
Statistics Collection in Oracle Spatial and Graph: Fast
Histogram Construction for Complex Geometry Objects

Bhuvan Bamba, Siva Ravada, Ying Hu and Richard Anderson
Oracle Spatial and Graph

Oracle America Inc.

{bhuvan.bamba, siva.ravada, ying.hu, richard.anderson}@oracle.com

ABSTRACT

Oracle Spatial and Graph is a geographic information sys-
tem (GIS) which provides users the ability to store spatial
data alongside conventional data in Oracle. As a result
of the coexistence of spatial and other data, we observe a
trend towards users performing increasingly complex queries
which involve spatial as well as non-spatial predicates. Ac-
curate selectivity values, especially for queries with multi-
ple predicates requiring joins among numerous tables, are
essential for the database optimizer to determine a good ex-
ecution plan. For queries involving spatial predicates, this
requires that reasonably accurate statistics collection has
been performed on the spatial data. For extensible data
cartridges such as Oracle Spatial and Graph, the optimizer
expects to receive accurate predicate selectivity and cost val-
ues from functions implemented within the data cartridge.
Although statistics collection for spatial data has been re-
searched in academia for a few years; to the best of our
knowledge, this is the first work to present spatial statis-
tics collection implementation details for a commercial GIS
database. In this paper, we describe our experiences with
implementation of statistics collection methods for complex
geometry objects within Oracle Spatial and Graph. Firstly,
we exemplify issues with previous partitioning-based algo-
rithms in presence of complex geometry objects and suggest
enhancements which resolve the issues. Secondly, we pro-
pose a main memory implementation which not only speeds
up the disk-based partitioning algorithms but also utilizes
existing R-tree indexes to provide surprisingly accurate se-
lectivity estimates. Last but not the least, we provide ex-
tensive experimental results and an example study which
displays the efficacy of our approach on Oracle query per-
formance.

1. INTRODUCTION
Selectivity estimation in databases is an important prob-

lem considering the impact it can have on the ability of the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were invited to present

their results at The 39th International Conference on Very Large Data Bases,
August 26th 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 11

Copyright 2013 VLDB Endowment 21508097/13/09... $ 10.00.

query optimizer to select the correct execution plan. Incor-
rect execution plans can adversely affect the query execution
time. In the past few years, we have witnessed a trend to-
wards storage of spatial data in databases along with other
conventional data allowing users to perform complex spatial
analysis. Databases such as Oracle Spatial and Graph [4],
Informix Spatial Datablade [1], PostGIS [5], Microsoft SQL
Server [2] allow users to leverage their spatial data in such
a manner. This has also led to increasingly complex SQL
queries involving spatial and non-spatial predicates possi-
bly requiring joins among multiples tables. The Oracle op-
timizer is a cost-based optimizer which provides methods
for accurate statistics collection as well as cost functions
for single-dimensional data. However, object-relational car-
tridges such as Oracle Spatial and Graph are expected to
provide spatial predicate selectivity values and relevant cost
values back to the optimizer through an extensibility mecha-
nism. This paper discusses our experiences with implement-
ing this functionality for Oracle Spatial and Graph.

Statistics collection has been studied for building histograms
for query optimization purposes. Sampling is used exten-
sively for conventional data [27, 20, 19, 15, 6, 13] but has
been shown to be ineffective in the spatial domain [9, 8, 7].
Sampling is based on the assumption that a small subset
of data can represent the overall data distribution. This
does not hold true in the spatial domain due to two factors.
Firstly, individual spatial geometries differ in shape and size.
Secondly, distribution of frequencies over the input domain
does not vary dramatically in spatial data, whereas the val-
ues are spread non-uniformly in space [8]. For these reasons,
spatial histogram construction methods must allow for the
skew in size and placement of input data in the domain space
to be taken into account.

Partitioning the input space into regions (or buckets) is a
feasible way of constructing spatial histograms. Two issues
need to be considered while constructing such histograms.
Firstly, we need to determine the criteria for grouping the
spatial geometries into buckets. Secondly, we need a tech-
nique for using the resulting set of buckets to estimate the
selectivity values. Construction of disjoint buckets simplifies
the latter step. Each bucket contains information about the
number of intersecting spatial geometry objects and the av-
erage height and width of the minimum bounding rectangles
(MBRs) of the spatial geometry objects within the bucket
for determining the predicate selectivity value for different
query geometry types.

Spatial indexing methods like the R-tree and its vari-
ants [18, 32, 10] use the MBRs of complex geometry shapes

1021

(a) Example Input Space (b) Equi-Area Partitioning (c) Equi-Count Partitioning

Figure 1: Current Partitioning-based Techniques

for indexing purposes to speedup query evaluation using the
two-step filtering approach [11]. Oracle Spatial and Graph
uses a variant of the R-tree index for indexing of spatial
data [24, 26]. For very large datasets, consisting of billions of
rows, the index creation process may take up to a few hours.
Given this fact, we aim to effectively utilize the spatial index
for histogram construction. We also need to consider the fact
that although many of our customers use engineered sys-
tems like Exadata [3] which have terabytes of main memory
available, a large number of customers still use conventional
servers with gigabytes (or tens of gigabytes) of main mem-
ory available across a set of distributed machines. Hundreds
of users may simultaneously issue statistics collection SQL
queries in a database. Each query may be constructing his-
tograms for spatial data tables with potentially billions of
rows. In such a scenario, partitioning-based algorithms need
to read/write data from/to the disk multiple times during
the bucket splitting process as limited amount of memory
is available for each SQL query. Such disk-based algorithms
slow down the statistics collection process. We utilize the
R-tree index to implement a main memory-based algorithm
which speeds up the statistics collection time. Surprisingly
enough, when combined with our partitioning-based mech-
anisms, the main memory implementation provides better
selectivity estimates than the slower disk-based approaches.

Spatial histogram construction has been extensively re-
searched in academia for some time; to the best of our knowl-
edge, this is the first work which discusses implementation of
statistics collection methods in a commercial GIS database.
With the above discussion in mind, we outline the contribu-
tions of this work as follows:

• We discuss prevalent issues with existing partitioning-
based spatial histogram construction methods which
lead to inaccurate statistics at best or fail to collect
statistics in the worst case scenario. We propose a
modified algorithm to fix the encountered issues.

• We propose a main memory statistics collection algo-
rithm for performing fast statistics collection by uti-
lizing the higher level nodes of our R-tree index.

• A detailed experimental evaluation with real world
datasets shows that our statistics collection methods
lead to determination of accurate selectivity values for
different query geometry types. We evaluate the dif-
ferent proposals for statistics collection and outline a
strategy for effective statistics collection in Oracle Spa-
tial and Graph for database administrators.

• We provide an example study utilizing the Oracle bitmap
conversion operation to display the efficacy of our frame-
work in Oracle.

The rest of this paper is outlined as follows. We provide
the background and motivation for this work in section 2 by
discussing the issues encountered with current partitioning-
based spatial histogram construction schemes. This is fol-
lowed by a description of our proposed algorithms in sec-
tion 3. We perform an extensive experimental evaluation of
our algorithms using real world datasets in section 4 along
with an example study in Oracle. In section 5, we provide a
brief overview of the current state of art methods for spatial
histogram construction. Finally, we conclude in section 6
with a brief summary of our experiences.

