Designing Query Optimizers for Big Data Problems of The
Future

Nga Tran, Sreenath Bodagala, Jaimin Dave
HP/Vertica, Cambridge, MA

{ntran@vertica.com, sbodagala@vertica.com, jdave@Vertica.com}

ABSTRACT

The Vertica SQL Query Optimizer was written from the
ground up for the Vertica Analytic Database. Its design,
and the tradeoffs we encountered during implementation,
support the case that the full power of novel database sys-
tems can be realized only with a custom Query Optimizer,
carefully crafted exclusively for the system in which it oper-
ates.

1. INTRODUCTION

The Vertica Analytic Database (Vertica) [3] is a modern,
commercially successful RDBMS. It contains a SQL query
optimizer, written from scratch, especially for the Vertica
Storage System and Execution Engine. We wrote our own
optimizer, despite a countervailing industry trend to reuse
or wrap existing optimizers [1, 4] in new database systems.

The choice to write an optimizer from scratch was not
taken lightly and it delayed our product’s initial introduc-
tion to the market. However, as the Vertica founders envi-
sioned, writing a custom optimizer was the only sure way to
take full advantage of Vertica’s columnar storage system and
distributed execution engine. We believe our experience and
success in the marketplace validates our decision. Further-
more, the choice to make our optimizer a set of extensible
modules makes it possible to quickly extend the optimizer
to address newer problems. We evaluate this premise within
our Design History, described next.

2. DESIGN HISTORY

Vertica founders knew that their optimizer would need to
be aware of data compression and its effects on the CPU
and I/O cost of database operations. With this and other
requirement in mind, they listed the major optimizer deci-
sions as 1) which projections to use for a given query, 2) how
to prune the plan search space to a feasible size, 3) at what
points in the plan they should materialize columns, and 4)
the optimizer needs to be data distribution aware. The Ver-
tica Query Optimizer addresses all of these decisions and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 11

Copyright 2013 VLDB Endowment 2150-8097/13/09... $ 10.00.

1168

many more, but the final design did not fully emerge on our
first attempt. The Query Optimizer used in Vertica today is
actually our third version, and the history of how we arrived
at the current design highlights some the challenges faced by
industrial optimizer implementers.

1. StarOpt. The initial Vertica Optimizer was a Kimball-
style query optimizer[2], which assumed any interest-
ing customer schema and query could be modeled as a
star or snowflake. When this design assumption met
real-world problems, it was clear that most customer
data did not exactly conform to the star ideal. For
a variety of technical and non-technical reasons we
couldn’t expect customers to change their schemas. In-
stead, we needed a different optimizer with a different
set of assumptions. StarOpt also applied distribution
and sort-algorithm decisions after the join order was
chosen, significantly affecting the optimizer’s ability
to minimize data movement for complex plans run-
ning against complicated distributed schemas. As we
learned, an industrial optimizer must handle all the va-
garies of messy schemas and data, however nonsensical
they may seem to the implementors.

StarifiedOpt. The second generation optimizer was
a modification of StarOpt. Internally, this optimizer
forced non-star queries to look like a star, solely for the
purpose of applying existing StarOpt algorithms. This
approach was far more effective for non-star queries
than we could have reasonably hoped, and it bought
us sufficient time to design and implement the third
generation optimizer: the custom built, though poorly
named, V20pt.

V20pt. This optmizer is completely aware of distri-
bution, sortedness, and non-star schemas in all its de-
cisions. It has been the default Vertica Optimizer since
version Vertica 4.0 and has served us well at thousands
of customer installations and in planning hundreds of
millions of queries.

2.1 Why Modular Optimizer?

After developing two generations of optimizers, StarOpt
and StarifiedOpt, two major goals existed for the next gen-
eration (1) adding all of the features missing in the first two
optimizers, and (2) designing V20pt as fully extensible for
ongoing improvements and future Big Data requirements.
Developed as a set of extensible modules, V20pt lets us
change key elements of the optimizer, without rewriting lots



of code. In fact, V20pts inherently-extensible design has al-
ready enabled us to incorporate knowledge gleaned from our
end-user experiences, without significant engineering efforts.

V20pt plans a query by categorizing and classifying the
physical properties associated with the query, such as col-
umn selectivity, projection column sort order, projection
data segmentation, prejoin projection availability, and in-
tegrity constraint availability. The degree of importance for
each physical property is measured in different ways through
experiments on the customers’ real-life data sets and queries.
These physical property heuristics are combined with a cost-
model pruning strategy, based on compression-aware 1/O,
CPU and Network transfer costs. Combined, all of this in-
formation becomes instrumental in helping the optimizer (1)
control the explosion in search space, while continuing to
explore optimal plans and (2) account for data distribution
and bushy plans during the join order enumeration phase.

With an easily extensible design, whenever a new physical
property becomes prominent and affects the choice of select-
ing optimal query plans, we can swiftly add a new ranking
module to V20pt without changing the entire optimizer.
Moreover, living in the era of Big Data, the effects of physi-
cal properties inevitably change. For example, data segmen-
tation becomes more important as customers increase their
database cluster size. In that case, the modular optimizer
design will let us easily adjust the degree of importance given
both segmentation and cluster size.

3. CONCLUSION

1169

Even though the success of Vertica in the marketplace has
validated the accuracy of selecting optimal query plans with
the Vertica Query Optimizer, we continue to make ongoing
improvements. With its modular design, our engineering
team can quickly adjust or modify the optimizer to provide
customers the power to generate optimal query plans in the
explosion of Big Data.

4. ACKNOWLEDGMENTS

Special thanks to Kanti Mann who has helped us edit this
paper.

5. REFERENCES

[1] Y. Chen, R. L. Cole, W. J. McKenna, S. Perfilov,

A. Sinha, and E. Szedenits, Jr. Partial Join Order
Optimization in the Paraccel Analytic Database. In
SIGMOD, 2009.

R. Kimball and M. Ross. The Data Warehouse Toolkit:
The Complete Guide to Dimensional Modeling. Wiley,
John & Sons, Inc., 2002.

[3] A. Lamb, M. Fuller, R. Varadarajan, N. Tran,

B. Vandiver, L. Doshi, and C. Bear. The Vertica
Analytic Database: C-store 7 Years Later. In VLDB,
2012.

S. Shankar, R. Nehme, J. Aguilar-Saborit, A. Chung,
M. Elhemali, A. Halverson, E. Robinson, M. S.
Subramanian, D. DeWitt, and C. Galindo-Legaria.
Query Optimization in Microsoft SQL Server PDW. In
SIGMOD. ACM, 2012.

2l

(4]



