
Graph Queries in a Next-Generation Datalog System

Alexander Shkapsky
University of California,

Los Angeles

shkapsky@cs.ucla.edu

Kai Zeng
University of California,

Los Angeles

kzeng@cs.ucla.edu

Carlo Zaniolo
University of California,

Los Angeles

zaniolo@cs.ucla.edu

ABSTRACT
Recent theoretical advances have enabled the use of special
monotonic aggregates in recursion. These special aggregates
make possible the concise expression and efficient implemen-
tation of a rich new set of advanced applications. Among
these applications, graph queries are particularly important
because of their pervasiveness in data intensive application
areas. In this demonstration, we present our Deductive Ap-
plication Language (DeAL) System, the first of a new gen-
eration of Deductive Database Systems that support appli-
cations that could not be expressed using regular stratifi-
cation, or could be expressed using XY-stratification (also
supported in DeAL) but suffer from inefficient execution.
Using example queries, we will (i) show how complex graph
queries can be concisely expressed using DeAL and (ii) il-
lustrate the formal semantics and efficient implementation
of these powerful new monotonic constructs.

1. INTRODUCTION
The recent revival of interest in Datalog [5] is driven by

various developments that include the emergence of natural
application areas, such as computer networking [13], paral-
lel and distributed programming [10], and distributed data
management [2], and the success of industrial-strength sys-
tems [9]. Additional drivers have been Datalog’s uses in (i)
advanced computational and semantic models [10, 7], (ii)
the Big Data problem [3, 6], and (iii) Data Stream Manage-
ment Systems [18]. Due to space limitations, this is a very
incomplete list, which does not mention many significant
contributions from the past, and the many new contribu-
tions that are emerging now, i.e., in a time that has been
described with terms such as ‘resurgence’ [5], ‘springtime’
[10] and ‘renaissance’ [1] for Datalog1.

1The last term is actually the most fitting, since the Renais-
sance is the era that, after the ‘dark ages’, revived arts and
sciences, producing accomplishments that outshined and
outlasted even the glorious ones of classical times.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

The excitement with these new developments should not
make us overlook the limitations and problems that have
impaired the power and generality of Datalog in the past–
problems that were clearly identified and motivated classi-
cal Datalog research [17, 19, 8, 15, 12, 16]. These seminal
works have recognized a key problem as that of supporting
aggregates in recursion, which are needed to support effi-
ciently many applications, including graph queries. Many
graph queries require recursive aggregation to compute an
aggregate value for a vertex based on an aggregate value pro-
duced earlier for connected vertices. For example, PageRank
iteratively calculates the probability for a document being
visited by aggregating the transition probability for those
documents linking to the document.

The previous solutions proposed were quite limited in
their scope, and to the best of our knowledge, they were not
supported in any Datalog system, forcing programmers to
hand-code and manually tune procedural implementations.
Even when expressed in XY-stratified rules [4], recursive
programs with aggregates suffer from inefficient query eval-
uation performance. In this springtime for Datalog, a more
general theory has sprouted to life [14], providing the formal
basis for the very practical language and system extensions
that are the focus of our demo. Space constraints force us to
limit this presentation to a general overview, whereas details
and formal proofs are given in [14].

In this paper, we present our Deductive Application Lan-
guage (DeAL) System2, a next-generation Datalog system
we have developed at UCLA, building on earlier Deductive
Database technology [4]. DeAL supports negation, built-in
and user defined aggregates, and non-monotonic aggregation
via XY-stratification, and more importantly, the new mono-
tonic aggregate extensions discussed in Section 2. With sup-
port for many powerful constructs, a wide range of complex
applications can be declaratively expressed and executed ef-
ficiently in our system. In this demonstration, we focus on
DeAL’s support for graph queries due to their data inten-
sive nature and importance in several application domains,
including the web, social networks and computer networks.
We show how DeAL’s monotonic aggregate syntax for recur-
sive rules is natural and allows for the expression of powerful,
yet elegant graph queries.

