
Functions Are Data Too
(Defunctionalization for PL/SQL)

Torsten Grust Nils Schweinsberg Alexander Ulrich
Universität Tübingen
Tübingen, Germany

[torsten.grust, alexander.ulrich]@uni-tuebingen.de
nils.schweinsberg@student.uni-tuebingen.de

ABSTRACT
We demonstrate a full-fledged implementation of first-class
functions for the widely used PL/SQL database programming
language. Functions are treated as regular data items that
may be (1) constructed at query runtime, (2) stored in
and retrieved from tables, (3) assigned to variables, and
(4) passed to and from other (higher-order) functions. The
resulting PL/SQL dialect concisely and elegantly expresses a
wide range of new query idioms which would be cumbersome
to formulate if functions remained second-class citizens. We
include a diverse set of application scenarios that make these
advantages tangible.

First-class PL/SQL functions require featherweight syn-
tactic extensions only and come with a non-invasive im-
plementation—the defunctionalization transformation—that
can entirely be built on top of existing relational DBMS
infrastructure. An interactive demonstrator helps users to
experiment with the “function as data” paradigm and to
earn a solid intuition of its inner workings.

1. FUNCTIONS ARE DATA TOO
PL/SQL programming [2] marks one of the predominant

approaches to implement application logic close to relational
data: regular SQL queries may be embedded in programs that
feature—among other elements typically found in scripting
languages—statement sequences, control flow and excep-
tion handling constructs, or variable assignment. Since the
PL/SQL interpreter or compiler tightly integrates with the
database engine, such programs can manipulate persistent
data efficiently without crossing database kernel boundaries.

The colloquial term “stored procedures” is widely used as
a stand-in for the PL/SQL approach as a whole and functions
(or procedures) indeed are its primary unit of program orga-
nization. Yet, functions remain second-class citizens in the
language: functions exclusively assume the role of code units,
defined and named at compile time, ready for subsequent
invocation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

In this demonstration (and a companion paper that zooms
in on the conceptual details, implementation, and perfor-
mance [4]), we explore a dialect of PL/SQL in which functions
assume the role of data instead. As such, functions may be
defined at query runtime, assigned to variables, passed to and
from other functions, and stored in data structures (tables,
notably). Functions as first-class citizens enable a functional
style of PL/SQL programming that (1) nicely complements
existing practice but also (2) paves the way for new, particu-
larly concise and elegant query idioms.

The “functions as data” idea is effective in the sense that
it brings far-reaching query formulation opportunities while
few language extensions suffice to anchor the paradigm in
PL/SQL:1

• FUNCTION(t1) RETURNS t2, the type of functions from t1
to t2, is now a data type (just like INTEGER or VARCHAR(n)),
• function names—built-in (like atan or upper) and user-

defined—denote regular values (alas of function type),
• FUNCTION(x t1) RETURNS t2 AS BEGIN e END denotes a literal

function with argument x and body e (just like 42 denotes
a literal of type INTEGER), and finally
• e(e1,. . . ,en) is regarded as a valid (dynamic) function

call if expression e evaluates to a value of function type.

Further, first-class functions come with a lightweight and
efficient implementation approach, defunctionalization [8],
that does not require database kernel changes [4]. Cast as
a source-to-source transformation, defunctionalization can
be non-invasively applied to any PL/SQL host. The present
demonstration builds on a PL/SQL preprocessor that sits
entirely on top of PostgreSQL 9 [1].

2. PL/SQL WITH A FUNCTIONAL MINDSET
Despite being a modest language extension with a non-

invasive implementation, first-class functions have a profound
impact on how ideas can be expressed in terms of PL/SQL
queries. We have collected three sample application scenarios
here, ordered from customary to offbeat, and include many
more in the actual software demonstration.

In the PL/SQL listings below, we have placed a mark ()
in the gutter where the language extensions come into play.

A Functions That Travel With Data. In a TPC-H bench-
mark database, the status of an order is determined by the
status of its line items [9, § 4.2.3]: if all line items either
agree on status ’F’ or ’O’ (finalized vs. open) then this also

1Of course, the idea does not hinge on this particular syntax.

1214

ORDERS
o_orderkey o_orderstatus · · ·

1 ’F’
2 ’P’
...

...

LINEITEM
l_orderkey l_linestatus · · ·

1 ’F’
1 ’F’
2 ’O’
2 ’O’
2 ’F’
...

...

Figure 1: Static status of orders (o_orderstatus) and their
line items (l_linestatus) in a TPC-H instance.

