
Odyssey: A Multi-Store System for Evolutionary Analytics

Hakan Hacıgümüş
Jagan Sankaranarayanan

Junichi Tatemura

NEC Laboratories America

Jeff LeFevre
Neoklis Polyzotis

University of California, Santa Cruz

1. INTRODUCTION
We present a data analytics system, Odyssey, that is be-

ing developed at NEC Labs in collaboration with NEC’s
commercial business units and our academic collaborators.
The design principles of the system are based on the busi-
ness requirements identified through extensive surveys and
communications with the practitioners and customers. Most
notable high-level requirements are:

1) The analytics system should be able to effectively use
both structured and unstructured data sources. 2) Business
requirements are not captured in a single simple metric but
combination of metrics, such as value of data, performance,
monetary costs, and they are dynamic. The system should
manage data by observing constantly changing metric val-
ues. 3) Time-to-insight is very important, so the system
should enable immediate exploratory querying of data with-
out heavy prerequisite processes. 4) The system should ef-
ficiently support both ad-hoc queries and application work-
loads. 5) Very often there are already data analytics solu-
tions / products in place (such as a traditional data ware-
house), hence the system should be able to incorporate the
existing settings.

The data analysis is performed in a rapidly changing way
and includes the new role of data scientist who is tasked
with finding the benefit in big data, which come from dis-
parate sources. The trend of collecting ever-growing data
with unknown and unproven benefits, and the nature of the
exploratory queries that are posed on these datasets repre-
sent an emerging type of data analysis. The fluid nature of
this analysis is that the analyst may start by posing simple
questions on the data but then evolve towards more sophis-
ticated reasoning as well as apply sophisticated techniques.
The evolutionary nature of the investigation is due to the
analyst who may not initially be able to express her goals
well, thus modifying her workflow slightly and iteratively re-
fining it until achieving the intent. The evolutionary process
may also require incorporating more data sources into the
analysis to obtain richer and more confident answers. We
call this iterative process by which an analyst finds bene-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Submission to VLDB 2013 Industrial Track Vol. 6, No. 11
Copyright 2013 VLDB Endowment 2150-8097/13/09... $ 10.00.

Log	  data	   Analytic Data Operational Data 

Storage	  	  
(e.g.,	  HDFS,	  Row	  Store,	  Columnar)	  	  

Analy-c	  Workflow	  Execu-on	  
(e.g.,	  Hadoop,	  Rela:onal	  DW)	  

SQL	  API	  

Analy-c	  Workloads	  
(e.g.,	  Ad	  Hoc,	  Applica:ons)	  

Data	  Lifecycle	  

View	  Finder	  
	  (Poly-‐structured	  Data)	  

Data	  Mover	  
(Data	  Transforma:on	  and	  

Distribu:on)	  

Figure 1: Odyssey System Architecture

fits in the data as evolutionary analytics [4]. We envision
a platform to support such data explorations by enabling
users to 1) perform increasingly sophisticated analysis as
they gain better understanding of the data (Query Evolu-
tion), 2) automatically benefit from analysis performed by
other analysts(User Evolution) , and 3) easily add new data
sources for their analysis (Data Evolution).

We have concluded that there is no single data analytics
platform that would satisfy all of these requirements effi-
ciently and effectively. Therefore, Odyssey system employs a
multi-store approach to store and query data. The system
exploits the strengths of individual stores to serve diverse
– in the sense of varying business requirements – analytic
workloads in a differentiated manner. While using multiple
stores in a unified manner is an opportunity, it represents
significant technical challenges, which Odyssey system aims
at addressing.

2. SYSTEM ARCHITECTURE
Figure 1 shows the overall architecture of the envisioned

Odyssey system. Odyssey adopts the following principles
for data processing: 1) optimization for whole workloads,
instead of per-query/workflow optimization, 2) end-to-end
management of data lifecycle, and 3) effective use of oppor-
tunistic materialized views for significant performance gains.
We will explain these points below.

The system takes data from various data sources including
unstructured data (e.g., logs), structured data (e.g., opera-
tional data from transactional systems), and other sources of
analytics data (e.g., legacy data warehouse data). Currently,
the system uses two execution engines, namely; Hadoop and

1180



the Relational DW. The future phases of the system devel-
opment plan to include additional execution engines, such
as a columnar in-memory store. The application workloads
interact with the system through the SQL-like API.

Naturally, employing multiple stores requires making the
decisions on where the data should be stored and processed
with the changing business requirements and the benefits
of the data. Hence, at the core (shown in dashed lines),
the system aims at answering the following key questions:
Which data sets should be moved?, Where the data sets
should be moved to?, and When the data sets should be
moved?

