
TeRec: A Temporal Recommender System Over Tweet
Stream

Chen Chen Hongzhi Yin Junjie Yao Bin Cui
Department of Computer Science and Technology

Key Laboratory of High Confidence Software Technologies, Peking University
{chenchen628, bestzhi, junjie.yao, bin.cui}@pku.edu.cn

ABSTRACT
As social media further integrates into our daily lives, peo-
ple are increasingly immersed in real-time social streams via
services such as Twitter and Weibo. One important obser-
vation in these online social platforms is that users’ interests
and the popularity of topics shift very fast, which poses great
challenges on existing recommender systems to provide the
right topics at the right time. In this paper, we extend
the online ranking technique and propose a temporal rec-
ommender system − TeRec. In TeRec, when posting tweets,
users can get recommendations of topics (hashtags) accord-
ing to their real-time interests, they can also generate fast
feedbacks according to the recommendations. TeRec pro-
vides the browser-based client interface which enables the
users to access the real time topic recommendations, and
the server side processes and stores the real-time stream da-
ta. The experimental study demonstrates the superiority of
TeRec in terms of temporal recommendation accuracy.

1. INTRODUCTION
Online social streams such as Facebook News Feed and

Google Buzz have emerged as important channels of on-
line information. Real-time microblogging services, such as
Twitter (twitter.com) and Weibo (weibo.com), have expe-
rienced an explosion in global user adoption over the past
years. Millions of people are reading statuses, tweets and
learning breaking news, useful tips and funny stories to keep
up with their friends’ daily lives.

Users of these online social services not only encounter
the problem of information overload, but also have muta-
ble interests which change fast along with the social infor-
mation streams. These features pose great challenges to
recommender systems, since the purpose of such systems
is to provide suitable recommendations that match users’
real-time interests, which is quite difficult among massive
candidates and fast changing user preferences.

Most of state-of-the-art recommender systems are based
on the popular method known as collaborative filtering (CF)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

which achieves good results in modeling user preferences and
item features offline, but they usually suffer from at least one
of the following drawbacks when dealing with the situation
mentioned above: 1. Delay on model updates caused by the
expensive time cost of re-running the offline CF model. 2.
Loss in recommendation accuracy due to the sacrifice of user
modeling, in order to pursue a faster model updating speed.
3. Disability to capture users’ latest interest due to the fact
that latest entries used for updating CF models are often
overwhelmed by the large data of the past.

For example, a Weibo user Tim has been reading and
tagging posts with hashtag #JapanEarthquake for a long
time, but recently he started to focus on posts with hash-
tag #AmericanElection, indicating the shift of his recent
interest. A real temporal recommender system should have
the ability to capture this signal and make fast responses to
the recommendation list accordingly. Most existing system-
s, however, fail to capture the shifting signal in real time,
resulting in a long delay to update user interests.

In this demonstration, we propose TeRec, a recommender
system which can overcome the above drawbacks. TeRec
works in a stream data environment (Weibo), and provide
real-time recommendations according to users’ preference
at any specific moment. Instead of generating recommenda-
tions using only item similarities and without user modeling
[1], TeRec models users and items using competitive matrix
factorization which can achieve more accurate results.

The basic idea of TeRec is to use the hashtags as the
surrogates for interesting topics. When a user is about to
post a tweet, our system predicts the user’s current interests,
and recommends several topics (hashtags) that he might be
interested to use in this tweet. After a tweet is posted,
TeRec updates the matrix of factors instantly according to
the actual hashtag user used, so that it can prepare with a
new recommended list the next time the user wants to post.
In the following, we derive three key features in our system
TeRec to facilitate temporal recommendation and real-time
updating.

First, on the contrary of most existing recommender sys-
tems, TeRec doesn’t wait until a certain amount of inputs
have been accumulated before updating the recommender
model and results. On each of the new entries, TeRec per-
forms instantaneous updates on the latent factors of related
user and items. To speed up the updating process, we ex-
tend the technique used in [5] by keeping a representative
sampled set of the dataset in a reservoir and update the la-
tent factors using only this reservoir and the newly observed
input.

1254

User Interface

Generate

Recommendation

Update Model

Calculate Ratings

Update Factor Matrix

Update Reservoir

Front End

Storage

End

Recommender

Engine
Recommender Model

Figure 1: TeRec System architecture.

