
Just-in-time compilation for SQL query processing

Stratis D. Viglas
School of Informatics

University of Edinburgh, UK

sviglas@inf.ed.ac.uk

ABSTRACT
Just-in-time compilation of SQL queries into native code has re-
cently emerged as a viable alternative to interpretation-based query
processing. We present the salient results of research in this fresh
area, addressing all aspects of the query processing stack. Through-
out the discussion we draw analogies to the general code generation
techniques used in contemporary compiler technology. At the same
time we describe the open research problems of the area.

1. INTRODUCTION
Query processing has always involved striking a fine balance be-

tween the declarative and the procedural: managing the expressive
power of a declarative language like SQL and mapping it to efficient
and composable procedural abstractions to evaluate queries. Tra-
ditionally, relational database systems have compiled SQL into an
intermediate representation: the query plan. The query plan is com-
posed of physical algebraic operators, all communicating through a
common interface: the iterator interface [9]. The query plan is then
interpreted through continuous iterator calls in order to evaluate the
query. This technique has effectively made SQL a well-optimized,
but interpreted, domain-specific language for relational data man-
agement, and has formed the highly successful core of query engine
design for more than thirty years.

By catering for generality SQL interpretation primarily enables
the use of macro-optimizations. That is, optimizations that can
be performed at the query plan and operator levels, e.g., plan enu-
meration strategies; cost modeling; algorithmic improvements; to
name but a few of the best-known such macro-optimizations. An
alternate route that had not been frequently explored and has only
recently been revived is applying micro-optimizations stemming
from the use of compiler technology. Such an approach does away
with interpreting the query plan, blurs the boundaries between the
operators of the iterator-centric solution, and collapses query opti-
mization, compilation, and execution into a single unit. The result
is a query engine that is free of any database-specific bloat that
frequently accompanies generic solutions and, in a host of recent
work, has exhibited exceptional performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 11
Copyright 2013 VLDB Endowment 2150-8097/13/09... $ 10.00.

2. TUTORIAL OUTLINE
We present the salient techniques for seamless integration of just-

in-time compilation into query engine design.

2.1 Mixing native code with SQL processing
Compiling SQL into native code is not new. Even System R had

a primitive form of code generation in its implementation of SQL’s
ancestor, SEQUEL [3]. Inherent problems of the mechanism, in-
cluding the high cost of external function calls and the poor porta-
bility to different operating systems, resulted in the approach being
abandoned in favor of the now traditional interpretation-based ap-
proach. Follow-up work proposed that code should be generated
for a high-level programming language [7, 8]. Though this alle-
viated the portability problem, compilation was still a bottleneck
and again the approach was abandoned due to its high performance
penalty and therefore limited applicability. The next effort was to
precompile parts of the query pipeline, e.g., predicates [2] or aggre-
gate functions [23]. Apart from such approaches, however, native
code generation for SQL has remained dormant until recently.

2.2 Just-in-time compilation
In interpreted programming languages, user programs are repre-

sented either as source files or as byte code: an intermediate rep-
resentation for a virtual machine or runtime. To move across plat-
forms, one only needs a version of the runtime for that platform.
Byte code, being interpreted, is slower than native code. Just-in-
time (JIT) compilation rectifies this: the runtime compiles blocks
of byte code into native code on demand. The most popular con-
temporary runtimes are the Java virtual machine and Microsoft’s
.NET. Work on JIT compilation goes back to LISP and Smalltalk
and is today widely available in contemporary scripting languages
and managed runtimes (see [1] for a survey).

2.3 Query compilation in managed runtimes
SQL is effectively a JIT-compiled language. The differences to

standard programming languages is that we do not interpret pro-
grams but queries. It is not surprising that the revival of native code
generation for SQL has started from managed runtimes. The first
such effort was the Daytona fourth generation language [10] that
used on-the-fly code generation for high-level queries. However, it
heavily relied on operating system support and was thus not widely
applicable. A similar approach appears in SQLite, where an internal
virtual machine provides all database functionality [13]; this exem-
plifies the potential for synergy between virtual machine technol-
ogy and database systems. Rao et al. [25] used the reflection API of
Java to implement a query processor for the Java virtual machine.
Though limited in its applicability the approach provided the seed
for the more general approaches that have recently emerged.

1190



2.4 Tools and techniques
The majority of tools and techniques for JIT compilation have a

programming language pedigree. They primarily target imperative
and less frequently declarative and/or functional programming lan-
guages. Generic and reusable JIT libraries, e.g., libJIT [4], and
GNU lightning [6] provide extensible ways to build, compile, and
dynamically invoke new code, thus providing the heavy-lifting of
JIT compilation. These tools target the developers of virtual ma-
chines, but they are applicable at the micro-optimization level for
SQL as well. A better solution is to use a language-agnostic com-
piler infrastructure like LLVM [19]. Approaches for JIT compilation
of SQL translate it into a general purpose language like C; or build
an SQL frontend for the intermediate representation; or mix both.

