32.58 21256.16
TPCH18 17.93 41.35 — 21.13 24056.02
TPCH22 2.22 35.65 — 39.82 8761.95

SSB4 16.49 42.67 6.30 69.19 2970.64
BSV 2.18 32.60 26.32 22.94 103290.67
BSP 5.19 31.47 16.65 13.79 21114.23
AXF 6.57 31.10 11.56 12.28 22126.26
PSP 6.68 13.32 — 10.52 18895.52
MST 6.54 30.88 — 7.51 19.90

VWAP 7.40 12.89 — 9.31 3259.47

Figure 7: Comparison between DBToaster and two

commercial query engines (in refreshes per second).

Both the DBMS (DBX) and stream system (SPY)

columns show the cost of full refresh on each update.

price, and a volume. The TPC-H benchmark queries Q3,
Q11, Q17, Q18, Q22, and SSB4 were run on a stream of up-
dates adapted from a database generated by DBGEN[31].
We simulate a system that monitors a set of “active” orders
by randomly interleaving insertions on all relations and in-
jecting random deletions on Orders rows to keep the Orders
table at around 30 thousand tuples. Results presented in
Figures 8, 9 and 10 are based on a scaling factor 0.1 (100
MB) database. We show that these results scale to longer
streams in Section 6.2.

To evaluate our compilation algorithm, DBToaster pro-
duces three alternatives by terminating recursive compila-
tion early. Depth 0 compilation corresponds to re-evaluating
the query on every update, while compilation at Depth 1 is
classical first-order IVM. As the third option, DBToaster
materializes as much of the query as possible (Naive Re-
cursive), creating view caches and employing partial mate-
rialization to decorrelate nested subqueries. Our results
show the number of tuples processed by queries run over a
replayed stream for a 1 hour period.

6.1 Higher-Order IVM Performance
We now analyze the steady-state performance of DBToaster.
Comparison with Commercial Systems. Figure 7 com-
pares higher-order IVM to the performance of a commer-
cial DBMS (DBX) and stream processor (SPY), anonymized
due to their license agreements. We present a summary of
our findings, an in-depth itemized breakdown of overheads
is outside the scope of this paper. SPY does not support
IVM, so the number presented is for full re-evaluation of the
query on every update. For nested queries, our workload uti-
lizes SPY’s in-memory tables which significantly contributes
to the performance gap from DBToaster due to their syn-
chronization requirements in an asynchronous stream en-

976

 0
 1
 2
 3
 4

Ti
m

e
(m

in
) Naive Recursive

DBToaster
Depth 1 (IVM)

Depth 0 (Repeated)

 0

 10

 20

 30

 40

R
ef

re
sh

es
 (1

00
0/

s)

 0
 25
 50
 75

 100

0 0.2 0.4 0.6 0.8 1

M
em

 (M
B)

Fraction of Stream Trace Processed

 0
 2
 4
 6
 8

Ti
m

e
(s

)

Naive Recursive
DBToaster

Depth 1 (IVM)
Depth 0 (Repeated)

 0

 20

 40

 60

 80

R
ef

re
sh

es
 (1

00
0/

s)

 0
 2
 4
 6
 8

0 0.2 0.4 0.6 0.8 1

M
em

 (M
B)

Fraction of Stream Trace Processed

 0
 0.5

 1
 1.5

 2

Ti
m

e
(m

in
) Naive Recursive

DBToaster
Depth 1 (IVM)

Depth 0 (Repeated)

 0

 10

 20

 30

 40

R
ef

re
sh

es
 (1

00
0/

s)

 0
 10
 20
 30
 40

0 0.2 0.4 0.6 0.8 1

M
em

 (M
B)

Fraction of Stream Trace Processed

 0
 1
 2
 3
 4

Ti
m

e
(m

in
) Naive Recursive

DBToaster
Depth 1 (IVM)

Depth 0 (Repeated)

 0

 10

 20

 30

 40

R
ef

re
sh

es
 (1

00
0/

s)

 0
 10
 20
 30
 40

0 0.2 0.4 0.6 0.8 1

M
em

 (M
B)

Fraction of Stream Trace Processed

(a) (b) (c) (d)
Figure 8: (a) Q3, (b) Q11, (c) Q17, (d) Q18; (a) A 3-way linear join. (b) A 2-way linear join. (c) A 2-way join
with an equality-correlated nested aggregate. (d) A 3-way join with an equality-correlated nested aggregate.