1 -- implements order status constraint as per TPC-H §4.2.3
2 CREATE FUNCTION tpch_constraint_423(o ORDERS)
3 RETURNS FUNCTION(CHAR (1)) RETURNS CHAR(1) AS
4 BEGIN
5 RETURN FUNCTION(s CHAR(1)) RETURNS CHAR(1) AS
6 DECLARE status CHAR(1);
7 BEGIN
8 -- query the status of the line items of order o
9 SELECT DISTINCT li.l_linestatus

10 INTO STRICT status
11 FROM LINEITEM li
12 WHERE li.l_orderkey = o.o_orderkey;
13

14 RETURN status;
15

16 EXCEPTION
17 -- when line items disagree on status ...
18 WHEN TOO_MANY_ROWS THEN RETURN s;
19 END;
20 END;
21

22 -- extend table ORDERS with functional column o_livestatus
23 ALTER TABLE ORDERS
24 ADD COLUMN o_livestatus FUNCTION(CHAR(1)) RETURNS CHAR(1);
25 UPDATE ORDERS o SET o_livestatus = tpch_constraint_423(o);
26

27 -- retrieve all orders and their status as of now
28 SELECT o_orderkey,
29 o_livestatus(’P’)
30 FROM ORDERS;

Figure 2: Higher-order function encodes a TPC-H constraint.

is the order’s status. Otherwise the order has status ’P’

(processing). When the TPC-H data generator DBGEN popu-
lates the instance, it statically sets column o_orderstatus

of table ORDERS accordingly (see Figure 1).
First-class functions can help to implement the above

consistency constraint in an alternative, dynamic fashion. To
this end, the PL/SQL code of Figure 2 extends table ORDERS

with function-valued column o_livestatus and populates
it for all orders o (lines 23 to 25): tpch_constraint_423(o)
returns a function that, when invoked by a query, will perform
status computation for order o, thus reflecting live updates
of its line items. After the update in line 25 has been

ORDERS
o_orderkey · · · o_livestatus

1 function(s)
2 function(s)
...

...

processed, table ORDERS takes the
form shown here. We add flexi-
bility in that the functions in new
column o_livestatus accept the
CHAR(1) argument s, the order
status returned should the status
of the line items disagree.2

Queries reference columns of function type just like first-
order columns (see line 29 where a dynamic function call
invokes o_livestatus to compute the live order status as of
query time).

2’P’ would be the customary argument here but, e.g., NULL
might be appropriate in other contexts.

Note how tpch_constraint_423(o) operates like a factory,
or higher-order function, that constructs a function tailored
to determine the status of its particular order argument o:
the function literal defined in lines 5 to 19 refers to row vari-
able o and its key o.o_orderkey to identify the associated
line items. Under the hood, defunctionalization captures
the value of such free variables at runtime, i.e., when the
function is defined, and bundles these values together with
(a reference to) the function’s body code. When the func-
tion is invoked later on, its references to free variables are
resolved using the values stored in the bundle (or closure [5]).
The closures representing the functional values function(s)

in the extended ORDERS table above thus take the form
〈code lines 5–19 | o〉. We come back to closures and their
relational representation below.

B Routing Functions and Arguments. When functions reside
in tables next to regular values, we can adopt a programming
style in which queries may be used to flexibly route arguments
to their functions. To make this point, the PL/SQL example
code of Figure 3 creates and then populates a table FUNS in
which column fn holds real-valued functions: the built-in
and user-defined functions atan and square are considered
data as is the literal doubling function with id = 3 (line 11).
For any such function f in tables FUNS, this example aims to
tabulate f side by side with its first derivative f ′ (from such
a tabulation we can easily derive plots). We exploit that
the differential quotient of f approximates f ′ if the distance
parameter h is small:

f ′(x) ≈ f(x + h)− f(x)

h
for small h .

1CREATE FUNCTION square(x REAL) RETURNS REAL AS
2BEGIN
3RETURN x * x;
4END;
5

6CREATE TABLE FUNS (id INTEGER NOT NULL PRIMARY KEY,
7fn FUNCTION(REAL) RETURNS REAL);
8INSERT INTO FUNS VALUES
9(1, atan), -- built-in function
10(2, square), -- user-defined function
11(3, FUNCTION(x REAL) RETURNS REAL AS BEGIN RETURN 2 * x; END);
12

13-- compute differential quotient for function f
14CREATE FUNCTION diffq(h REAL, f FUNCTION(REAL) RETURNS REAL)
15RETURNS FUNCTION(REAL) RETURNS REAL AS
16BEGIN
17RETURN FUNCTION(x REAL) RETURNS REAL AS
18BEGIN
19RETURN (f(x + h) - f(x)) / h;
20END;
21END;
22

23-- compute first derivative of function f
24CREATE FUNCTION derive(f FUNCTION(REAL) RETURNS REAL)
25RETURNS FUNCTION(REAL) RETURNS REAL AS
26BEGIN
27RETURN diffq(0.001, f); -- fix a small h, here: 0.001
28END;
29

30CREATE TABLE ARGS (x REAL NOT NULL);
31INSERT INTO ARGS VALUES (-100.0),(-99.0),. . .,(99.0),(100.0);
32

33-- tabulation of all functions along with their first ;derivatives
34SELECT id, x,
35fn(x) AS fx,
36derive(fn)(x) AS "f’x"
37FROM FUNS, ARGS;

Figure 3: Tabulating functions along with their derivatives.