Second, we propose a new sampling strategy of the reser-
voir, in order to keep a sample of instances representing
users’ real-time interests, rather than overall preferences.

Third, we exploit two selective sampling strategies for the
negative instances used in competitive collaborative filter-
ing, to ensure that the most informative instances are used
for model updates.

On top of that, we construct our temporal recommender
system over tweet stream, named TeRec, which enhances
the collaborative competitive approach for matrix factoriza-
tion [6] with the proposed online updating technique. To
competitively update the model in real time, we sample
the most representative positive and informative negative
instances instead of using all instances buffered in the reser-
voir, to perform stochastic gradient descent updates based
on active learning principles [3][7].

We construct the TeRec system for hashtag recommen-
dation over tweet stream, and also conduct extensive exper-
iments by comparing with state-of-the-art recommendation
approaches on the real-world dataset crawled from Weibo.

The rest of this paper is organized as follows. In section
2 we details the architecture of our system and the real-
time recommender model. We show the user interface of
our system and the experimental comparison with existing
works in section 3, and conclude in section 4.

2. SYSTEM ARCHITECTURE AND ALGO-
RITHMS

In this section, we introduce the system framework and
explain the details of the two kernel factors of our algorithm.

2.1 System Architecture
TeRec mainly provides a browser-based service which help-

s users to choose proper hashtags when they post tweets.
The server side of the system models and stores user prefer-
ences, calculate predicted ratings between users and hash-
tags, and recommends a list of hashtags as users post tweets
at the browser side of the system.

As shown in Figure 1, our system works in three layer-
s. The front end, mainly consisting of User Interface, deals
with the interactions between user and data, such as dis-
playing the recommendation results and collecting user feed-
backs. In the storage end, we keep a matrix of factors to
represent user preferences and item characteristics, we also
maintain a reservoir of input entries instead of saving all
past information in the system.

The key component of the recommender system is be-
tween UI and storage layers, which performs two tasks, i.e.,

generate recommendation and update recommender mod-
el. The running process of TeRec is also shown in Figure
1. As data and requests come into the system in a stream,
TeRec works as follows: 1. User Interface receives requests
from users and asks recommender for recommendations. 2.
Recommender Model calculates ratings and returns recom-
mended lists to User Interface. 3. User Interface receive
user feedback and update the recommender model. 4. Rec-
ommender Model updates the reservoir of past entries. 5.
Recommender Model updates the matrix of factors using
updated reservoir.

The recommender model behind TeRec is based on the
competitive Matrix Factorization [4][6], and our major con-
tribution in this work is the novel updating strategy to fa-
cilitate real time processing in streaming scenario. Specifi-
cally, the updating process consists of two parts: 1. Main-
tain a reservoir which contains the most informative entries.
2. Select useful positive and negative instances to perform
competitive model updates incrementally. We present our
designed algorithms of these two processes in the following.

2.2 Temporal Reservoir Update
Considering that the data could be very huge and most of

them are useless, we need to sample a subset of informative
inputs (i.e. the reservoir) to speed up model updates.

Specifically, we employ and extend the technique of ran-
dom sampling with a reservoir [5], which is widely used in
data streaming, and recently has been proposed for binary
classification [8] and recommendation [2].

For simplicity, we represent the reservoir as a list Rt :=
{s1, s2, · · · , sc} denoting the reservoir maintained at time t
including c instances from input stream S. The tradition-
al reservoir technique, widely used in recent literatures [8,
2], aims to capture an accurate “sketch” of all history data
under the constraint of fixed space c, while we are more in-
terested in users’ recent as well as current behaviors, than
their overall preferences, since our task is to produce tempo-
ral recommendations, which requires our model to capture
user’s interests precisely at the moment recommendations
being provided. So, we propose a novel mechanism to cre-
ate and update the reservoir, which is specially designed for
our temporal recommendation task.

When the size of input data reaches c, the fixed size of the
reservoir, we need to replace some of the instances stored in
the reservoir with the newly observed inputs to maintain the
fixed size of the reservoir.