2. BACKGROUND AND MOTIVATION

2.1 Spatial Query Execution Plans
The main motivation behind the work is to provide accu-

rate spatial predicate selectivity and cost values to the Ora-
cle optimizer. In the absence of accurate statistics, the opti-
mizer does not provide the best execution plan for queries in-
volving spatial predicates. The default approach is to guide
the optimizer towards using the spatial domain index when
spatial predicates are encountered. This may not be the
best approach for queries where spatial predicate selectivity
is high. Further issues are encountered, as the optimizer, be-
ing a cost-based optimizer, still does not necessarily choose
the spatial index over full table scans in the absence of mean-
ingful statistics. In many cases, we encountered plans which
were significantly worse as they involved joins between nu-
merous tables some of which contained spatial data. In such
situations, it is important to have accurate predicate selec-
tivity values as this determines the appropriate join order
for the tables.

2.2 Partitioningbased Histogram Construc
tion

Previous work considers the problem of constructing his-
tograms for spatial data using equi-area or equi-count heuris-
tics. The goal of each technique is to split the input space
into buckets (or regions) which have the same area or the
same number of data objects. [8] describes these techniques
for point and range queries over two-dimensional rectangu-
lar data. The histogram creation process is initiated by con-
structing a first bucket which encloses the MBRs of all spa-
tial geometry objects. Further buckets are constructed by
splitting an existing bucket into two smaller buckets, using

1022

(a) Creation of buckets with unnecessarily large
MBRs

(b) Creation of buckets with too few objects

Figure 2: Issues with Current Partitioning-based Techniques

either the equi-count or equi-area heuristic, until the desired
number of buckets is obtained. Each bucket is defined by its
MBR which encloses all spatial objects contained within.

Figure 1 provides an example for equi-area and equi-count
heuristic-based splitting. The input space of spatial geome-
tries comprises of the MBRs of objects O1 to O7 (shown
with dotted lines) as shown in figure 1(a). The first bucket
is formed by computing the MBR which encloses all the
spatial geometry MBRs as shown using the solid rectangle
labeled Bucket 1 in the figure. The goal of any partitioning-
based scheme is to split this initial bucket into the required
number of final buckets iteratively using a heuristic. The
equi-area heuristic aims to create buckets whose MBRs have
equal areas. The MBR of a bucket is split along the longer
dimension into two equal halves and the MBRs are grouped
into either half depending on where their centers lie. Fig-
ure 1(b) shows the bucket in figure 1(a) being split along
the length (longer dimension) using the dotted vertical line
at the center. On the other hand, equi-count partitioning
attempts to create buckets containing the same number of
MBRs to limit the worst case errors. The algorithm is simi-
lar to the equi-area partitioning with the exception that the
bucket chosen for splitting along a dimension has the largest
projected MBR count along that dimension. The projected
MBR count of a dimension in a bucket is the number of
distinct MBR centers in the bucket when projected on that
dimension. Figure 1(c) shows the split of the input space in
figure 1(a) according to the equi-count heuristic. Next, we
discuss the issues encountered when applying these parti-
tioning schemes to complex spatial geometry datasets with
large spatial extent.

2.3 Issues with Existing Approaches
We observed that when the above techniques are applied

to datasets containing complex spatial objects with large spa-
tial extent and consequently large MBRs we may obtain his-
tograms which provide poor selectivity estimates. The his-
togram construction algorithms described above may cause
a bad split in presence of complex spatial objects with large
spatial extents. Two main issues are encountered which are
explained with the help of figure 2.

The first issue is that existing methods may lead to cre-
ation of buckets with large MBRs. Larger buckets lead to

larger estimation errors. We explain this in further detail
with the help of an example (figure 2(a)). The figure dis-
plays the MBRs (dotted lines) for seven objects O1 to O7
with object O3 being much larger than the other objects.
The solid line displays the MBR for Bucket 1 which en-
closes the seven objects. According to equi-area heuristics,
the bucket is split along the length in an attempt to create
two buckets with smaller equal areas. As the center of O3
lies exactly on the split line, this can lead to two possible
splits based on which bucket object O3 is assigned to, left
or right. As can be viewed from the figure, one of the two
buckets formed by splitting is as large (or almost as large)
as the original bucket. If O3 is assigned to the right bucket
(bottom left of figure 2(a)), Bucket 2 comprising of O3, O6
and O7 is almost as large as the original bucket. If O3 is as-
signed to the left bucket (bottom right of figure 2(a)), then
Bucket 1 is as large as the original bucket.

Another issue encountered is the creation of buckets with
too few data objects. Buckets with few objects will affect
the selectivity estimates as other buckets are likely to have
larger number of objects which adversely affects the selec-
tivity estimates. Figure 2(b) displays an example scenario.
Five objects O1 to O5 are shown in the figure with object
O3 being much larger than the others. Once again, two
splits are possible according to equi-area heuristics based on
assignment of O3 to the left bucket or the right bucket. The
bottom left of figure 2(b) shows that no split occurs if O3 is
assigned to the left bucket. Although this issue is simple to
detect and overcome, an algorithm which does not account
for this may get stuck in an infinite loop. If O3 is assigned
to the bucket on the right, the split occurs with Bucket 2
comprising of a single object O3 with a large MBR. Equi-
count heuristic also leads to the issues described here. In
the following section, we outline our partitioning algorithm
which overcomes these issues by performing fuzzy splitting
of large objects among multiple buckets.

3. ALGORITHMS
We use the following observation for overcoming the above

mentioned weaknesses of partitioning-based schemes. In
presence of complex spatial objects with large spatial ex-
tents it may be possible to use fuzzy bucket creation where

1023

a single large geometry object may belong to multiple buck-
ets. This avoids the problem of large MBRs as well as large
number of geometries being assigned to a single bucket if
the partitioning is performed in a prudent manner. The
idea of fuzzy clustering has been used in the past [17, 32,
34] in various contexts, although never in the case of spatial
statistics collection. We first describe the fuzzy partitioning
algorithm which can incorporate both the equi-area as well
as the equi-count heuristic. However, in presence of very
large number of objects and limited amount of main mem-
ory, the algorithm is disk-based as we need to read/write
buckets from/to the disk. In order to overcome the draw-
backs, we introduce a main memory-based algorithm which
uses the R-tree hierarchy to obtain the best set of MBRs
which fit in main memory. The main memory approach
outperforms the disk-based approaches in terms of speed of
statistics collection as well as predicate selectivity estima-
tion accuracy when combined with our fuzzy partitioning
schemes.

3.1 Fuzzy Partitioning Algorithm

Algorithm 1: Fuzzy Histogram Construction Algorithm

Input: ROOT MBR,ndim(= 2),MAX MEM
Output: B1, B2...Bm

1 B1 ← rT reeTraversal() | {O1...On} ∈ B1 &&
Oi = [Mi,Wi] ,Wi = 1 ∀ i;

2 [WB1
,HB1

] ← MBR(B1);
3 [W avg

B1
,Havg

B1
] ← Avg(Mi) ∀ i;

4 [W avg

B ,Havg

B] = [WB1
, HB1

]/pow(m, 1/ndim);
5 Navg = n/m;
6 |B| = 1;
7 Initialize(pq);
8 pq.push(max(WB1

,HB1
), B1) /*equi-area heuristic*/;

9 while (|B| < m) do
10 Bj ← pq.pop();
11 [Bj , B|B|+1] ← splitBucket(Bj);
12 [WBj

,HBj
] ← MBR(Bj);

13 [WB|B|+1
, HB|B|+1

] ← MBR(B|B|+1);

14 [W avg

Bj
, Havg

Bj
] ← Avg(Mi) ∀ i ∈ Bj ;