 0
 15
 30
 45
 60

Ti
m

e
(m

in
) Naive Recursive

DBToaster
Depth 1 (IVM)

Depth 0 (Repeated)

 0

 15

 30

 45

 60

R
ef

re
sh

es
 (1

00
0/

s)

 0
 0.5

 1
 1.5

 2

0 0.2 0.4 0.6 0.8 1

M
em

 (M
B)

Fraction of Stream Trace Processed

 0
 5

 10
 15
 20

Ti
m

e
(m

in
) Naive Recursive

DBToaster
Depth 1 (IVM)

Depth 0 (Repeated)

 0

 1

 2

 3

 4

R
ef

re
sh

es
 (1

00
0/

s)

 0
 150
 300
 450
 600

0 0.2 0.4 0.6 0.8 1

M
em

 (M
B)

Fraction of Stream Trace Processed

 0
 15
 30
 45
 60

Ti
m

e
(m

in
) No Input Vars

DBToaster
Depth 1 (IVM)

Depth 0 (Repeated)

 0

 1

 2

 3

 4
R

ef
re

sh
es

 (1
00

0/
s)

 0
 10
 20
 30
 40

0 0.2 0.4 0.6 0.8 1

M
em

 (M
B)

Fraction of Stream Trace Processed

 0
 15
 30
 45
 60

Ti
m

e
(m

in
) Naive Recursive

DBToaster
Depth 1 (IVM)

Depth 0 (Repeated)

 0

 50

 100

 150

 200

R
ef

re
sh

es
 (1

00
0/

s)

 0
 10
 20
 30
 40

0 0.2 0.4 0.6 0.8 1

M
em

 (M
B)

Fraction of Stream Trace Processed

(a) (b) (c) (d)
Figure 9: (a) Q22, (b) SSB4, (c) VWAP, (d) BSV; (a) A single table with an equality- and an inequality-
correlated nested aggregates. Insertions into the Customer relation complete within the first 10% of the
stream. (b) A 3-way star join with a maximum join width of 6. (c) A single table with an inequality-
correlated and an uncorrelated nested aggregate. DBToaster chooses the naive recursive approach, so we
compare against an approach that aggressively avoids input variables. (d) A 2-way self-join.

 0
 1
 2
 3
 4

Ti
m

e
(m

in
) Naive Recursive

DBToaster
Depth 1 (IVM)

Depth 0 (Repeated)

 0

 15

 30

 45

 60

R
ef

re
sh

es
 (1

00
0/

s)

 0
 0.1
 0.2
 0.3
 0.4

0 0.2 0.4 0.6 0.8 1

M
em

 (M
B)

Fraction of Stream Trace Processed

 0
 15
 30
 45
 60

Ti
m

e
(m

in
) Naive Recursive

DBToaster
Depth 1 (IVM)

Depth 0 (Repeated)

 0

 1.5

 3

 4.5

 6

R
ef

re
sh

es
 (1

00
0/

s)

 0
 0.5

 1
 1.5

 2

0 0.01 0.02 0.03

M
em

 (M
B)

Fraction of Stream Trace Processed

 0
 1.5

 3
 4.5

 6

Ti
m

e
(m

in
) Naive Recursive

DBToaster
Depth 1 (IVM)

Depth 0 (Repeated)

 0

 10

 20

 30

 40

R
ef

re
sh

es
 (1

00
0/

s)

 0
 25
 50
 75

 100

0 0.2 0.4 0.6 0.8 1

M
em

 (M
B)

Fraction of Stream Trace Processed

 0
 1
 2
 3
 4

Ti
m

e
(m

in
) Naive Recursive

DBToaster
Depth 1 (IVM)

