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ABSTRACT
Designing scalable transaction processing systems on mod-
ern multicore hardware has been a challenge for almost a
decade. The typical characteristics of transaction process-
ing workloads lead to a high degree of unbounded commu-
nication on multicores for conventional system designs.

In this tutorial, we initially present a systematic way of
eliminating scalability bottlenecks of a transaction process-
ing system, which is based on minimizing the unbounded
communication. Then, we show several techniques that ap-
ply the presented methodology to minimize logging, lock-
ing, latching etc. related bottlenecks of transaction process-
ing systems. In parallel, we demonstrate the internals of
the Shore-MT storage manager and how they have evolved
over the years in terms of scalability on multicore hardware
through such techniques. We also teach how to use Shore-
MT with the various design options it offers through its
application layer Shore-Kits and Metadata Frontend.

1. INTRODUCTION
In step with Moore’s Law, hardware gives us more and

more opportunities for parallelism rather than faster pro-
cessors over the recent years. Exploiting this parallelism is
crucial to utilize the available architectural resources and
enable faster software. However, designing scalable systems
that can take advantage of the underlying parallelism re-
mains as a challenging task for the software developers from
various fields.

Transaction processing systems exhibit high concurrency,
and therefore, offer a good opportunity for more parallelism.
However, the inherent communication in traditional high
performance transaction processing systems lead to scala-
bility bottlenecks on today’s multicore hardware. Increased
hardware parallelism does not automatically bring increased
performance for transaction processing. Even systems that
are able to scale very well on one generation of multicores
might fail to scale-up on the next generation [7].
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In this two hour tutorial, we initially teach a clear method-
ology for scaling-up transaction processing systems on mul-
ticore hardware. More specifically, we classify three types of
communication in a typical transaction processing system:
unbounded, fixed, and cooperative [3]. Our main observation
is that not all the communication within a system is harm-
ful in terms of scalability. We demonstrate that the key
to achieve scalability on modern hardware, especially for
transaction processing systems but also for any system that
has similar communication patterns, depends on avoiding
the unbounded communication points or downgrading them
into fixed or cooperative ones.

Then, we show how effective our methodology is in prac-
tice for scaling-up transaction processing systems on multi-
core hardware. We give examples of some techniques that
remove the unbounded communication step by step while
solving the problem of locking [2, 7], logging [5, 6], and
latching [8, 11] bottlenecks in a traditional transaction pro-
cessing system. We observe how the Shore-MT storage man-
ager [4, 10, 9] has evolved over the years through applying
such techniques. We present the implementation of some of
these techniques within Shore-MT, illustrating its internals
in parallel.

Finally, we introduce the two powerful application layers
of Shore-MT, Shore-Kits and Metadata Frontend. Shore-
Kits [9] has the implementation of various database work-
loads for Shore-MT as well as the interface to run Shore-MT
using its various design options. The Metadata Frontend,
on the other hand, enables creating database tables interac-
tively and running basic ad-hoc queries on top of Shore-MT.
Moreover, it provides a brief API to easily wrap it up us-
ing tools like SWIG [1] and create simple benchmarks using
different scripting languages.

The goal of this tutorial is to give guidelines for building
scalable transaction processing systems by eliminating not
all but only the unscalable communication in the system. In
addition, it teaches how to use a state-of-the-art open-source
scalable storage manager, Shore-MT, as a test-bed for future
research. The basic methodology introduced here, however,
can be applied to any software system that aims scalability
on modern multicore hardware.

2. TUTORIAL OUTLINE
The tutorial is formed of five parts, which are given below:
1. Introduction:
This part of the tutorial takes 10 minutes. We first briefly

go over the evolution of modern hardware. Then, we survey
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the related work on the scalability of transaction processing
systems. Finally, we introduce Shore-MT storage manager
and its features at the high level.

2. Eliminating the Unbounded Communication:
This part of the tutorial takes 50 minutes. Here we de-

scribe the communication types in transaction processing in
detail. We layout our methodology for system scalability,
which requires a thorough understanding of a system’s com-
munication patterns and aims to eliminate the unbounded
communication. We also give examples on various tech-
niques that apply this methodology to eliminate the locking,
logging, and latching bottlenecks.

3. Hands-On – Shore-MT:
This part of the tutorial takes 15 minutes. We illustrate

the internals of Shore-MT storage manager and the code
parts from the different design options that implement the
various scalability improvements mentioned during the pre-
vious part. We also show how to run basic unit tests and
experiments with Shore-MT.

4. Hands-On – Shore-Kits:
This part of the tutorial takes 25 minutes. We first ex-

amine the internals of Shore-Kits. Then, we run Shore-Kits
with its different configuration options to see how to en-
able/disable the various techniques prototyped inside Shore-
MT. Finally, we go over how to extend Shore-Kits with dif-
ferent benchmarks.

5. Hands-On – Shore-Front:
This part of the tutorial takes 20 minutes. We initially

demonstrate how to use the frontend to perform simple
tasks. Then, we show how one can use different scripting
languages to automatically create and run micro-benchmarks
with this metadata frontend.
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