15 [W avg

B|B|+1
, Havg

B|B|+1
] ← Avg(Mi) ∀ i ∈ B|B|+1;

16 if (
∑

Wi (∀ Oi ∈ Bj) > x ∗Navg) then
17 pq.push(max(WBj

,HBj
), Bj) /*equi-area

heuristic*/;
18 end
19 if (

∑
Wi (∀ Oi ∈ B|B|+1) > x ∗Navg) then

20 pq.push(max(WB|B|+1
, HB|B|+1

),B|B|+1)

/*equi-area heuristic*/;
21 end
22 |B|++;
23 end
24 writeToStatsTable(Bj) ∀ j ∈ 1...m;
25 return {B1, B2...Bm};

We use an Oracle R-tree index created for a spatial data
table for fast spatial histogram construction. The leaf level
nodes for an Oracle R-tree contain the MBR and the row
identifier for each spatial geometry object. Since the spatial
geometry object MBRs stored in the R-tree leaf nodes are
used for bucket creation, this ensures that no rows need to
be retrieved from the corresponding Oracle table. This pre-
vents us from retrieving a large number of data blocks from

the disk. We now describe our algorithm for constructing
multidimensional histograms for complex spatial geometry
objects based on the pseudocode listed in algorithm 1. The
algorithm accepts as input a pointer to the root node of the
R-tree Index (ROOT MBR), number of dimensions of the
geometry data (ndim) as well as the determined main mem-
ory limit available for the operation (MAX MEM). The
algorithm returns the final set of constructed buckets de-
noted by B1, B2...Bm, where m denotes the desired number
of buckets, as the output. For ease of explanation we assume
that ndim = 2 here; an extension can be easily performed
for higher dimensional data. Our experimental results are
based on 2D geodetic (3D in geocentric) coordinate datasets.

We first retrieve all the leaf nodes from the R-tree index
for the spatial table by traversing down the index hierarchy
using a breadth first approach (procedure rT reeTraversal()).
We store the MBR Mi and weight Wi for each geometry ob-
ject Oi as a node in a linked list (line 1). Note that weight
Wi = 1 initially for each geometry object Oi. The set of
nodes forms a single linked list in memory which constitutes
the first bucket B1. As soon as bucket size is larger than
what the determined main memory limit MAX MEM can
accommodate, the linked list nodes are stored in a tempo-
rary Oracle table. The addition of nodes to the linked list
involves computation of the bucket MBR. The bucket MBR,
with width WB1

and height HB1
, simply encloses the MBRs

of the leaf level node entries each of which represents the
MBR for a single geometry object (line 2). Additionally,
we also compute the average MBR width W avg

B1
and average

MBR height Havg

B1
for spatial geometry objects belonging to

the bucket (line 3).
We assume that we will obtain the desired number of

bucketsm by iteratively splitting this first bucket into smaller
buckets. We compute the average bucket width W avg

B and
average bucket height Havg

B for the final set of constructed
buckets as a space region split of this initial bucket (line
4). We also compute the average number of objects Navg

in each final bucket as Navg = n/m (line 5). The current
number of buckets |B| is set to 1 (line 6). We also initialize
a priority queue pq with key as the longest bucket dimension
(for equi-area) or the number of objects (for equi-count) in
order to determine which bucket should be split next. The
first bucket is pushed into this queue using the appropriate
key (lines 7-8).

Next, we iteratively split the bucket(s) till the desired
number of buckets is obtained (lines 9-23). The split can
be performed according to either equi-area or equi-count
heuristic. Note that any other heuristic may be applied
here. In order to prevent buckets from containing too few
objects, only buckets which contain at least x ∗ Navg objects
(x < 1) are considered for splitting. This threshold criterion
prevents too many splits for a bucket which already contains
a small number of objects as this bucket is expected to cause
low relative errors in selectivity estimation. We empirically
determined that x = 0.3 works well for a large number of
datasets that we experimented with and we use this value
for our experiments.

The bucket at the head of the priority queue pq is re-
moved and split next (lines 10-11). The linked list which
constitutes this bucket is traversed and for each node we
obtain its MBR Mi. Remember that for large buckets we
may need to read the nodes from disk. We assign the node to
one of the two newly formed buckets based on whether the

1024

Figure 3: Fuzzy Partitioning Example

center of its MBR lies in the left or right half of the original
bucket (procedure splitBucket()). After assignment of all
the geometry objects to one of the two newly formed buck-
ets, the bucket MBRs for the new buckets are recomputed
to ensure tightness as well as the enclosure of all contained
geometry MBRs. This step may lead to the formation of
buckets with large MBRs if one or more contained objects
have large MBRs.

In order to avoid formation of buckets with unnecessarily
large MBRs, we split large geometry MBRs. We determine
geometries for which Wi > W avg

B or Hi > Havg

B . For such
geometries, if the geometry MBR is fully contained in one
of the two halves representing the newly formed buckets no
additional processing is necessary. However, if the geometry
MBR is spread across both buckets, we split the geometry
MBR allowing it to be shared between the two buckets with
weights Wi1 and Wi2 equivalent to the fraction of the origi-
nal MBR area contained within each bucket. Note that Wi1

and Wi2 are the weights for the objects in the two newly
formed buckets with Wi1 + Wi2 = Wi, where Wi is the
weight of the geometry MBR in the parent bucket. This pre-
vents the MBR recomputation step from resulting in large
bucket MBRs.

The newly formed buckets are inserted into the priority
queue if the sum of the weights of objects in the bucket meets
the minimum object count requirement (lines 16-21). Once
the desired number of bucketsm are obtained, they are writ-
ten to an Oracle table which is cached in memory for selec-
tivity computation (procedure writeToStatsTable()). Each
bucket Bj is classified by its bounding box MBR(Bj), the
average width W avg

Bj
and height Havg

Bj
of objects belonging

to the bucket and the sum of weights of objects belonging
to the bucket

∑
Wi ∀ Oi ∈ Bj .

For very large datasets, Oracle recommends partitioning
of the datasets. For spatial data, users can create local par-
titioned indexes where a separate R-tree structure is created
for each partition of the dataset. Our implementation gath-
ers the leaf level entry MBRs for each partition in a single
pass and writes them to disk. The MBRs for each partition
are stored in a permanent Oracle table as any changes made
to a single (or few) partitions can be accounted for by re-
analyzing only the changed partitions. In a final pass, these
MBRs are read from disk in order to form the first bucket
and proceed with the bucket partitioning process.

Algorithm 2: Main Memory Algorithm

Input: F,H,NN, FF, ndim,MAX MEM
Output: {Mi,Wi : i ∈ 1...max mbrs read}

1 max mbrs read =
MAX MEM/((2 ∗ ndim+ 1) ∗ sizeof(double));

2 factor = 1.0/round(F ∗ FF);
3 for (i = 1; i < H ; i++) do
4 factor = (1 + factor)/round(F ∗ FF);
5 end
6 num mbrs at level = round(NN/factor);
7 level mbrs read = 1;
8 while (num mbrs at level > max mbrs read) do
9 num mbrs at level/ = round(F ∗ FF);

10 level mbrs read++;
11 end
12 Initialize(pq);
13 for (all R-tree nodes at level level mbrs read) do
14 pq.push(node,MBR(node));
15 end
16 while (pq.size() < max mbrs read) do
17 dqnode = pq.pop();
18 for (all children nodes of dqnode) do
19 pq.push(node,MBR(node));
20 end
21 end
22 for (all nodes in pq) do
23 Mi = MBR(node);
24 Wi = Subtree(node);
25 end

Figure 3 displays example splits obtained for the input
space at the top of the figure using the fuzzy splitting algo-
rithm. The bottom left part of the figure shows the fuzzy
split obtained using the equi − area heuristic where O3 is
split between the buckets into components O31 and O32.
The bottom right part of the figure shows the correspond-
ing split achieved using the equi − count heuristics. Note
that we may choose to assign any part of O3 to either of the
two buckets. A simple solution splits the object O3 along
the split line which is the center of the original bucket.