Depth 0 (Repeated)

 0

 10

 20

 30

 40

R
ef

re
sh

es
 (1

00
0/

s)

 0
 15
 30
 45
 60

0 0.2 0.4 0.6 0.8 1

M
em

 (M
B)

Fraction of Stream Trace Processed

(a) (b) (c) (d)
Figure 10: (a) PSP, (b) MST, (c) AXF, (d) BSP; (a) A 2-way join with two uncorrelated nested aggregates.
(b) A 2-way join with two uncorrelated, and two inequality-correlated nested aggregates. None of the tested
engines completed the trace within the 60 minute limit. (c) A 2-way inequality join. (d) An inequality
self-join.

977

gine. For DBX, although this does support IVM, more than
half of the queries in our test workload require features of
SQL that cannot be handled incrementally by DBX’s views
subsystem. In our experiments, we found two significant
contributors to DBX’s overheads. First, because DBX only
performs IVM after commits, transaction overheads greatly
add to the cost of achieving fast refresh. Second, maintain-
ing catalog information across many tables for high-rate up-
dates also substantially impacts latencies and throughput.
Equijoins. Q3 and Q11 (Figure 8a,b) are 2- and 3-way lin-
ear joins respectively, SSB4 (Figure 9b) is a 3-way star join
with a maximum join-width of 6, and BSV (Figure 9d) is
a 2-way self-join. As there are no inequalities, DBToaster
and Naive Recursive Compilation produce mostly identical
results. In the case of many 2-way joins, the first level deltas
are very nearly the base relations, and so on Q11, IVM is
able to perform as effectively as DBToaster. On BSV how-
ever, DBToaster gets a substantial performance improve-
ment by representing the materialized delta view with only
a single aggregate value, making the update cost constant.
SSB4 normally has a join width of 6. However, because the
contents of the Nation table are static, DBToaster does not
attempt to materialize any deltas needed to support updates
to Nation, reducing the join width to 4 and eliminating sev-
eral maps with high maintenance costs.
Nested Aggregates. Q17 and Q18 (Figure 8c,d) are multi-
way join nested-aggregate queries with simple nested aggre-
gates, in both case with the nested aggregate correlated on
an equality. Here, DBToaster’s strong performance comes
from decorrelating the nested subquery for only the deltas
of Lineitem (on which both nested subqueries are based).

Q22 (Figure 9a) includes two nested aggregates, an uncor-
related aggregate on Customer that is compared against on
the top level using an inequality and an equality-correlated
aggregate on Orders that is compared against using an in-
equality. The first nested subquery causes DBToaster to
choose a strategy of re-evaluating the top-level query since
the delta of the subquery with respect to updates to Cus-
tomer is not simpler than the original subquery. The second
subquery by itself would not have made this necessary since
we can decorrelate it (due to the absence of both inequalities
and the Customer relation) and avoid input variables in any
query subexpression. Nevertheless, the two subqueries as
well as the top-level aggregation without the inequality can
be materialized, reducing re-evaluation to a loop over na-
tions. This is seen in the performance graph as the query’s
slow startup ends once the last customer has been inserted.

VWAP (Figure 9c) has a nested aggregate correlated on
an inequality. The small domain of the correlation variable
(price) makes this an ideal candidate for view caching.

PSP (Figure 10a) has two uncorrelated nested aggregates.
This query benefits from full re-evaluation on each execu-
tion. However, polynomial expansion actually enables a
graph decomposition that splits the query into 4 parts: 2
constant time components and 2 independent linear time
components in the number of distinct values of the column
being compared to the nested aggregate (volume).

