
Toward Scalable Transaction Processing

Evolution of Shore-MT

Anastasia Ailamaki Ryan Johnson† Ippokratis Pandis∗ Pınar Tözün

†University of Toronto
∗IBM Almaden Research Center

École Polytechnique Fédérale de Lausanne

ABSTRACT
Designing scalable transaction processing systems on mod-
ern multicore hardware has been a challenge for almost a
decade. The typical characteristics of transaction process-
ing workloads lead to a high degree of unbounded commu-
nication on multicores for conventional system designs.

In this tutorial, we initially present a systematic way of
eliminating scalability bottlenecks of a transaction process-
ing system, which is based on minimizing the unbounded
communication. Then, we show several techniques that ap-
ply the presented methodology to minimize logging, lock-
ing, latching etc. related bottlenecks of transaction process-
ing systems. In parallel, we demonstrate the internals of
the Shore-MT storage manager and how they have evolved
over the years in terms of scalability on multicore hardware
through such techniques. We also teach how to use Shore-
MT with the various design options it offers through its
application layer Shore-Kits and Metadata Frontend.

1. INTRODUCTION
In step with Moore’s Law, hardware gives us more and

more opportunities for parallelism rather than faster pro-
cessors over the recent years. Exploiting this parallelism is
crucial to utilize the available architectural resources and
enable faster software. However, designing scalable systems
that can take advantage of the underlying parallelism re-
mains as a challenging task for the software developers from
various fields.

Transaction processing systems exhibit high concurrency,
and therefore, offer a good opportunity for more parallelism.
However, the inherent communication in traditional high
performance transaction processing systems lead to scala-
bility bottlenecks on today’s multicore hardware. Increased
hardware parallelism does not automatically bring increased
performance for transaction processing. Even systems that
are able to scale very well on one generation of multicores
might fail to scale-up on the next generation [7].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 11
Copyright 2013 VLDB Endowment 2150-8097/13/09... $ 10.00.

In this two hour tutorial, we initially teach a clear method-
ology for scaling-up transaction processing systems on mul-
ticore hardware. More specifically, we classify three types of
communication in a typical transaction processing system:
unbounded, fixed, and cooperative [3]. Our main observation
is that not all the communication within a system is harm-
ful in terms of scalability. We demonstrate that the key
to achieve scalability on modern hardware, especially for
transaction processing systems but also for any system that
has similar communication patterns, depends on avoiding
the unbounded communication points or downgrading them
into fixed or cooperative ones.

Then, we show how effective our methodology is in prac-
tice for scaling-up transaction processing systems on multi-
core hardware. We give examples of some techniques that
remove the unbounded communication step by step while
solving the problem of locking [2, 7], logging [5, 6], and
latching [8, 11] bottlenecks in a traditional transaction pro-
cessing system. We observe how the Shore-MT storage man-
ager [4, 10, 9] has evolved over the years through applying
such techniques. We present the implementation of some of
these techniques within Shore-MT, illustrating its internals
in parallel.

Finally, we introduce the two powerful application layers
of Shore-MT, Shore-Kits and Metadata Frontend. Shore-
Kits [9] has the implementation of various database work-
loads for Shore-MT as well as the interface to run Shore-MT
using its various design options. The Metadata Frontend,
on the other hand, enables creating database tables interac-
tively and running basic ad-hoc queries on top of Shore-MT.
Moreover, it provides a brief API to easily wrap it up us-
ing tools like SWIG [1] and create simple benchmarks using
different scripting languages.

The goal of this tutorial is to give guidelines for building
scalable transaction processing systems by eliminating not
all but only the unscalable communication in the system. In
addition, it teaches how to use a state-of-the-art open-source
scalable storage manager, Shore-MT, as a test-bed for future
research. The basic methodology introduced here, however,
can be applied to any software system that aims scalability
on modern multicore hardware.

2. TUTORIAL OUTLINE
The tutorial is formed of five parts, which are given below:
1. Introduction:
This part of the tutorial takes 10 minutes. We first briefly

go over the evolution of modern hardware. Then, we survey

1192



the related work on the scalability of transaction processing
systems. Finally, we introduce Shore-MT storage manager
and its features at the high level.

2. Eliminating the Unbounded Communication:
This part of the tutorial takes 50 minutes. Here we de-

scribe the communication types in transaction processing in
detail. We layout our methodology for system scalability,
which requires a thorough understanding of a system’s com-
munication patterns and aims to eliminate the unbounded
communication. We also give examples on various tech-
niques that apply this methodology to eliminate the locking,
logging, and latching bottlenecks.

3. Hands-On – Shore-MT:
This part of the tutorial takes 15 minutes. We illustrate

the internals of Shore-MT storage manager and the code
parts from the different design options that implement the
various scalability improvements mentioned during the pre-
vious part. We also show how to run basic unit tests and
experiments with Shore-MT.