3.2 Main Memory Implementation
In the presence of very large datasets and limited main

memory, the fuzzy partitioning algorithm requires disk-based
processing as the buckets may be too large to fit in main
memory. This is due to the fact that we need to store the
MBR of each object in a bucket till all the required bucket
splits have been performed. In this section, we explain our
main memory implementation which performs the bucket
splitting in memory.

The basic idea behind the approach is to avoid using the
large number of leaf level entry MBRs as the starting point
for bucket creation. Instead, we use MBRs at a higher level
of the index, each of which may enclose a large number of
leaf level entry MBRs. The problem reduces to determining
the best set of MBRs to be used for initial bucket creation.
The pseudocode for the procedure is listed in algorithm 2.
The algorithm accepts as input the fanout F , height H ,
number of nodes NN , and the fill-factor FF of the R-tree
index along with the main memory limit MAX MEM and
the dimensionality of the geometry data ndim.

The algorithm first determines the number of MBRs to be
read from the index which will fit within the main memory

1025

limit (line 1). Note that the MBR Mi and its weight Wi

(number of geometry MBRs in its subtree) will be stored
for each node entry that we will read for creating the initial
bucket of the fuzzy partitioning algorithm. The algorithm
then estimates the number of leaf level entry MBRs in the R-
tree index which is equal to the number of geometry MBRs
in the dataset (lines 2-6). The level at which MBRs should
be read is set to 1 (line 7) which is the leaf level. The
algorithm proceeds to determine at which level of the R-tree
index MBRs should be read so as not to violate the main
memory limit. It also estimates the number of MBRs at this
level of the R-tree (lines 8-11). We experience typical fanout
values of 34 which means the number of MBRs may be 30
or so times lower when we move up the R-tree hierarchy by
a single level. Hence, it may be possible to accommodate a
large number of children MBR entries (but not all) at the
next lower level (lines 12-21).

We probe the R-tree nodes with the largest MBRs to see if
their children nodes may fit in memory as nodes at the same
level are expected to have similar number of child entries due
to balancing properties of our R-tree. This procedure is fa-
cilitated by initializing a priority queue of R-tree nodes with
node MBR area as the key (lines 12-15). Children entries are
inserted into the priority queue and may be probed further
if they have large MBRs (for regions which have lower data
density) (lines 16-21). Once the size of the priority queue
reaches the maximum permissible MBR count, we compute
the MBR (line 23) and the weight (line 24) for each node
in the priority queue. This set of weighted MBRs is passed
onto the fuzzy partitioning algorithm for creating the first
bucket in memory. Further bucket splitting is performed in
main memory (as in algorithm 1) without the requirement
for writing/reading buckets to/from the disk. The weight
Wi for a node entry can be estimated to avoid traversal
of lower levels of the index or determined exactly by index
traversal. Experimental results reveal the pros and cons of
each approach.

For local partitioned indexes, the process is similar to the
above algorithm. However, a separate determination of the
set of MBRs to be read is made for each partition with the
requirement that the collective set of MBRs from all par-
titions must fit in main memory. In the next section, we
present a comprehensive evaluation of our algorithms using
real world datasets and show that the initial packing pro-
duced by our R-tree index combined with our fuzzy parti-
tioning mechanism outperforms the disk-based approaches.

4. EXPERIMENTAL EVALUATION
In this section, we present the results from a comprehen-

sive experimental evaluation performed using datasets with
different geometry types. All experiments were performed
on a virtual machine hosted on an IntelR© XeonR© (CPU
X5675 @ 3.07GHz) server with 6GB of RAM. We test with
different algorithmic implementations described in table 1
for easy cross-referencing with the results. The Equi-Area
and Equi-Count algorithms were refined from the descrip-
tion in [8] in order to ensure that bucket splitting is always
performed and does not fail in worst case scenarios. We de-
scribe the three datasets used in our experiments and the
query workload generation process before proceeding with
the experimental results.

4.1 Datasets

Algorithm Description

EA Bucket splitting utilizes equi-area heuristic.
EC Bucket splitting utilizes equi-count heuristic.
FZEA Equi-area heuristic used along with the fuzzy split-

ting algorithm.
FZEC Equi-count heuristic used along with the fuzzy split-

ting algorithm.
MM Equi-count heuristic with fuzzy splitting algorithm

utilizing the main memory implementation with in-
dex traversal.

MMA Equi-count heuristic with fuzzy splitting algorithm
utilizing the main memory implementation approx-
imating the weights of higher level nodes.

Table 1: Algorithmic implementations

We use three different datasets in our evaluation which
contain point data, polyline data and polygon data. Fig-
ure 4 displays visualizations of the samples of the datasets.
Each dataset is a 2D geodetic dataset which implies that we
store the latitude, longitude for each point or a vertex of
a geometry. When the data is indexed, geocentric 3D con-
version is performed. Since we use the index for statistics
collection, all experimentation is performed on 3D data in
this section.
ABI: The American Business Information (ABI) dataset
contains point data representing business locations in US.
The dataset contains 10,279,241 point geometries.
EDGE: The EDGE dataset contains 30,379,990 polyline
geometries which represent the road network in US.
BLOCKS: The BLOCKS dataset is a polygon dataset con-
taining 11,038,500 polygons representing US census blocks
for the census data.

4.2 Query Workloads
Previous work uses query workloads which have uniform

distribution or zipfian distribution and query windows which
are as large as 25% of the total space of the dataset. In gen-
eral, we do not observe workloads with such large query
windows. The space of our datasets covers the entire map
of USA as visible in figure 4. We generate three workloads
for each dataset with average query extent of 10 miles, 20
miles and 50 miles. Each workload comprises of a set of
1000 queries generated with buffers of appropriate distance
around the centroids of the geometries in the datasets. Since
we pick the geometries by sampling the dataset, the query
workload can be reasonably expected to reflect the dataset
distribution. Instead of characterizing the workloads using
the query extent with respect to the total space, we deter-
mine the average selectivity of the queries in a workload.
We believe this provides a better measure of the size of the
queries instead of the query extent. The average selectivity
values for the various workloads are as displayed in table 2
and we observe that almost all of our query workloads have
less than 1% selectivity. We expect all our algorithms to
provide more accurate selectivity estimates for workloads
with larger selectivity values, a trend which is visible in our
results.

W1, Q=10 mi W2, Q=20 mi W3, Q=50 mi

ABI 0.32% 0.68% 1.63%
EDGE 0.064% 0.18% 0.57%
BLOCKS 0.11% 0.3% 0.95%

Table 2: Average Selectivity for Different Experi-
mentation Workloads

1026

(a) ABI point dataset (b) EDGE polyline dataset (c) BLOCKS polygon dataset

Figure 4: Visualization of the datasets used for experimental evaluation

4.3 Experimental Results
We present a detailed evaluation of our results for statis-

tics collection and query performance for the datasets de-
scribed above. We collect the statistics for each dataset us-
ing the different statistics collection methods and generate
a histogram containing 512 buckets. Oracle uses a maxi-
mum of 255 buckets for single-dimensional data. Although
larger number of buckets would result in increased accu-
racy in selectivity estimation, remember that a query needs
to compute the intersection of its geometry with each of
the bucket MBRs in the histogram in order to determine
the selectivity estimate using the method stated in [8]. We
need to keep the number of buckets low in order to limit
the overhead introduced in the query execution time. Ad-
ditionally, disk-based approaches require more reads/writes
from/to the disk for a larger number of buckets. Results
for larger number of buckets are discussed using the main
memory approximation (MMA) approach.