1215

id x fx f’x
...

...
...

...
1 -1.0 -0.78 0.5
1 0.0 0.00 1.0
1 1.0 0.78 0.5
1 2.0 1.10 0.2
...

...
...

...

(a) Tabulation.

x−5 50

−1

1
fx: atan(x)

f’x: 1/(x2+1)

(b) Plotting the query result for atan (id = 1).

Figure 4: Function atan and its first derivative (plotting the
result of the SQL query of Figure 3 for id = 1).

0 5 10
0

5

10

15

`1

`2

`3

`4

`5

`6

�
#

#

"

!

!

×

`1

`3

`4

`5

" `6

! !

`2

� #

Figure 5: A binary space partitioning tree representing a
weather forecast (cloudy spot × is left of `1 and right of `3,4).

Here, we understand the derivation operator @
′ as being

higher-order in that it maps its functional argument f onto
the first derivative, i.e., another function. Function derive

and its auxiliary diffq directly embody this understanding:
for a given real-valued PL/SQL function f , derive(f) con-
structs a new function that approximates the first derivative
of f (lines 14 to 28).

To complete the example, we set up a second table ARGS of
function arguments x. The SQL query in lines 34 to 37 then
applies the functions in table FUNS along with their deriva-
tives to all arguments in table ARGS to form the tabulation.
Note how, in lines 35 and 36, fn (referring to the values
in the second column of table FUNS) as well derive(fn) (a
derivative constructed at runtime) denote functions and thus
may be applied to the current argument x. Figure 4 shows
an excerpt of the query result in tabular form as well as the
associated plot.

C Algebraic Data Types. Functional programming is closely
linked to algebraic data types—tree-shaped data types whose
instances are built through the application of functions [5].
The shape of an algebraic data type is typically specified in
terms of a recursive equation. Consider (adopting Haskell
syntax here, read :: as “has type” and | as “or”)3

data BSP = Part {left::BSP, line::LSEG, right::BSP}
| Leaf {label::TEXT} .

Type BSP describes binary trees whose inner nodes carry line
segments that partition an underlying two-dimensional space
into a left and right half; leaves carry a textual label. The
data type equation also defines the constructor functions
(here: Part and Leaf) that are used to build trees of this
shape. Such binary space partitioning trees might be used to
structure a weather forecast map, for example (see Figure 5).

3PostgreSQL’s built-in type LSEG represents line segments.

SELECT Part(Part(Leaf(wales),
`3,
Part(Part(Leaf(westscotland),

`5,
Part(Leaf(shetlands),`6,Leaf(scotland))),

`4,
Leaf(midlands))),

`1,
Part(Leaf(southwest),`2,Leaf(southeast)))

FROM UK_FORECAST
WHERE day = ’tomorrow’ :: DATE;

Figure 6: Constructor calls build the binary space partition-
ing tree of Figure 5 to form a regional weather forecast map.

PART
id left line right

α1 α3 `1 α2
α2 β1 `2 β2
α3 β3 `3 α4
α4 α5 `4 β4
α5 β5 `5 α6
α6 β6 `6 β7

LEAF

id label

β1 ’�’
β2 ’#’
β3 ’#’
β4 ’ ’
β5 ’"’
β6 ’!’
β7 ’!’

Figure 7: Tabular closure storage. The keys αi, βj serve as
the closure representation.

Church [3] made the key observation that first-class func-
tions suffice to encode any algebraic data type—we need no
special provisioning to use these expressive types in PL/SQL
programs. In the Church encoding, constructors return re-
cursive functions, folds [7], that can be used to traverse the
built instance. The tree itself remains implicit. We show the
Part constructor below (Leaf is defined analogously):4

1CREATE FUNCTION Part(left BSP,line LSEG,right BSP) RETURNS BSP AS
2BEGIN
3RETURN FUNCTION(l FUNCTION(TEXT) RETURNS t,
4p FUNCTION(t, LSEG, t) RETURNS t) AS
5BEGIN
6RETURN p(left(l, p), line, right(l, p));
7END
8END;

Once the constructors are in place, they may be conveniently
used in SQL queries: the query of Figure 6 builds a two-
dimensional map from flat weather forecast data. A lookup

function of type FUNCTION(BSP,POINT) RETURNS TEXT (“how
is the weather in spot ×?”) can be straightforwardly defined.