MST (Figure 10b) is fundamentally similar to PSP, but
rather than comparing its uncorrelated aggregates against
columns from the base relations, they are each compared
against another nested aggregate correlated on an inequality.
This is a worst case scenario for DBToaster, as it cannot
incrementally process this query in better than O(n2) time
without specialized indexes (e.g., aggregate range trees).
Inequijoins. AXF and BSP are both 2-way joins (Figure
10c,d), with BSP being a self-join. In the case of AXF, both
the join variable (price) and one of the aggregate variables
(volume) are treated as input variables by naive recursive

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q3 Q11 Q17 Q18 Q22 SSB4

R
ef

re
sh

 R
at

e
R

el
at

iv
e

to
 1

00
 M

B 100 MB
500 MB

1 GB
5 GB

10 GB

Figure 11: Performance scaling on the TPCH queries.

materialization. In BSP, the join variable (t) has an ex-
tremely large domain. In both cases, partial materialization
outperforms naive. Since both are 2-way joins, IVM is nearly
optimal – DBToaster achieves a small speed boost in both
cases by not materializing the entire base relation.

6.2 Working State Scalability
Figure 11 analyzes the performance scaling properties of

DBToaster on larger datasets and subsequently a larger work-
ing state for its main-memory data structures. An update
stream was synthesized from databases created by DBGEN
at scaling factors 0.5, 1, 5, and 10 (500MB, 1GB, 5GB, and
10GB respectively). As before, the Orders relation is kept
at 30 thousand tuples. The Customer, Part, Supplier, or
Partsupp are inserted completely and never deleted. With
the exception of Q22, performance stays roughly constant
as stream length grows.

The running time of Q22 is dominated by the first 10% of
the stream in each case, before the customers table has been
fully inserted. The cost of each insertion into the customer
table is linear in the size of the customer table. After all
customer tuples have been loaded in, performance returns
to a constant 35000 tuples per second, regardless of scale.

7. CONCLUSION
We presented a compiler and optimizer framework for

higher-order IVM that uses aggressive simplification of re-
cursive delta queries and a plethora of materialization strate-
gies to make recursive IVM viable. Our compilation method
is effective on a wide range of select-project-join-aggregate
queries, including those with nested subqueries that are not
supported by current IVM mechanisms. Our methods pro-
vide scalable view refresh rates, often orders of magnitude
over today’s tools, providing the basis for our vision of DDMS.

8. REFERENCES
[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J. Hwang, W. Lindner, A. Maskey, A. Rasin,
E. Ryvkina, et al. The design of the Borealis stream
processing engine. In CIDR, pages 277–289, 2005.

[2] S. Agrawal, S. Chaudhuri, and V. R. Narasayya.
Automated selection of materialized views and indexes in
SQL databases. In VLDB, pages 496–505, 2000.

[3] Y. Ahmad and C. Koch. DBToaster: A SQL compiler for
high-performance delta processing in main-memory
databases compiler for high-performance delta processing in
main-memory databases. PVLDB, 2(2):1566–1569, 2009.

[4] A. Aiken, J. M. Hellerstein, and J. Widom. Static analysis
techniques for predicting the behavior of active database
rules. ACM TODS, 20(1):3–41, 1995.

[5] S. M. Aji and R. J. McEliece. The generalized distributive
law. IEEE TOIT, 46(2):325–343, 2000.

[6] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa. Efficiently
updating materialized views. In SIGMOD, pages 61–71,
1986.

[7] P. Buneman and E. K. Clemons. Efficiently monitoring
relational databases. ACM TODS, 4(3):368–382, 1979.

978

[8] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views. In
ICDE, pages 190–200, 1995.

[9] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and
H. Trickey. Algorithms for deferred view maintenance. In
SIGMOD, pages 469–480, 1996.

[10] L. S. Colby, A. Kawaguchi, D. F. Lieuwen, I. S. Mumick,
and K. A. Ross. Supporting multiple view maintenance
policies. In SIGMOD, pages 405–416, 1997.

[11] G. Cormode and S. Muthukrishnan. What’s hot and what’s
not: Tracking most frequent items dynamically. ACM

TODS, 30(1):249–278, 2005.
[12] U. Dayal, N. Goodman. Query optimization for CODASYL

database systems. In SIGMOD, pages 138–150, 1982.
[13] T. M. Ghanem, A. K. Elmagarmid, P.-Å. Larson, and

W. G. Aref. Supporting views in data stream management
systems. ACM TODS, 35(1):1–47, 2010.

[14] T. Griffin and L. Libkin. Incremental maintenance of views
with duplicates. In SIGMOD, pages 328–339, 1995.