4.3.1 Statistics Collection Runtime

Table 3 below details the runtime for the statistics collec-
tion procedure using the different approaches. Each experi-
mental evaluation result has been averaged over ten runs.

ABI EDGE BLOCKS

FZEA 1244s 3715s 1290s
FZEC 1543s 4286s 1612s
EA 1202s 3354s 1238s
EC 1439s 4067s 1556s
MM 327s 1181s 365s
MMA 28s 33s 30s

Table 3: Statistics Collection Runtime (in seconds)

We use 20MB of memory for the main memory imple-
mentations unless stated otherwise and bucket splitting is
performed using the fuzzy equi-count heuristics. The cor-
responding index creation times for the ABI, EDGE and
BLOCKS datasets are 948, 3240 and 1268 seconds, respec-
tively. We observe that the main memory approximation
(MMA) is an order of magnitude faster than the main mem-
ory (MM) approach as it avoids index traversal and two or-
ders of magnitude faster than the disk-based approaches.
As this approach avoids index traversal, the histogram con-
struction time is almost independent of the size of the dataset.
Also note that the fuzzy approaches are a little more expen-
sive than the corresponding non-fuzzy approaches. This is
due to the fact that the fuzzy approaches incorporate addi-
tional computation when partial MBR weights need to be
accounted for while splitting a large MBR among multiple
buckets. Additionally, the equi-count heuristic approaches
are a little more expensive than their counterpart equi-area

heuristic approaches as these approaches need to perform
the MBR center projection on all the three dimensions to
determine the ideal dimension for splitting a bucket. Hence,
we conclude that the disk-based approaches are not feasible
for large datasets as far as the statistics collection time is
concerned and we should use the main memory approxima-
tion (MMA) whenever possible for statistics collection.

4.3.2 Query Selectivity Estimation

The most important performance parameter for the statis-
tics collection algorithms is the query selectivity estimate
generated using the histogram. The statistics collection
needs to be performed only once and then updated if the
data changes drastically over time. We compute the relative
error in selectivity estimation, RE, for each query as,

RE =
SE − AS

AS
,

where SE (0 ≤ SE ≤ 1) denotes the selectivity estimate
generated by the extensible optimizer and AS (0 ≤ AS ≤ 1)
denotes the actual selectivity of the query.

In order to quantize the selectivity estimation error, we
compute the Average Relative Error in Selectivity Estima-
tion for each workload Wj , j = 1, 2 or 3, computed as,

ARE =
1

N

N∑

i=1

|SEi − ASi|

ASi

,

We plot the Actual Error in Selectivity Estimation, AE, to
display the actual differences between the query selectivity
and selectivity estimate values.

AE = SE − AS,

where SE denotes the selectivity estimate generated by the
extensible optimizer and AS denotes the actual selectivity
of the query. As long as the computed selectivity is close
to the actual selectivity value there is a low probability of
a bad plan being selected for query execution. We present
the selectivity estimation performance using the filter opera-
tion which selects all geometry MBRs intersecting the query
geometry MBR.

Figure 5 displays the results for the relative error in se-
lectivity values for the ABI dataset for the three workloads
(with query extent of 10, 20, and 50 miles). As can be
observed from figure 5(a), the relative error in selectivity
is reasonably high for a large number of queries with ex-
tent of 10 miles. In general, our workloads are such that
the query windows generally lie inside one bucket (much
smaller in extent than a single bucket) and are centered

1027

(a) Query extent 10 miles (b) Query extent 20 miles (c) Query extent 50 miles

Figure 5: Relative error in selectivity estimation for the ABI dataset

(a) Query extent 10 miles (b) Query extent 20 miles (c) Query extent 50 miles

Figure 6: Actual error in selectivity estimation for the ABI dataset

around a dense region. This leads to lower selectivity es-
timates for a large number of queries as the selectivity es-
timation formula assumes uniform data distribution within
each bucket. The skew towards selectivity underestimation
is exacerbated for smaller query radii due to the same rea-
son. Another observation from the figure is that the main
memory (MM and MMA) approaches perform the best for
all the query extents followed by the FZEC approach. The
initial packing produced by our R-tree index is very effective
and utilizing higher level MBRs instead of geometry MBRs
for initial bucket construction leads to more accurate selec-
tivity values. Various bucket splitting heuristics were used
with the main memory approaches and results are shown
using the fuzzy equi-count heuristic as it performs the best.
The main memory approximation (MMA) is almost as ac-
curate as the MM implementation (overlapping) although
it is an order of magnitude faster. Due to the packed R-
tree construction, node weight estimation is almost as accu-
rate as node weight determination using the index traver-
sal. In general, the equi-count heuristics approaches outper-
form the counterpart equi-area heuristics approaches and
the fuzzy approaches outperform their non-fuzzy counter-
parts. This validates our development of the fuzzy methods.
Note that as the dataset comprises of point data and hence
lacks any large geometry MBRs, the performance improve-
ment of fuzzy methods over the non-fuzzy methods is due
to the minimal MBR count criterion which they follow for
splitting a bucket.

Table 4 lists the average relative error in selectivity esti-
mates for all the query workloads for the ABI dataset which
reaffirms what is visible in the figure using a single metric.

The main memory approaches perform 5%, 17% and 13%
better than the FZEC approach for the W1, W2 and W3

workloads, respectively.

W1, Q=10 mi W2, Q=20 mi W3, Q=50 mi

FZEA 0.8532 0.7318 0.329
FZEC 0.6571 0.5007 0.2456
EA 0.8632 0.7446 0.3446
EC 0.7929 0.6487 0.3999
MM 0.6225 0.4271 0.2167
MMA 0.6234 0.4272 0.218

Table 4: Average Relative Error in Selectivity Esti-
mation for the ABI Dataset

Figure 6 displays the actual error in selectivity values for
the ABI dataset for the same set of queries. For the MM,
MMA and FZEC approaches, the actual error in selectivity
values is low even for query extent of 10 miles and 20 miles
as can be seen from the figure which implies a very low prob-
ability of the optimizer picking a bad execution plan. The
EA, EC and FZEA approaches do lead to higher errors for a
few queries and are not recommended based on these results.
The selectivity estimates for the queries which exhibit large
relative errors are generally on the lower side, especially for
smaller query extents, which implies that the probability of
picking a full table scan when an index access is preferable
is almost non-existent.