As mentioned before, defunctionalization trades functions for
closures that bundle a code reference plus the function’s envi-
ronment of free variables. The function returned by construc-
tor Part above turns into 〈code lines 3–7 | left, line, right〉,
for example. Whenever these bundles nest—as is the case
here: free variables left and right are bound to functions,
and thus closures—we have designed defunctionalization to
(1) save closures into tables and (2) use the tables’ key to
serve as the closure representation instead. Figure 7 depicts
the closure tables that result from the Part and Leaf calls
performed by the query of Figure 6. Note how the nested con-
structor invocations in the defunctionalized code implicitly
built a relational representation of the binary space partition-
ing tree. First-class PL/SQL functions have introduced an
abstraction that saves the developer from explicitly wiring
the tree’s nodes.

4We omit the PL/SQL definition of type BSP here. It may,
just like the constructor definitions, be mechanically derived
from the equation of the algebraic data type.

1216

1 2

3
3

4

4

5

Figure 8: Screenshot of the web-based demonstrator. Code highlights at 3 illustrate how defunctionalization translates a literal
function into a closure constructor (here: closconst1() bundling code symbol fun1_4 with free variables f and h).

3. DEMONSTRATION SETUP
“Functions as data” not only characterizes the class of

query idioms that is in our toolbox now, but also hints at
the implementation technique used in this work. Query
defunctionalization [4] trades functional values for regular
first-order data items which off-the-shelf relational DBMSs
process efficiently. This translation from source program
with first-class functions into regular PL/SQL target code
is reflected by the demonstrator’s screen layout and opera-
tion (see Figure 8). Users compose PL/SQL input in editor
window 1 —the demonstrator responds with an equivalent
runnable program in output window 2 .

In a nutshell, a function’s closure 〈code | v1, . . . , vn〉 turns
into (a) a symbol that stands in for the code, plus (b) an
entry into the table that saves the bindings of the function’s
free variables v1, . . . , vn (recall tables PART and LEAF of Fig-
ure 7). Under the defunctionalization transformation, some
source language constructs may affect multiple spots of the
generated target program. An occurrence of a function literal
like FUNCTION(x t1) RETURNS t2 BEGIN e END, for example,
(1) is replaced by a constructor that introduces a code sym-

bol for e and builds the required closure, then
(2) creates a regular (top-level, named) function that wraps

the literal’s body statement sequence e, and
(3) generates an auxiliary PL/SQL routine that dispatches

to the wrapper where the source program would invoke
the function literal.

Dynamic function calls and named function references are
subject to analogous translations.

The demonstration illustrates this correspondence between
source and target constructs through interactive code high-
lighting (see 3 in Figure 8). These highlights track cursor
movement with fine granularity—at the level of individual
statements and expressions—and thus help to quickly develop
a solid intuition of the ideas behind defunctionalization.

The web-based demonstrator client UI is connected to a
PostgreSQL instance and target programs may be executed
directly within the environment. Checkboxes are placed in
the output window’s gutter such that the results of SQL

DML statements may be selectively shown or hidden (in the
screenshot, at 4 we have chosen to render the result of SQL
query Q1).

Beyond the use cases sketched in Section 2, we have pre-
loaded the system (5) with a wide range of application
scenarios to demonstrate the gains that come with first-class
PL/SQL functions. Users will find samples of, for example,
• a variant of associative maps, or key/value dictionaries,

that elegantly model inter-table references even if these
span multiple relations or involve more than plain foreign-
key joins,
• functions that naturally add flexibility to otherwise rather

static database schemata (e.g., pricing schemes for TPC-H
orders that are configurable on a per-tuple basis), and
• combinators that capture intricate query patterns in a

concise fashion (e.g., fixpoint computations that find a
graph’s connected components as recently described in [6]).

Acknowledgments. This research is supported by the German
Research Council (DFG) under grant no. GR 2036/3-2.

4. REFERENCES
[1] PostgreSQL 9.2. www.postgresql.org/docs/9.2/.
[2] Oracle Database PL/SQL Language Reference—11g

Release 1 (11.1), 2009.
[3] A. Church. The Calculi of Lambda-Conversion. Annals

of Mathematics Studies, volume 6, 1941.
[4] T. Grust and A. Ulrich. First-Class Functions for

First-Order Database Engines. In Proc. DBPL, 2013.
[5] P. Landin. The Mechanical Evaluation of Expressions.

The Computer Journal, 6(4):308–320, 1964.
[6] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard.

Differential Dataflow. In Proc. CIDR, 2013.
[7] T. Sheard and L. Fegaras. A Fold for All Seasons. In

Proc. FPCA, 1993.
[8] A. Tolmach and D. Oliva. From ML to Ada:

Strongly-Typed Language Interoperability via Source
Translation. J. Funct. Programming, 8(4), 1998.

[9] Transaction Processing Performance Council. TPC-H, a
Decision-Support Benchmark. tpc.org/tpch/.

1217