[15] A. Gupta, I. S. Mumick, V. S. Subrahmanian. Maintaining
views incrementally. In SIGMOD, pages 157–166, 1993.

[16] H. Gupta and I. S. Mumick. Selection of views to
materialize in a data warehouse. IEEE TKDE, 17(1):24–43,
2005.

[17] A. Kawaguchi, D. F. Lieuwen, I. S. Mumick, and K. A.
Ross. Implementing incremental view maintenance in
nested data models. In DBPL, pages 202–221, 1997.

[18] O. Kennedy, Y. Ahmad, and C. Koch. DBToaster: Agile
views for a dynamic data management system. In CIDR,
pages 284–295, 2011.

[19] C. Koch. Incremental query evaluation in a ring of
databases. In PODS, pages 87–98, 2010.

[20] Y. Kotidis and N. Roussopoulos. A case for dynamic view
management. ACM TODS, 26(4):388–423, 2001.

[21] S. Krishnamurthy, C. Wu, and M. J. Franklin. On-the-fly
sharing for streamed aggregation. In SIGMOD, pages
623–634, 2006.

[22] P.-Å. Larson and J. Zhou. Efficient maintenance of
materialized outer-join views. In ICDE, pages 56–65, 2007.

[23] Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static caching
for incremental computation. ACM TOPLAS,
20(3):546–585, 1998.

[24] R. Motwani, J. Widom, et. al. Query processing,
approximation, and resource management in a data stream
management system. In CIDR, 2003.

[25] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh.
Incremental maintenance for non-distributive aggregate
functions. In VLDB, pages 802–813, 2002.

[26] B. A. Pearlmutter and J. M. Siskind. Lazy multivariate
higher-order forward-mode AD. In POPL, pages 155–160,
2007.

[27] K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized
view maintenance and integrity constraint checking:
Trading space for time. In SIGMOD, pages 447–458, 1996.

[28] N. Roussopoulos. An incremental access method for
ViewCache: Concept, algorithms, and cost analysis. ACM

TODS, 16(3):535–563, 1991.
[29] K. Salem, K. S. Beyer, R. Cochrane, and B. G. Lindsay.

How to roll a join: Asynchronous incremental view
maintenance. In SIGMOD, pages 129–140, 2000.

[30] N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack, and
M. Stonebraker. Load shedding in a data stream manager.
In VLDB, pages 309–320, 2003.

[31] Transaction Processing Performance Council. TPC-H
benchmark specification. http://www.tpc.org/hspec.html.

[32] S. D. Viglas and J. F. Naughton. Rate-based query
optimization for streaming information sources. In
SIGMOD, pages 37–48, 2002.

[33] J. Yang and J. Widom. Incremental computation and
maintenance of temporal aggregates. VLDB Journal,
12(3):262–283, 2003.

[34] J. Zhou, P.-Å. Larson, H. G. Elmongui. Lazy maintenance
of materialized views. In VLDB, pages 231–242, 2007.

[35] J. Zhou, P.-Å. Larson, J. C. Freytag, and W. Lehner.
Efficient exploitation of similar subexpressions for query
processing. In SIGMOD, pages 533–544, 2007.

[36] D. C. Zilio, C. Zuzarte, S. Lightstone, W. Ma, G. M.
Lohman, R. Cochrane, H. Pirahesh, L. S. Colby, J. Gryz,
E. Alton, D. Liang, and G. Valentin. Recommending
materialized views and indexes with IBM DB2 design
advisor. In ICAC, pages 180–188, 2004.