The View Finder component opportunistically identi-
fies beneficial views for workload optimization by consider-
ing views in both HDFS and DW. In that sense the View
Finder processes poly-structured data. The Data Mover
component is responsible for efficiently moving data between
the stores (shown as dotted arrows in Figure 2). This pro-
cess includes necessary data transformations (such as type
conversions, file formatting) and distributions. The Data
Mover and the View Finder components represent a funda-
mental process called Data Lifecycle Management (DLM) in
the system. DLM is essentially defined as creating/changing
the representation (view) and the placement of data sets in
an optimized manner based on the changing business metrics
and priorities, such as the benefit of the data, performance
requirements, and monetary costs.

The system does not make any assumptions about the
location of data. However, in our experience most of the
new exploratory data are first loaded into the Hadoop store,
and DW typically has legacy data. Initially, splitting the
query processing is based on the current data availability in
each store.

3. QUERY PROCESSING ON MULTI STORES
The split query processing is depicted in Figure 2. The

system first analyzes the query and identifies which frag-
ments of the query can be executed in each store. Then,
the query optimization process starts. The system has two
modes of optimization 1) single query optimization and 2)
workload optimization. Here we first describe the single
query optimization.

The system uses the cost based optimizer to decide when
it is most beneficial to move the query processing and data
from one store to another (e.g., from Hadoop to DW). The
optimization considers the query execution costs on both
stores and also data transfer/load costs.

Our observation is that the data transfer and load is al-
ways the most dominant cost in the breakdown of the multi-
store query processing times. Therefore the cost based opti-
mizer usually chooses to perform the most of the processing
in Hadoop and move to DW at a very late stage when the
transfer data size becomes sufficiently small. This observa-
tion is consistent with [1]. However, for most of the work-
loads, this last stage movement does not provide substan-
tial benefits as vast majority of the data sets in Hadoop re-
main large for the significant part of the execution, which is
also observed and reported in other real life applications [1].
Therefore, although it is useful, single query optimization
over multiple stores showed very limited optimization ben-
efits in our application cases. This limitation is the motiva-
tion behind the workload optimization.

HDFS	  

Output 

DW	  

Query 
Execution 

Views 

Figure 2: Multi Store Query Execution with Views

Opportunistic Optimization: As stated, unless the
data size is considerably small, transferring data – hence
the query execution – between the stores is not meaning-
ful. We observed that even the parallel load performance to
the commercial DW system is disproportionally slower com-
pared to load times into the HDFS cluster. However, ex-
ploiting materialized views (MVs) could be helpful because
of their customizable size. Nonetheless, views are justified
when they are used repeatedly. Therefore, Odyssey con-
siders the optimization for multiple queries that define the
workloads with complete visibility to all views in all stores.

MVs are very common in traditional DWs. In Hadoop,
each MR job involves the materialization of intermediate
results (the output of mappers and the input/output of re-
ducers) for the failure recovery purposes. These materialized
results are the artifacts of query execution, which are gen-
erated automatically as a by-product of query processing.
Therefore, we call them opportunistic views. More details of
our discussion on opportunistic views can be found in [3].
Thus, we propose using the opportunistic views to rewrite
the queries in the system for improved performance.

For optimization, the system generates an “annotated”
query execution plan (Fig. 2). The annotations are the in-
clusion of the opportunistic views (shown as triangles) in the
query plan. Then, the optimizer examines possible transfer
points (shown as solid arrows) to move the query execution
between the stores and chooses the optimal plan.

Workload Optimization: The optimization process de-
scribed above still considers a query-at-a-time. The main
principle behind the workload optimization is that the sys-
tem uses previously defined opportunistic views in all stores
for workload optimization. The system continuously moni-
tors the workloads and performs an online analysis to iden-
tify, which views would deliver the most benefit for the over-
all workload. This process is analogous the online view and
index selection problems. As a result, even some queries
might be under optimized, the total benefit for the overall
workload over the time is much greater. We present some
preliminary results of the optimizations in [4].

Acknowledgment: We thank NEC’s product and busi-
ness teams for their generous support and contributions.

4. REFERENCES
[1] S. Agarwal, , S. Kandula, N. Bruno, M.-C. Wu, I. Stoica,

and J. Zhou. Reoptimizing data parallel computing. In
NSDI, 2012.

[2] H. Hacıgümüş, J. Tatemura, W.-P. Hsiung, H. J. Moon,
O. Po, A. Sawires, Y. Chi, and H. Jafarpour. CloudDB: One
size fits all revived. In IEEE SERVICES, 2010.

[3] J. LeFevre, J. Sankaranarayanan, H. Hacigümüş,
J. Tatemura, and N. Polyzotis. Exploiting opportunistic
physical design in large-scale data analytics. CoRR,
abs/1303.6609, 2013.

[4] J. LeFevre, J. Sankaranarayanan, H. Hacigümüş,
J. Tatemura, and N. Polyzotis. Towards a workload for
evolutionary analytics. In SIGMOD, DanaC Workshop,
2013.

1181


	Introduction
	System Architecture
	Query processing on Multi Stores
	References