In the following section, we will review our monotonic
aggregate extensions supported in DeAL. Section 3 provides
an overview of the DeAL System architecture. Section 4
presents example advanced applications. Section 5 describes
our demonstration and we conclude in section 6.

2http://wis.cs.ucla.edu/deals

1258



2. MONOTONIC AGGREGATES
DeAL supports the standard SQL aggregates and user-

defined aggregates. These are non-monotonic aggregates
(w.r.t. set containment) and therefore can only be used
in stratified programs, i.e., with the same constraints regu-
lating the use of negation in programs. DeAL also supports
XY-stratification that is a form of explicit (i.e., compile-time
recognizable) local stratification that was first introduced
by LDL++ [4] and recently proved quite useful in the par-
allelization of advanced analytics in MapReduce distributed
execution environments [6]. The important novelty of DeAL
however is that it introduces the two monotonic aggregates
fsmax and fscnt that can be used freely in recursive defini-
tions. The formal semantics of these two aggregates is based
on the DatalogFS work which proved that a least-fixpoint
semantics, and its equivalent unique minimal model seman-
tics, exist for these [14]. Given that their formal seman-
tics has already received in-depth treatment [14], we will
next concentrate on their intuitive appeal and expressivity,
through a variety of examples, and then describe the basics
of their efficient implementation. These topics are the focus
of discussion for our demonstration.

2.1 The fsmax Aggregate
We present the fsmax construct through an example using

Bill of Materials (BOM), a classical recursive application for
traditional Database Management Systems. In BOM, the
database contains a large set of assbl(Part, Subpart, Qty)
facts which describe how a given part is assembled using
various subparts, each in a given quantity. Not all subparts
are assembled, basic parts are instead supplied by exter-
nal suppliers in a given number of days, as per the facts
basic(Part, Days). Simple assemblies, such as bicycles, can
be put together the very same day in which the last basic
part arrives. Thus, the time needed to deliver a bicycle is
the maximum of the number of days that the various basic
parts require to arrive.

Example 1. How many days until delivery?

delivery(Part, fsmax〈Days〉)← basic(Part, Days).
delivery(Part, fsmax〈Days〉)← assbl(Part, Sub, ),

delivery(Sub, Days).
actualDays(Part, max〈Days〉)← delivery(Part, Days).

We use the notation for aggregates that is used in LDL++
[4], and thus max denotes the usual non-monotonic aggregate
that can also be expressed using negation. However fsmax

denotes the new fs-aggregates introduced in [14] which are
monotonic. For fsmax monotonicity is achieved by simply
viewing this as a continuous function, which along with pro-
ducing the maximum value of days required for a part to
arrive also produces all the positive integers up to and in-
cluding the max. In other words, where max might return the
pair (Bolt, 4), fsmax will instead return (Bolt, 4), (Bolt, 3),
(Bolt, 2), (Bolt, 1). Thus if, the recursive computation also
produces (Bolt, 3), (Bolt, 2), (Bolt, 1), this can be discarded
because w.r.t. set containment semantics, this is a subset of
the previous. Thus only maxima are significant according to
the value-based set semantics of Datalog. Therefore we now
have maxima in recursion while preserving the declarative
least-fixpoint semantics of Datalog [14].

The standard implementation and optimization techniques
of Datalog, including magic sets and seminaive fixpoint re-
main valid [14]. Moreover when we consider the operational

semantics of the seminaive fixpoint iteration, we see that be-
cause of the final max aggregate used in the actualDays only
maxima are of interest for each part, and lesser values can
be discarded during the recursive computation. This max-
based optimization is applicable whenever the function used
in the body to compute the fsmax argument is monotonically
increasing for positive numbers. In the example at hand this
is trivially true, since Days is transferred from the body to
the head by the identity function, but the same would be
true, if e.g., the argument of fsmax in the head is Days in
the body multiplied by a positive constant. Therefore with
fsmax used in recursion, both the declarative semantics of
Datalog and its efficient implementation are preserved.

As discussed in [14] the fsmax aggregate can be used on
arbitrary positive numbers not just integers. For instance,
the following program computes the maximum probability
path between two nodes in a network where net(X, Y, P) de-
notes the probability of reaching Y starting from X is P.