Tables 5 and 6 list the average relative error in selectiv-
ity estimates for all the query workloads for the EDGE and
BLOCKS datasets, respectively. This reaffirms the perfor-
mance numbers for the main memory approaches. In fact,
the performance gap is larger for the non-point datasets. For

1028

(a) Query extent 10 miles (b) Query extent 20 miles (c) Query extent 50 miles

Figure 7: Relative error in selectivity estimation for the EDGE dataset with varying number of buckets using
the Main Memory Approximation approach

the polyline EDGE dataset, the main memory approaches
perform 23%, 20% and 27% better than the FZEC approach
for the W1, W2 and W3 workloads, respectively. Similarly,
for the polygon BLOCKS dataset, the main memory ap-
proaches perform 24%, 33% and 24% better than the FZEC
approach for the W1, W2 and W3 workloads, respectively.
Hence, usage of higher level R-tree nodes for initial bucket
construction positively impacts selectivity estimation per-
formance of the main memory approaches for more com-
plex geometry types. This is due to the fact that the R-
tree packing uses the centroids of the actually geometries
rather than center of the geometry MBRs. For the point
dataset the centroid and MBR center are the same, whereas
for more complex shapes these differ. Our results show that
the higher level R-tree nodes clustered using the actually
geometry centroids prove to be a better starting point for
partitioning-based histogram construction when compared
to an approach which uses the actual geometry MBRs as a
starting point and performs partitioning based on the geom-
etry MBR centers. The MMA approach performs as well as
the MM approach for both EDGE and BLOCKS datasets.

W1, Q=10 mi W2, Q=20 mi W3, Q=50 mi

FZEA 0.8717 0.7633 0.4424
FZEC 0.7757 0.5893 0.3358
EA 0.8855 0.7843 0.4864
EC 0.7757 0.5893 0.3358
MM 0.6302 0.4886 0.2653
MMA 0.6302 0.4886 0.2653

Table 5: Average Relative Error in Selectivity Esti-
mation for the EDGE Dataset

W1, Q=10 mi W2, Q=20 mi W3, Q=50 mi

FZEA 0.8557 0.6943 0.3109
FZEC 0.7006 0.4899 0.2087
EA 0.8934 0.7701 0.4207
EC 0.7006 0.4899 0.2087
MM 0.563 0.3667 0.1688
MMA 0.563 0.3667 0.1688

Table 6: Average Relative Error in Selectivity Esti-
mation for the BLOCKS Dataset

4.3.3 Query Execution Overhead

The extensible optimizer needs to compute the intersec-
tion of the query geometry with each of the buckets in or-
der to estimate the selectivity of the query. We limit the

number of buckets generated by our histogram construc-
tion techniques to 512 to avoid unreasonable query execution
overheads. This number is also appropriate as it results in
acceptably low relative errors in selectivity estimates. The
absolute execution overhead (in milliseconds) and the over-
head expressed as a percentage of the query execution time
for the different workloads for the ABI dataset are as shown
in table 7. In general, larger extent workloads will intersect
more buckets and hence lead to a larger absolute overhead.
Similar results are seen for the other two datasets. Since we
are performing a simple filter operation, the query execution
times are low for the queries and we can expect even lower
execution overheads for more complex spatial operators.

W1, Q=10 mi W2, Q=20 mi W3, Q=50 mi

FZEA 2.1ms, 2.2% 1.49ms, 1.4% 2.17ms, 1.5%
FZEC 2.33ms, 2.5% 1.8ms, 1.6% 1.8ms, 1.3%
EA 3ms, 3.1% 1.9ms, 1.9% 1.7ms, 1.2%
EC 1.5ms, 1.5% 1.6ms, 1.4% 2.4ms, 2%
MM 1.4ms, 1.4% 1.6ms, 1.4% 2.6ms, 2.1%
MMA 1.5ms, 1.5% 1.6ms, 1.4% 2.5ms, 2%

Table 7: Query Execution Overhead for the ABI
Dataset

4.3.4 Main Memory Approach Evaluation

In this section, we vary the number of buckets in the his-
togram from 512 to 2560 in increments of 512 buckets and
collect statistics using the MMA approach. The same query
workloads as before are executed for the EDGE dataset
(largest dataset) in this set of experiments. We do not ob-
serve a substantial increase in statistics collection time as we
increase the number of buckets because the bucket splitting
occurs in memory.

The relative error in selectivity estimation is plotted in
Figure 7. The average relative error in selectivity estimates
for the different workloads is displayed in table 8. As ex-
pected, the selectivity estimates improve as we increase the
number of buckets. The performance improvement with
larger number of buckets is more pronounced for workloads
with higher selectivity. As we increase the number of buck-
ets from 512 to 2560, we observe a 32% improvement in
selectivity estimation for workload W1. The corresponding
numbers for workloads W2 and W3 are 50% and 62%, re-
spectively.

Finally, we compute the query execution overhead and dis-
play its variation with the number of buckets used for the

1029

W1, Q=10 mi W2, Q=20 mi W3, Q=50 mi

B=512 0.6302 0.4886 0.2653
B=1024 0.5379 0.3771 0.1756
B=1536 0.4832 0.3144 0.1377
B=2048 0.4534 0.275 0.1167
B=2560 0.4281 0.2445 0.1014

Table 8: Average Relative Error in Selectivity Esti-
mation for the EDGE Dataset with varying number
of buckets using the Main Memory Approximation
approach

EDGE dataset in table 9. As expected, the query execution
overhead increases as we increase the number of buckets due
to larger bucket intersection computation costs. However,
the overhead is less than 10% in most cases as visible from
the table. This result shows that it may be feasible to have
a larger number of buckets using the MMA approach, espe-
cially for more complex spatial operators where the larger
absolute execution overhead will be lower when expressed as
a percentage of the query execution time.

W1, Q=10 mi W2, Q=20 mi W3, Q=50 mi

B=512 2.5ms, 2.4% 2.7ms, 2.5% 2.9ms, 2.5%
B=1024 5.1ms, 4.9% 5.3ms, 4.3% 6.3ms, 3.4%
B=1536 10.7ms, 10.4% 8.8ms, 7.3% 9.4ms, 5.1%
B=2048 13.6ms, 13.3% 33.1ms, 7.1% 9.3ms, 5.1%
B=2560 17.3ms, 16.9% 17ms, 14.1% 17.9ms, 9.8%

Table 9: Query Execution Overhead for the EDGE
Dataset with varying number of buckets using the
Main Memory Approximation Approach

4.3.5 Unbalanced RTree

The MMA approach relies heavily on using the packed
R-tree for estimating the weight of a high level MBR node.
In this experiment, we delete data from the R-tree to test
the performance of the two main memory approaches MM
and MMA. We deleted 10%, 20% and 30% of the data from
the spatial index and the underlying table for the BLOCKS
dataset. The MMA approach still determines that the ta-
ble has close to 11 million MBRs across all the constructed
buckets as in the original table since estimates are based on
a packed R-tree which is no longer the case. The MM ap-
proach determines the correct number of MBRs across all
the buckets even with data deletion since it actually tra-
verses the entire index. The selectivity estimates produced
by the MMA approach are higher than the estimates pro-
duced by the MM approach as it is based on the assumption
that the index has a larger number of geometry MBRs. This
can be beneficial if the selectivity estimate is on the lower
side for a large number of queries as in our case. However,
it is important to remember that even though we observe
improved average estimates for many workloads we get bad
worst case errors with the MMA approach on heavy data
deletion.

W1, Q=10 mi W2, Q=20 mi W3, Q=50 mi

MM 0.567|0.578|0.569 0.388|0.388|0.389 0.180|0.180|0.181
MMA 0.530|0.507|0.486 0.340|0.321|0.342 0.162|0.221|0.316

Table 10: Average Relative Error in Selectivity Esti-
mates for the BLOCKS dataset with [10%|20%|30%]
of the original data deleted

The average relative error in selectivity estimates for the
two approaches is displayed in table 10 when we delete 10%,
20% and 30% of the data from the R-tree and the underlying
spatial table. We can observe that MMA approach performs
worse than MM approach only for workload W3 with 20%
and 30% of the data deleted; for all other cases the higher
estimates have a positive impact on the average relative se-
lectivity values. As an example for the worst case errors,
for workload W2 with 20% data deletion none of the queries
have a 100% relative error in selectivity estimate for the MM
approach whereas 7 queries have a higher than 100% error
for the MMA approach. If a large amount of data has been
deleted, users either need to reconstruct the R-tree and col-
lect statistics or they need to use the MM approach with
index traversal to get accurate statistics.