Different from Vitter’s algorithm in [5], which propose to
accept the t-th data with probability c

t
and replace an ran-

dom instance from the reservoir in the purpose of creating

1255

an accurate “sketch” of current dataset, we present our new
reservoir sampling mechanism, which better fits the context
of temporal recommendation in social streams. The t-th da-
ta instance is added into the reservoir with probability 1− c

t
which encodes our intuition that the update frequency of
the reservoir increases with the increasing time t, since it is
not necessary to update the reservoir soon after the model is
initialized using all available training data. If the new data
is decided to be put into the reservoir, the probability of
data instance si, which is already in the reservoir, being re-
placed is 1−P (si ∈ Rt−1), in which P (si ∈ Rt−1) is defined
as follows:

P (si ∈ Rt−1) ∝ exp
1

t− i
(1)

where P (si ∈ Rt−1) is an exponential decay function, widely
used in the time series analysis; t− i denotes the difference
between the current time order t and the time order i of the
data instance si arriving in our system. The above function
performs quite well in our TeRec system and has the distinct
ability to capture users’ representative recent behaviors and
interests in real-time.

2.3 Incremental Model Update
On top of the reservoir introduced above, which reserves

instances indicating user’s recent preferences, our model up-
dates dynamically with every newly arriving data, and pro-
duces its recommendations always according to the latest
updated model. Figure 2 presents the process of online in-
cremental model update. In order to update the model in
real time, we only update the latent factors of current u,
the representative positive items p ∈ SPu sampled by Sam-
plePositiveInput function, and the informative negative
items n ∈ SNu sampled by SampleNegativeInput. The
sampled items are used to represent an sketch of user’s latest
positive and negative preferences.

Algorithm 3: updateModel

Input: Continually coming tuple of (u, i, t), indicating the
event at t that user u used item i

Output: (W,H) that represent the latent factors of users and
items

//select positive inputs from user history
SPu = SamplePositiveInput(u, t− 1) ∪ i;
//select negative inputs to represent user’s negative preferences
SNu = SampleNegativeInput(u, t);
for round = 1 to T do

for each p in SPu do
R̂up = Rate(u, p);
R̂uSNu

= Rate(u, SNu);
η = hinge(R̂up − R̂uSNu

);
//update the model of related user and items

Wu = Wu + αη(Hp −
∑

j∈SNu

Hj

|SNu|)− αβWu;
Hp = Hp + αηWu − αβHp;
for each j in SNu do

Hj = Hj − αηWu − αβHj ;
end

end
end
return (W,H);

Figure 2: Algorithm of Incremental Model Update.

Since in the reservoir, we only store user and item pairs
observed in the stream which can reflect users’ recent behav-
iors and interests, selecting positive inputs can be a quite

simple process of uniformly sampling a subset from Rt−1 at
random. But how to sample a few negative items from Nu

to represent u’s negative preference is still a problem. In
order to acquire as much information as possible from the
sampled SNu for model updating, we design two selecting
strategies as follows.

• The sampled negative items should have high rating
scores predicted by the current model, so that they can
provide enough information for correcting the model to
the right direction.

• The sampled negative items should be overall high-
ly rated by other users recently, but not rated by the
given user so that they can distinguish u’s unique pref-
erences from others.

The intuitions behind the proposed two selective sampling
strategies are as follows. (1) Assuming that u is not interest-

ed in item i, however the predicted R̂ui under current model
is quite high. Thus, it’s obvious that the latent factors of
u and i need to be updated to reduce R̂ui. So i should be
added into SNu with priority. On the contrary, an item with
low predicted rating score is less informative to be sampled
into SNu, because updating it will make little difference to
correct the model. (2) As for the second strategy, the items
which are overall highly rated by other users, but not rated
by the given user, are more discriminative and informative
to better capture the user’s unique interests.

3. DEMONSTRATION
Based on the aforementioned system architecture, we con-

struct our TeRec system which can recommend hashtags
for users who post tweets on Weibo. In the following sub-
sections, we introduce the user interface and functions of
our system, and show some experimental results comparing
with some existing methods based on the real-world dataset
crawled from Weibo.

3.1 User Interface and Case Study
The TeRec system consists of a web-based service. The

primary UI is shown in Figure 3. In the system, when users
post tweets, the system automatically suggest a list of hash-
tags for them to use. These hashtags are selected for a user
according to their rating score predicted by our temporal
recommender model. The users can choose to click on some
of the recommended hashtags to take them in use, or use
none of them. Either way, TeRec will record the feedback
and update recommender model immediately. When the
user wants to post a tweet again, he will be presented a
different recommended list of hashtags.

The two parts in Figure 3 shows a real case from the usage
of our system.