Example 2. Max Probability Path

reach(X, Y, fsmax〈P〉)← net(X, Y, P).
reach(X, Z, fsmax〈P〉)← reach(X, Y, P1),

reach(Y, Z, P2), P = P1 ∗ P2.
maxP(X, Y, max〈P〉) ← reach(X, Y, P).

This program uses quadratic rules as in Floyd’s shortest-
path algorithm, but linear rules would also be sufficient.
With regards to Floyd’s algorithm, this can also be ex-
pressed in DeAL, but since we only support maxima, the
inverses of the costs of the arcs was actually used in the
computation to find shortest paths [14].

2.2 The Continuous fscnt Aggregate
This monotonic construct performs a continuous count of

the number of distinct occurrences and allows us to express
many queries that could not be expressed efficiently, or could
not be expressed at all, in Datalog with stratified negation or
aggregates. For instance, the following query that counts the
paths between nodes in a directed graph was not expressible
in Datalog with stratified aggregates [16].

Example 3. Counting Paths

cpaths(X, Y, fscnt〈X〉) ← arc(X, Y).
cpaths(X, Z, fscnt〈(Y, C)〉) ← cpaths(X, Y, C), arc(Y, Z).
maxC(X, Z, max〈C〉) ← cpaths(X, Z, C).

The first rule computes that each arc counts as one path
between its nodes. The second rule states that if there are
C distinct paths from X to Y, then the presence of arc(Y, Z)
establishes that there also are C occurrences of distinct paths
from X to Z through Y. The fscnt〈(Y, C)〉 aggregate in the
head performs the continuous count of these occurrences3.

Section 4 includes additional examples and discussion.

3. SYSTEM OVERVIEW
A high-level outline of the DeAL System architecture is

shown in Figure 1. DeAL is implemented in Java and is
currently deployed only in single-node server configuration.

3The final max value of this count can be simply derived by
adding up the max value of each C for each Y–an observation
that is used to greatly expedite the implementation, whereas
at the formal semantic level we use continuous count since
they are monotonic w.r.t. set containment.

1259



Figure 1: System Architecture

As shown in Figure 1, the system components supporting
the execution of monotonic aggregate queries are the Com-
piler, Interpreter and the Relation Manager, which is the in-
memory database for both the extensional database (EDB)
and intensional database (IDB). The system supports both
user-facing interfaces, such as our web based user interface
shown in Figure 2 and our command line client, and external
applications interfacing directly with the server’s API.

As alluded to in Figure 1, there are five steps of compila-
tion in DeAL. In step 1, rules are parsed. In step 2, rules
with aggregates are expanded and rewritten using a gener-
alization of the techniques used in [4]. In step 3, the Clique
Analyzer ensures rules are properly grouped. In step 4, the
rules are formed into a Predicate Connection Graph (PCG),
which is an AND/OR graph describing the program. This
AND/OR graph is then used in step 5 by the Program Gen-
erator to output an execution object graph, which are the
instantiated Java objects of the program to be executed by
the Interpreter. Should a query form be submitted with
bound variables, the compiler will apply techniques such as
magic sets to monotonic aggregates.

4. ADVANCED APPLICATIONS
In this section, we discuss advanced applications to illus-

trate the expressive power of our new monotonic aggregates.

4.1 Traditional DBMS Queries
Traditional Database Management System queries can be

efficiently implemented using DeAL.
Company Control. In the Company Control program

proposed in [15], companies can purchase ownership shares
of other companies. In addition to the shares that company
A owns directly, company A also controls the shares con-
trolled by company B when A has a controlling majority
(> 50%) of B’s shares.

Example 4. Company Control

cshares(A, B, dirct, fsmax〈P〉) ← ownedshares(A, B, P).
cshares(A, C, indrct, fscnt〈(B, P)〉)← bought(A, B),

cshares(B, C, , P).
bought(A, B) ← cshares(A, B, , P), P > 50, A 6= B.