4.4 An Example Study
In this section, we discuss an example study which ex-

hibits the efficacy of our framework on queries in Oracle.
Let us consider the following query on the EDGE dataset.

SELECT COUNT(*) FROM EDGE A WHERE
EDGE_ID BETWEEN 395000000 and 401100000 AND

SDO_ANYINTERACT(
A.GEOMETRY,

SDO_GEOMETRY(2003, 8307, NULL,
SDO_ELEM_INFO_ARRAY(1, 1003, 3),
SDO_ORDINATE_ARRAY(-80, 20, -60, 35.5))

) = ’TRUE’;

The query attempts to retrieve the count of rows which
satisfy the spatial SDO ANYINTERACT operator as well
as the non-spatial range operation on EDGE ID. We have
a spatial domain index on the SDO GEOMETRY column
as well as a B-tree index on the EDGE ID column. In the
presence of both indexes, the optimizer may decide to use
neither, one or both the indexes based on the selectivity
estimates. If the optimizer decides to use both the indexes
it has to perform a bitmap conversion operation as displayed
in the query plan detailed below.

--
| Id | Operation | Name |
--

| 0 | SELECT STATEMENT | |
| 1 | SORT AGGREGATE | |

| 2 | BITMAP CONVERSION COUNT | |
| 3 | BITMAP AND | |

4	BITMAP CONVERSION FROM ROWIDS	
5	SORT ORDER BY	
* 6	INDEX RANGE SCAN	EDGE_ID_IDX

| 7 | BITMAP CONVERSION FROM ROWIDS | |
| 8 | SORT ORDER BY | |

|* 9 | DOMAIN INDEX (SEL: 2.262042 %)| SMALLEDGE_SIDX |
--

Due to incorrect selectivity and cost values, the optimizer
often chooses a bad plan in the presence of a spatial and
a non-spatial predicate. We conducted a study on various
datasets to determine the efficacy of our extended spatial
optimizer framework in handling such queries. We vary the
selectivity of both the spatial and non-spatial predicates and
record the query execution time and the selected plan. We
present the execution times with and without our spatial
cost and selectivity framework in tables 11 and 12, respec-
tively, for queries on the EDGE dataset.

As can be observed from the above results, the query ex-
ecution times are reduced by 2.5 to 10 times in many cases
with our framework. The Oracle optimizer has a tendency

1030

S 1% S 5% S 10% S 20%

NS 1% 0.7 X 2 X 3.5 X 6.9 X

NS 5% 4.1 × 16.3 × 35.8 × 79 ×
NS 10% 4.2 × 16.2 × 35.9 × 79.3 ×

Table 11: Execution time (in seconds) without the
framework (X or × indicates if the bitmap conver-
sion operation was used or not. S indicates spatial
selectivity and NS indicates Non-spatial selectivity.)

S 1% S 5% S 10% S 20%

NS 1% 1 X 2 X 3.9 X 7.4 X

NS 5% 1.5 X 2.9 X 4.3 X 8 X

NS 10% 4.1 × 3.7 X 5.3 X 8.6 X

Table 12: Execution time (in seconds) with the
framework (X or × indicates if the bitmap conver-
sion operation was used or not. S indicates spatial
selectivity and NS indicates Non-spatial selectivity.)

to use the spatial index alone in the absence of the correct
selectivity and cost values. The optimizer does a much bet-
ter job of selecting the bitmap conversion plan as the best
plan with the aid of our spatial statistics framework. Sim-
ilar improvements in execution times have been observed
for a number of bug cases related to the optimizer in the
context of spatial queries. We verified that for spatial pred-
icate selectivity of 1% and non-spatial predicate selectivity
of 10% the spatial domain index alone performs better than
the bitmap conversion operation.

5. RELATED WORK
One-dimensional histograms have been used widely for

selectivity estimation in databases [30, 22]. Oracle pro-
vides effective statistics collection techniques for large single-
dimensional data tables using the one-pass distinct sampling
method [13]. However, multi-dimensional histograms, such
as those required for spatial data, pose an entirely different
challenge [21]. In order to address these challenges various
heuristics-based methods, motivated by the results in [29],
have been proposed.

The authors in [28] propose the hTree which builds non-
overlapping partitions of multi-dimensional space based on
frequency. An equi-depth histogram is constructed by uti-
lizing a single dimension at a time with an equal number
of objects in each bucket. Although the partitioning rule
does not work well for skewed multi-dimensional data, low
construction cost is a notable advantage associated with this
method. On the other hand, mHist uses space partitioning
where partitioning is performed along the dimension which
provides the greatest benefit. The split decision is made
based on marginal frequency distributions. This work ex-
tends approaches which were developed for relational data
but are useful mainly for point data.

Selectivity estimation in spatial databases differs from tra-
ditional data as emphasized in [8]. In addition to the equi-
area and equi-count approaches, a Min-Skew method is pro-
posed in this work. The algorithm constructs a rectangular
grid and stores the number of intersecting spatial objects
for each cell. Further, recursive binary space partitioning
(BSP) is used for histogram construction. The basic idea is
to pick buckets for further splitting based on a split value
that will produce the greatest reduction in the data skew.

However, the performance of this strategy is sensitive to the
grid resolution. Oracle Spatial and Graph has deprecated
the grid-based Quadtree index methods in a past release in
favor of the Oracle R-tree index [25]. Grid-based methods,
being sensitive to resolution, leave the onus on the user to
determine an important factor which dictates the end result,
hence, we avoid their usage in Oracle Spatial and Graph.

The GenHist method attempts to identify high density
regions [16]. As opposed to previous methods, the bucket
rectangles may overlap. Moreover, a bucket may contain
other buckets. Note that previous methods aim to produce
non-overlapping buckets which is not true for complex spa-
tial geometry types (with large spatial extents) as displayed
in our example in section 2.3. Once again, this method uses
a rectangular grid as a starting point thus making it de-
pendent on the initial grid resolution. STHist [31] applies
the idea of GenHist to 2D and 3D spatial objects. In the
basic algorithm, dense regions are determined by applying
a sliding window over each dimension, approximating the
frequency distribution with a marginal distribution. The
histogram is built as an unbalanced R-tree by building hi-
erarchies over the dense regions (Hot-spots). An advanced
variant, called the STForest, computes initial partitions ac-
cording to the object skew. Further partitioning is avoided
for regions which are already uniformly distributed. Buckets
merge together if the skew of the merged buckets decreases.
Although, superior to other proposed methods in selectivity
estimation performance, time complexity is O(n2) for 2D
and O(n3) for 3D data.

Self-tuning histograms like STHoles [12] and ISOMER [33]
have also been proposed. These methods incrementally up-
date buckets and their frequency information using the query
feedback mechanism. It would be an interesting direction
for Oracle Spatial and Graph to explore such self-tuning
methods in the future as these methods adapt to real data
distribution over time. Application of these methods on top
of currently implemented algorithms would be an ideal ap-
proach to follow.