The presented user is a young girl who has just graduat-
ed. From the history of her tweets and tags, we can learn
that she’s quite fond of constellation and frequently post-
s and tags about it. So at the time point of subfigure 3a,
the recommended list of hashtags mainly consists of constel-
lation names. The system also recommended some movies
and a tag about Christmas to her. After the user choose
Christmas as tag, TeRec receives the feedback and updates
recommender model instantly. As we can see from subfigure
3b, the list of recommended hashtags has been updated. It
now contains Christmas Eve and Bonus that may interest
her more than some old movies.

1256

(a) Recommended hashtags before user feedback (b) Updated recommend list after user feedback
Figure 3: User Interface and Example Case.

3.2 Experiments
The experiments are conducted to stimulate a real-world

circumstance under which our system is used by hundreds
of thousands of people. We used Weibo dataset as the in-
put stream, and tested TeRec recommender system against
several other algorithms.

3.2.1 Dataset
The Weibo dataset consists of nearly 500 million tweets

posted within about 7 months. We extract 〈uid, tid, time〉
features from each tweet and list them according to time.
To better verify the performance of our model, we set up a
15-10 limitation to users and tags in our dataset. That is,
each user in the dataset has used at least 15 tags and each
tag is used at least for 10 times. After applying the 15-10
limitation, our dataset consists of 87287 users, 29334 tags
and nearly 20 million tweets.

3.2.2 Experimental Results
We use Top-N Recall as our evaluation metric to measure

the performance of our model. That means, at each time
we suggest a Top-N list to a user, and check whether the
actually used item is among the Top-N list.

The baseline approaches include: 1. the naive solution
of Topic Popularity, which ranks the hashtags simply by
their current popularity of usage. 2. WRMF, one of the
state-or-the-art offline matrix factorization model for item
predictions [4]. 3. RMFX, a model proposed in Ernesto’s
[2] recent work, which can achieve partly online and much
quicker updates of matrix factorization for item prediction.

TOP-1 TOP-5 TOP-10 TOP-20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
c
a
l
l
@

N

TP

WRMF

RMFX

TeRec

Figure 4: Experiment results.

Figure 4 shows the experimental results of different rec-
ommender models on this dataset. We can tell from the re-
sult that, our model not only outperforms the naive solution,

but also have significant improvement on the well-performed
WRMF and RMFX models.

In general, our demo system can perform well under both
practical observation and experimental stimulation.

4. CONCLUSIONS
We proposed TeRec, a real-time recommender system,

which can model user interest instantly and provide recom-
mendations according to their latest preferences. TeRec pro-
vides a web-based service which allows users to post tweets,
receive recommended hashtags and give feedbacks. We de-
signed several strategies to ensure the accuracy of the rec-
ommender model, as well as the fast updating speed. We
tested our system in both practical use and experimental s-
tudies, and the results showed the superiority of our system
for real time hashtag recommendation for tweet streams.

5. ACKNOWLEDGEMENT
This research was supported by the National Natural Sci-

ence Foundation of China under Grant No. 60933004, 61073019
and 61272155.

6. REFERENCES
[1] B. Chandramouli, J. J. Levandoski, A. Eldawy, and

M. F. Mokbel. Streamrec: a real-time recommender
system. In SIGMOD, pages 1243–1246, 2011.

[2] E. Diaz-Aviles, L. Drumond, L. Schmidt-Thieme, and
W. Nejdl. Real-time top-n recommendation in social
streams. In ACM Recsys, pages 59–66. ACM, 2012.

[3] S. Ertekin, J. Huang, L. Bottou, and L. Giles. Learning
on the border: active learning in imbalanced data
classification. In CIKM, pages 127–136. ACM, 2007.

[4] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In ICDM, pages
263–272. IEEE, 2008.

[5] J. Vitter. Random sampling with a reservoir. TOMS,
11(1):37–57, 1985.

[6] S. Yang, B. Long, A. Smola, H. Zha, and Z. Zheng.
Collaborative competitive filtering: learning
recommender using context of user choice. In SIGIR,
volume 11, pages 295–304, 2011.

[7] H. Yu. Svm selective sampling for ranking with
application to data retrieval. In KDD, pages 354–363.
ACM, 2005.

[8] P. Zhao, S. Hoi, R. Jin, and T. Yang. Online auc
maximization. In ICML, 2011.

1257