4.2 Graph Analytics
Many Data Mining and Machine Learning applications

use graphs as the underlying model, such as a Markov chain;

and many graph analytics queries use a probability model.
As Example 2 shows, our semantics for monotonic aggre-
gates naturally support probability. This makes many graph
analytics queries easily expressible in DeAL and our opti-
mizations makes query evaluation efficient as well.

Markov Chains and Page Rank. A Markov chain is
represented by the transition matrix W of s×s components
where wij is the probability to go from state i to state j in
one step. A Markov chain is called irreducible if for each pair
of states i, j, the probabilities to go from i to j and from j
to i in one or more steps is greater than zero.

Computing stabilized probabilities of a Markov chain has
many real-world applications, such as estimating the distri-
bution of population in a region, and determining the Page
Rank of web nodes. Let P be a vector of stabilized proba-
bilities of cardinality s, the equilibrium condition in terms
of matrices is: P = W · P . Although computing this fix-
point is far from trivial, irreducible chains can be modeled
quite naturally in DeAL. If p state(X, K) denotes that K is
the rank of node X, 1 ≤ X ≤ s, and w matrix(Y, X, W) denotes
that there is an arc from Y to X with weight W. Then, we
compute the fixpoint as follows:

p state(X, fscnt〈K〉)← p state(Y, C), w matrix(Y, X, W),
K = C ∗ W.

rank(X, max〈K〉) ← p state(X, K).
w matrix(1, 1, w11).
w matrix(1, 2, w12).
...
w matrix(s, s, wss).

Note that each fixpoint of such a program is an equilib-
rium P = W ·P of the Markov Chain represented by matrix
W . We add p state(1, 0.1).p state(2, 0.1)...p state(s, 0.1),
which provided the set of baseline facts of the least fixpoint.

TPbl. For each irreducible Markov chain there exists a non
trivial fixpoint, therefore TP has one that is not null at every
node, and there exists a finite fixpoint for TPbl. Therefore,
the least fixpoint for TPbl is finite. Additionally, in [14] we
have proven the following properties:

• The least fixpoint of the baseline DeAL program that
models an irreducible Markov chain is finite.

• Every non-null solution of an irreducible Markov chain
can be obtained by scaling the least fixpoint solution
of the baseline model produced by DeAL.

In summary, although there has been a significant amount
of previous work on Markov chains, DeAL’s monotonic ag-
gregates provide us with a new method and a simple al-
gorithm which are valid for all irreducible Markov chains,
including periodic ones.

Social Networks. Social Networks is an area rich with
example applications that can utilize DeAL’s monotonic ag-
gregates. Shortest Path queries identify the minimum cost
path from a node to other nodes in the graph. Connected
Component queries are used to identify communities within
a network. The diffusion of innovation, information and
behaviors in a social network can be modeled as a Jackson-
Yariv Diffusion Model (JYDM) [11] and implemented with
monotonic aggregates in DeAL. The approach behind the
efficient execution of a JYDM is discussed in [14].

1260



Figure 2: Web Based UI

5. DEMONSTRATION
The main goals of our demonstration were to (i) expose

the user to DeAL’s graph query capabilities, (ii) familiarize
the user with application domains DeAL is intended for, and
(iii) present the user with an understanding of how recur-
sive aggregate graph queries are efficiently executed in our
system. To achieve (i) and (ii) we allowed the user to exe-
cute prepared queries over our datasets using the web based
user interface pictured in Figure 2. The prepared queries
included our example queries from Sections 2 and 4, as well
as programs for Shortest Path, PageRank and JYDM. Ad-
ditionally, our user interface allowed conference attendees to
write, compile and execute queries.

We had several ways to achieve (iii). First, our user inter-
face provided conference attendees with high-level visualiza-
tions of the intermediate results produced during recursive
monotonic aggregation. Second, to gain further insight into
the efficiency of our approach, attendees were able to explore
execution traces of the computations produced during exe-
cution that lead to the final results. Lastly, we presented live
performance comparisons of DeAL programs written with
the new monotonic extensions against both stratified DeAL
programs and XY-stratified DeAL programs, as the system
supports all three paradigms.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented the DeAL System, a next-

generation Datalog system which features new monotonic
aggregates that efficiently support of a wide range of impor-
tant graph queries. We reviewed our new monotonic ag-
gregates fsmax and fscnt using example queries and we
discussed advanced applications from several domains to
show the general applicability of these extensions. We pro-
vided a high-level overview of the DeAL System architec-
ture. Lastly, we reviewed the details of our demonstration.