Appendix A. QUERIES

A
X

F SELECT b.broker_id, sum(a.volume-b.volume)
FROM Bids b, Asks a
WHERE b.broker_id = a.broker_id

AND (a.price-b.price > 1000 OR b.price-a.price > 1000)
GROUP BY b.broker_id;

B
S
P SELECT x.broker_id, sum(x.volume*x.price - y.volume*y.price)

FROM Bids x, Bids y
WHERE x.broker_id=y.broker_id AND x.t>y.t
GROUP BY x.broker_id;

B
S
V SELECT x.broker_id, sum(x.volume*x.price*y.volume*y.price*0.5)

FROM Bids x, Bids y
WHERE x.broker_id = y.broker_id GROUP BY x.broker_id;

M
S
T SELECT b.broker_id, sum(a.price*a.volume - b.price*b.volume)

FROM Bids b, Asks a
WHERE 0.25*(select sum(a1.volume) from Asks a1) >

(select sum(a2.volume) from Asks a2 where a2.price>a.price)
AND 0.25*(select sum(b1.volume) from Bids b1) >

(select sum(b2.volume) from Bids b2 where b2.price>b.price)
GROUP BY b.broker_id;

P
S
P SELECT sum(a.price - b.price) FROM Bids b, Asks a

WHERE b.volume>0.0001*(select sum(b1.volume) from Bids b1)
AND a.volume>0.0001*(select sum(a1.volume) from Asks a1);

V
W

A
P SELECT sum(b1.price * b1.volume) FROM Bids b1

WHERE 0.25 * (select sum(b3.volume) from Bids b3) >
(select sum(b2.volume) from Bids b2
where b2.price>b1.price);

Q
3 SELECT o.orderkey, o.orderdate, o.shippriority,

sum(li.extendedprice * (1 - li.discount))
FROM Customer c, Orders o, Lineitem li
WHERE c.mktsegment = ’BUILDING’

AND o.custkey = c.custkey
AND li.orderkey = o.orderkey
AND o.orderdate < DATE(’1995-03-15’)
AND li.shipdate > DATE(’1995-03-15’)

GROUP BY o.orderkey, o.orderdate, o.shippriority;

Q
1
1 SELECT ps.partkey, sum(ps.supplycost * ps.availqty)

FROM Partsupp ps, Supplier s
WHERE ps.suppkey = s.suppkey GROUP BY ps.partkey;

Q
1
7 SELECT sum(l.extendedprice) FROM Lineitem l, Part p
WHERE p.partkey = l.partkey
AND l.quantity < 0.005 * (select sum(l2.quantity)

from Lineitem l2 where l2.partkey = p.partkey);

Q
1
8 SELECT c.custkey, sum(l1.quantity)

FROM Customer c, Orders o, Lineitem l1
WHERE 1 <= (select sum(1) where

100 < (select sum(l2.quantity) from Lineitem l2
where l1.orderkey = l2.orderkey))

AND c.custkey = o.custkey AND o.orderkey = l1.orderkey
GROUP BY c.custkey;

Q
2
2 SELECT c1.nationkey, sum(c1.acctbal) FROM Customer c1

WHERE c1.acctbal <
(select sum(c2.acctbal) from Customer c2 where c2.acctbal>0)

AND 0=(select sum(1) from Orders o where o.custkey=c1.custkey)
GROUP BY c1.nationkey;

S
S
B

4 SELECT sn.regionkey, cn.regionkey, p.type,
sum(li.quantity)

FROM Customer c, Orders o, Lineitem li,
Part p, Supplier s, Nation cn, Nation sn

WHERE c.custkey = o.custkey
AND o.orderkey = li.orderkey
AND p.partkey = li.partkey
AND s.suppkey = li.suppkey
AND o.orderdate >= DATE(’1997-01-01’)
AND o.orderdate < DATE(’1998-01-01’)
AND cn.nationkey = c.nationkey
AND sn.nationkey = s.nationkey

GROUP BY sn.regionkey, cn.regionkey, p.type;

979

	Introduction
	Related Work
	A Brief Survey of IVM Techniques
	Update Processing Mechanisms

	Queries and Deltas
	Data Model and Query Language
	Computing the Delta of a Query
	Binding Patterns

	The Viewlet Transform
	Optimizing Viewlets
	Materialization Decisions
	Optimized Viewlet Transform Example

	Experimental Results
	Higher-Order IVM Performance
	Working State Scalability

	Conclusion
	References
	Queries