2.5 Just-in-time native code generation for SQL
Just-in-time compilation of SQL has been revived recently. Krikel-

las et al. [17] followed a template-based approach to code genera-
tion, inspired by C++, and translated SQL to C. The resulting system
exhibited performance that surpassed that of established relational
technology by orders of magnitude. Next, Neumann [22] proposed
a data-centric approach to query processing, departing from the
plan-based representation. The results further corroborate the wide
applicability of the just-in-time techniques. These two approaches
seeded a stream of work. From combining just-in-time compilation
with vectorization [27]; to optimizing I/O [29]; to optimizing data
structures [15]; to code generation for GPUs [24]; to applying it in
managed runtimes like LINQ [20].

3. OUTLOOK
JIT compilation for SQL is a fresh and potentially phase-shifting

approach to a core database research topic: query processing. As
is the case with any new research area there are quite a few open
questions. One underlying assumption is that the compilation cost
can be amortized. This cost may be high in dynamic environments.
One future work direction is to automatically identify the queries
that are good candidates for compilation. Likewise, admission con-
trol policies can be used to decide when queries are admitted and
evicted from a compiled query pool, with work on intermediate and
final result caching [5, 14, 16, 21, 26] being of benefit here. The
application of JIT compilation in heterogeneous multicore is also
interesting. Krikellas et al. [18] took a first step towards this with
multithreaded processing on multicore CPUs, though the JIT com-
piler was mainly a tool and not the objective of the study. Using
code generation fits well with work on JIT-compiled approaches
to heterogeneous multicore runtimes like OpenCL [28]. One as-
pect that has not been addressed so far is transaction processing
and concurrency control. One can compile the concurrency con-
trol primitives themselves in lower-level and more efficient code
without compromising integrity using, e.g., hardware transactional
memory primitives [11, 12].

4. REFERENCES
[1] J. Aycock. A brief history of just-in-time. ACM Comput.

Surv., 35(2), 2003.
[2] P. Boncz. Monet: A Next-Generation DBMS Kernel For

Query-Intensive Applications. PhD thesis, Universiteit van
Amsterdam, 2002.

[3] D. D. Chamberlin et al. A history and evaluation of System
R. Commun. ACM, 24, 1981.

[4] A. Demakov. Just-in-time compiler library, 2007.
[5] S. Finkelstein. Common expression analysis in database

applications. In SIGMOD, 1982.

[6] Free Software Foundation. Using and porting GNU
lightning, 2008.

[7] J. C. Freytag and N. Goodman. Translating aggregate queries
into iterative programs. In VLDB, 1986.

[8] J. C. Freytag and N. Goodman. On the translation of
relational queries into iterative programs. ACM Trans.
Database Syst., 14, 1989.

[9] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Comput. Surv., 25(2), 1993.

[10] R. Greer. Daytona And The Fourth-Generation Language
Cymbal. In SIGMOD, 1999.

[11] L. Hammond et al. Transactional memory coherence and
consistency. In ISCA, 2004.

[12] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In ISCA,
1993.

[13] D. R. Hipp, D. Kennedy, and J. Mistachkin. SQLite
Database, 2012.

[14] M. G. Ivanova et al. An architecture for recycling
intermediates in a column-store. In SIGMOD, 2009.

[15] T. Kissinger et al. QPPT: Query Processing on Prefix Trees.
In CIDR, 2013.

[16] Y. Kotidis and N. Roussopoulos. Dynamat: a dynamic view
management system for data warehouses. In SIGMOD, 1999.

[17] K. Krikellas, S. D. Viglas, and M. Cintra. Generating code
for holistic query evaluation. In ICDE, 2010.

[18] K. Krikellas, S. D. Viglas, and M. Cintra. Modeling
multithreaded query execution on chip multiprocessors. In
ADMS, 2010.

[19] C. Lattner. LLVM: An Infrastructure for Multi-Stage
Optimization. Master’s thesis, Computer Science Dept.,
University of Illinois at Urbana-Champaign, 2002.

[20] D. G. Murray, M. Isard, and Y. Yu. Steno: Automatic
Optimization of Declarative Queries. In PLDI, 2011.

[21] F. Nagel, P. Boncz, and S. D. Viglas. Recycling in pipelined
query evaluation. In ICDE, 2013.

[22] T. Neumann. Efficiently compiling efficient query plans for
modern hardware. Proc. VLDB Endow., 4(9), 2011.

[23] J. Patel et al. Building a Scalable Geo-Spatial DBMS:
Technology, Implementation, and Evaluation. In SIGMOD,
1997.

[24] H. Pirk, S. Manegold, and M. Kersten. Accelerating
Foreign-Key Joins using Asymmetric Memory Channels. In
ADMS, 2011.

[25] J. Rao et al. Compiled query execution engine using jvm. In
ICDE, 2006.

[26] T. K. Sellis. Intelligent caching and indexing techniques for
relational database systems. Inf. Syst., 13, 1988.

[27] J. Sompolski, M. Zukowski, and P. Boncz. Vectorization vs.
compilation in query execution. In DaMoN, 2011.

[28] R. Tsuchiyama et al. The OpenCL Programming Book.
Fixstar, 2012.

[29] Y. Zhang and J. Yang. Optimizing I/O for Big Array
Analytics. Proc. VLDB Endow., 5(8), 2012.

Stratis D. Viglas is a Reader in the School of Informatics at the
University of Edinburgh. He received a PhD in Computer Science
from the University of Wisconsin—Madison and BSc and MSc
degrees from the Department of Informatics at the University of
Athens, Greece.

1191