Our future work includes investigating the effectiveness
and performance of the parallel fixpoint computation tech-
niques proposed [3] in new DeAL applications. In fact, the
parallelized seminaive fixpoint techniques investigated in [3],
after minor extensions, can now be used for the many ad-
vanced applications supported in DeAL.

Acknowledgements
This work was supported by NSF under grant: IIS 1218471.

7. REFERENCES
[1] S. Abiteboul. Datalog: La renaissance.

http://www.college-de-france.fr/site/

serge-abiteboul/course-2012-05-09-10h00.htm,
2012.

[2] S. Abiteboul, M. Bienvenu, A. Galland, and
E. Antoine. A rule-based language for web data
management. In PODS, pages 293–304, 2011.

[3] F. N. Afrati, V. R. Borkar, M. J. Carey, N. Polyzotis,
and J. D. Ullman. Map-reduce extensions and
recursive queries. In EDBT, pages 1–8, 2011.

[4] F. Arni, K. Ong, S. Tsur, H. Wang, and C. Zaniolo.
The deductive database system ldl++. TPLP,
3(1):61–94, 2003.

[5] P. Barceló and R. Pichler, editors. Datalog in
Academia and Industry–2nd International Workshop,
Datalog 2.0, Vienna, Austria, September 11-13,
volume 7494 of LNCS. Springer, 2012.

[6] Y. Bu, V. R. Borkar, M. J. Carey, J. Rosen,
N. Polyzotis, T. Condie, M. Weimer, and
R. Ramakrishnan. Scaling datalog for machine
learning on big data. CoRR, abs/1203.0160, 2012.

[7] G. Gottlob, G. Orsi, and A. Pieris. Ontological
queries: Rewriting and optimization. In ICDE, pages
2–13, 2011.

[8] S. Greco and C. Zaniolo. Greedy algorithms in
datalog. TPLP, 1(4):381–407, 2001.

[9] T. J. Green, M. Aref, and G. Karvounarakis.
Logicblox, platform and language: A tutorial. In
Datalog in Academia and Industry, pages 1–8, 2012.

[10] J. M. Hellerstein. Datalog redux: experience and
conjecture. In PODS, pages 1–2, 2010.

[11] M. O. Jackson and L. Yariv. Diffusion on social
networks. Economie Publique, 16:3–16, 2005.

[12] P. G. Kolaitis. The expressive power of stratified logic
programs. Information and Computation, 90(1):50–66,
1991.

[13] B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay,
J. M. Hellerstein, P. Maniatis, R. Ramakrishnan,
T. Roscoe, and I. Stoica. Declarative networking.
Commun. ACM, 52(11):87–95, 2009.

[14] M. Mazuran, E. Serra, and C. Zaniolo. Extending the
power of datalog recursion. The VLDB Journal,
22(4):471–493, 2013.

[15] I. S. Mumick, H. Pirahesh, and R. Ramakrishnan. The
magic of duplicates and aggregates. In VLDB, pages
264–277, 1990.

[16] I. S. Mumick and O. Shmueli. How expressive is
stratified aggregation? Annals of Mathematics and
Artificial Intelligence, 15:407–435, 1995.

[17] K. A. Ross and Y. Sagiv. Monotonic aggregation in
deductive databases. Journal of Computer and System
Sciences, 54(1):79–97, 1997.

[18] C. Zaniolo. Logical foundations of continuous query
languages for data streams. In Datalog in Academia
and Industry, pages 177–189, 2012.

[19] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass,
V. S. Subrahmanian, and R. Zicari. Advanced
Database Systems. Morgan Kaufmann, 1997.

1261