4. Hands-On – Shore-Kits:
This part of the tutorial takes 25 minutes. We first ex-

amine the internals of Shore-Kits. Then, we run Shore-Kits
with its different configuration options to see how to en-
able/disable the various techniques prototyped inside Shore-
MT. Finally, we go over how to extend Shore-Kits with dif-
ferent benchmarks.

5. Hands-On – Shore-Front:
This part of the tutorial takes 20 minutes. We initially

demonstrate how to use the frontend to perform simple
tasks. Then, we show how one can use different scripting
languages to automatically create and run micro-benchmarks
with this metadata frontend.

3. BIOGRAPHY
Anastasia Ailamaki (anastasia.ailamaki@epfl.ch)
Anastasia Ailamaki is a Professor of Computer Sciences

at the École Polytechnique Fédérale de Lausanne (EPFL)
in Switzerland. Her research interests are in database sys-
tems and applications, and in particular (a) in strengthening
the interaction between the database software and emerging
hardware and I/O devices, and (b) in automating database
management to support computationally-demanding and de-
manding data-intensive scientific applications. She has re-
ceived a Finmeccanica endowed chair from the Computer
Science Department at Carnegie Mellon (2007), a Euro-
pean Young Investigator Award from the European Science
Foundation (2007), an Alfred P. Sloan Research Fellowship
(2005), eight best-paper awards at top conferences (2001-
2012), and an NSF CAREER award (2002). She earned her
Ph.D. in Computer Science from the University of Wisconsin-
Madison in 2000. She is a senior member of the IEEE and a
member of the ACM, and has also been a CRA-W mentor.

Ryan Johnson (ryan.johnson@cs.utoronto.ca)
Ryan Johnson is an Assistant Professor at the University

of Toronto specializing in systems aspects of database en-
gines, particularly in the context of modern hardware. He
contributed heavily to the initial development and perfor-
mance tuning of Shore-MT. He graduated with M.S. and
PhD degrees in Computer Engineering from Carnegie Mel-
lon University in 2010, after completing a B.S. in Computer
Engineering at Brigham Young University in 2004. In addi-

tion to his work with database systems, Johnson has inter-
ests in computer architecture, operating systems, compilers,
and hardware design.

Ippokratis Pandis (ipandis@us.ibm.com)
Ippokratis Pandis is a Research Staff Member (RSM) at

IBM Research Almaden. His research focuses on efficient,
scalable data management and he is actively involved in
IBMs DB2 BLU project. Prior joining IBM, Ippokratis
graduated with a PhD in Electrical and Computer Engineer-
ing from Carnegie Mellon University where he worked on
scalable transaction processing on multisocket and multicore
hardware, contributing to the development of Shore-MT and
Shore-Kits. His PhD thesis was on the data-oriented trans-
action processing architecture (DORA).

Pınar Tözün (pinar.tozun@epfl.ch)

Pınar Tözün is a fourth year PhD student at École Poly-
technique Fédérale de Lausanne (EPFL) working under su-
pervision of Prof. Anastasia Ailamaki in Data-Intensive Ap-
plications and Systems (DIAS) Laboratory. Her research fo-
cuses on scalability and efficiency of transaction processing
systems on modern hardware and she actively contributes to
the development and maintenance of Shore-MT and Shore-
Kits. Before starting her PhD, she received her BSc degree
in Computer Engineering department of Koç University in
2009 as the top student.

4. REFERENCES
[1] Simplified wrapper and interface generator (SWIG).

Available at http://www.swig.org.

[2] R. Johnson, I. Pandis, and A. Ailamaki. Improving
OLTP scalability using speculative lock inheritance.
PVLDB, 2(1):479–489, 2009.

[3] R. Johnson, I. Pandis, and A. Ailamaki. Eliminating
unscalable communication in transaction processing.
VLDB J., 2013.

[4] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki,
and B. Falsafi. Shore-MT: a scalable storage manager
for the multicore era. In EDBT, pages 24–35, 2009.

[5] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis,
and A. Ailamaki. Aether: a scalable approach to
logging. PVLDB, 3:681–692, 2010.

[6] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis,
and A. Ailamaki. Scalability of write-ahead logging on
multicore and multisocket hardware. VLDB J.,
21:239–263, 2012.

[7] I. Pandis, R. Johnson, N. Hardavellas, and
A. Ailamaki. Data-oriented transaction execution.
PVLDB, 3(1):928–939, 2010.

[8] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki.
PLP: page latch-free shared-everything OLTP.
PVLDB, 4(10):610–621, 2011.

[9] Shore-MT. Shore-MT and Shore-Kits Code
Repositories. Available at
https://bitbucket.org/shoremt.

[10] Shore-MT. Shore-MT Official Website. Available at
http://diaswww.epfl.ch/shore-mt/.

[11] P. Tözün, I. Pandis, R. Johnson, and A. Ailamaki.
Scalable and dynamically balanced shared-everything
OLTP with physiological partitioning. VLDB J.,
22(2):151–175, 2013.

1193