Our main memory algorithm attempts to use the R-tree
hierarchy for selecting the best set of MBRs, which fit in
main memory, for histogram construction. Methods pro-
posed in [8, 9, 21] use the R-tree structure for spatial his-
togram construction. [14] proposes the rkHist approach which
uses the R-tree bulk-loading procedure [23] for histogram
construction. Data is presorted according to the Hilbert
space filling curve mechanism. A greedy algorithm is pro-
posed which utilizes a sliding window along the Hilbert order
to effectively pack the leaf nodes. Our methods aim to utilize
the existing Oracle R-tree to construct the appropriate his-
tograms taking the main memory limit and time constraints
into account.

6. CONCLUSION
In this paper, we describe the implementation of an exten-

sible optimizer within Oracle Spatial and Graph and discuss
issues faced. A main memory-based algorithm is proposed
which limits the histogram construction time and constructs
accurate histograms using our R-tree index. We provide
experimental results with different spatial geometry types
and observe that the main memory approach when com-
bined with the fuzzy equi-count heuristics outperforms other
methods in terms of accuracy as well as histogram construc-
tion time. The spatial statistics collection plan a DBA may

1031

want to follow can be time constrained and workload depen-
dent. We would recommend the main memory approxima-
tion approach for fast, accurate statistics collection. When
a substantial amount of the original data has been removed
from the spatial table the approximation can lead to inac-
curate results and users may resort to the main memory ap-
proach with index traversal for accurate results. We believe
that our results have rendered the disk-based approaches to
be useless for large spatial datasets.

7. ACKNOWLEDGEMENTS
The authors would like to thank Dinesh Das from the

optimizer team for his guidance with Oracle Database ex-
tensibility mechanism.

8. REFERENCES
[1] IBM Informix Spatial DataBlade. http://www-01.

ibm.com/software/data/informix/blades/spatial/.

[2] Microsoft SQL Server 2012. http://msdn.microsoft.
com/en-us/library/bb418440(v=sql.10).aspx.

[3] Oracle Exadata Database Machine.
http://www.oracle.com/us/products/database/

exadata/overview/index.html.

[4] Oracle Spatial and Graph.
http://www.oracle.com/us/products/database/

options/spatial/overview/index.html.

[5] PostGIS. http://postgis.refractions.net.

[6] A. Aboulnaga, P. Haas, M. Kandil, S. Lightstone,
G. Lohman, V. Markl, I. Popivanov, and V. Raman.
Automated Statistics Collection in DB2 UDB. In
VLDB, pages 1158–1169, 2004.

[7] A. Aboulnaga and J. Naughton. Accurate Estimation
of the Cost of Spatial Selections. In IEEE ICDE,
pages 123–134, 2000.

[8] S. Acharya, V. Poosala, and S. Ramaswamy.
Selectivity Estimation in Spatial Databases. In ACM
SIGMOD, pages 13–24, 1999.

[9] P. Aoki. How to Avoid Building DataBlades (r) That
Know the Value of Everything and the Cost of
Nothing. In IEEE SSDBM, pages 122–133, 1999.

[10] N. Beckmann, H. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles. In ACM
SIGMOD, pages 322–331, 1990.

[11] T. Brinkhoff, H. Horn, H. Kriegel, and R. Schneider.
A Storage and Access Architecture for Efficient Query
Processing in Spatial Database Systems. In SSD,
pages 357–376, 1993.

[12] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A
Multidimensional Workload-aware Histogram. In
ACM SIGMOD, pages 211–222, 2001.

[13] S. Chakkappen, T. Cruanes, B. Dageville, L. Jiang,
U. Shaft, H. Su, and M. Zait. Efficient and Scalable
Statistics Gathering for Large Databases in Oracle
11g. In ACM SIGMOD, pages 1053–1064, 2008.

[14] T. Eavis and A. Lopez. Rk-hist: An R-tree based
Histogram for Multi-dimensional Selectivity
Estimation. In ACM CIKM, pages 475–484, 2007.

[15] P. Gibbons. Distinct Sampling for Highly-accurate
Answers to Distinct Values Queries and Event
Reports. In VLDB, pages 541–550, 2001.

[16] D. Gunopulos, G. Kollios, V. Tsotras, and
C. Domeniconi. Approximating Multi-dimensional
Aggregate Range Queries over Real Attributes. In
ACM SIGMOD, pages 463–474, 2000.

[17] D. Gustafson and W. Kessel. Fuzzy clustering with a
fuzzy covariance matrix. In IEEE Conference on
Decision and Control, pages 761–766, 1978.

[18] A. Guttman. R-trees: A Dynamic Index Structure for
Spatial Searching. In ACM SIGMOD, pages 47–57,
1984.

[19] P. Haas, J. Naughton, S. Seshadri, and L. Stokes.
Sampling-based Estimation of the Number of Distinct
Values of an Attribute. In VLDB, pages 311–322,
1995.

[20] P. Haas and A. Swami. Sampling-based Selectivity
Estimation for Joins using Augmented Frequent Value
Statistics. In IEEE ICDE, pages 522–531, 1995.

[21] Y. Ioannidis. The History of Histograms (abridged).
In VLDB, pages 19–30, 2003.

[22] H. Jagadish, N. Koudas, S. Muthukrishnan,
V. Poosala, K. Sevcik, and T. Suel. Optimal
Histograms with Quality Guarantees. In VLDB, pages
275–286, 1998.

[23] I. Kamel and C. Faloutsos. On packing R-trees. In
ACM CIKM, pages 490–499, 1993.

[24] K. Kanth, S. Ravada, J. Sharma, and J. Banerjee.
Indexing Medium-dimensionality Data in Oracle. In
ACM SIGMOD, pages 521–522, 1999.

[25] R. Kothuri, S. Ravada, and D. Abugov. Quadtree and
R-tree Indexes in Oracle Spatial: A Comparison using
GIS Data. In ACM SIGMOD, pages 546–557, 2002.

[26] R. Kothuri, S. Ravada, and N. An. Incorporating
Updates in Domain Indexes: Experiences with Oracle
Spatial R-trees. In IEEE ICDE, pages 745–753, 2004.

[27] R. Lipton, J. Naughton, and D. Schneider. Practical
Selectivity Estimation through Adaptive Sampling. In
ACM SIGMOD, pages 40–46, 1990.

[28] M. Muralikrishna and D. DeWitt. Equi-depth
Multidimensional Histograms. In ACM SIGMOD,
pages 28–36, 1988.

[29] S. Muthukrishnan, V. Poosala, and T. Suel. On
Rectangular Partitionings in Two Dimensions:
Algorithms, Complexity and Applications. In ICDT,
pages 236–256, 1999.

[30] V. Poosala, P. Haas, Y. Ioannidis, and E. Shekita.
Improved Histograms for Selectivity Estimation of
Range Predicates. In ACM SIGMOD, pages 294–305,
1996.

[31] Y. Roh, J. Kim, Y. Chung, J. Son, and M. Kim.
Hierarchically Organized Skew-tolerant Histograms for
Geographic Data Objects. In ACM SIGMOD, pages
627–638, 2010.

[32] T. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-tree: A Dynamic Index for Multi-dimensional
Objects. In VLDB, pages 40–46, 1987.

[33] U. Srivastava, P. Haas, V. Markl, M. Kutsch, and
T. Tran. ISOMER: Consistent Histogram
Construction using Query Feedback. In IEEE ICDE,
pages 39–50, 2006.

[34] X. Xie and G. Beni. A Validity Measure for Fuzzy
Clustering. IEEE Transations on Pattern Analysis
and Machine Intelligence, 13(8):841–847, 1991.

1032

