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ABSTRACT

This demo presents thRoadframework for evaluating predictive
queries on moving objects for road networks. The main premis
of the iRoadsystem is to support a variety of common predictive
queries includingpredictive pointquery, predictive rangequery,
predictive KNN query, andpredictive aggregateuery. TheRoad
framework is equipped with a novel data structure, nareedha-

bility tree, employed to determine the reachable nodes for a mov-

ing object within a specified future tiniE. In fact, thereachability

tree prunes the space around each object in order to significantly

reduce the computation time. SRoadis able to scale up to han-
dle real road networks with millions of nodes, and it can pssc
heavy workloads on large numbers of moving objects. Durlirgg t
demo, audience will be able to interact witkoadthrough a well
designed Graphical User Interface to issue different tgppsedic-
tive queries on a real road network, to obtain the predittaetmap
of the area of interest, to follow the creation and the dymanp-
date of the reachability tree around a specific moving oppeud
finally to examine the system efficiency and scalability.

1. INTRODUCTION

The progression of GPS-enabled devices, e.g., in-car GR8t s
phones inspires a wide range of location-aware servicgs,find-
ing nearby facilities. An essential category of these sewiis
based on objects future locations under the nanpeaafictivequeries
[2, 3, 4, 5]. Predictive queries are concerned with the wdiawats
of a set of moving objects in the near future. Primarily, nuoos
applications can benefit by considering the manipulatiompref
dictive queries such as traffic management, aircraft managg
routing, ride sharing, and advertising.

In this demo, we present tlieoadframework to support predic-
tive query processing on moving objects for road networkbe T
basic query we address herepiedictive pointquery, to find out
the objects predicted to show up around a certain node within
given time units in the future. This fundamental query eeatthe
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prediction to be done on the lowest level, node, in the ugderl
ing road network. Standing on this building block queRpad
also supports a wide variety of predictive queries withénfiame-
work includingpredictive rangeguery,predictive KNN query, and
predictive aggregatejuery. By the deployment dRoad system,
location-based services offered by many real applicatears be
improved, for example;

Traffic Management Systems.By employingiRoad framework,
traffic management systems can benefit from running a bunch
of predictive queries such gsedictive aggregatejuery to
find an estimate for the number of cars expected to be inside a
certain region, e.g., down town, in the next time period,,e.g
20 minutes, from now. So they can take actions to handle
possible congestion in advance. Users do not have to write
SQLcode to issue their queries, instead, through the usage of
the nice graphical user interface i®foad users can simply
draw a rectangle on a map to highlight the area of interest
and enter a value for future prediction time period. Then the
system returns the number of objects expected to be in the
query rectangle within the specified time units. In addition
iRoad offers another smart tool named predictive heatmap.
Through one quick look at the predictive heatmap, user can
figure out which areas are expected to be over crowded.

Ride Sharing Systems.The main objective of ride sharing appli-
cations is to find the driver/rider closest to a rider/drigar-
rent location. By embeddingoadframework, the ride shar-
ing services can be enhanced by issuprgdictive range
query to find out the drivers expected to be nearby a rider’s
location in the near future. This helps users to better plan
their trips and avoid wasting their times waiting for a drive
to showup around their locations specially in uncomfoeabl
conditions, e.g., bad weather, dangerous areas.

Location-based Advertising. By leveragingiRoadto run predic-
tive KNN query, a store in a sale season can send electronic
coupons to theX, e.g., seven, costumers that most likely
to show up around its location within the nextime units,
e.g., next 30 minutes. This paradigm allows location-based
advertising to go beyond current closest customers tottarge
possible closest ones in the near future. Sending coupahs an
promotions to those possible customers can encourage them
to stop by the store which in turns increase the effectivenes
of advertising for both business owner and consumer.

The main idea ofRoadsystem is to employ a novel data struc-
ture, namedeachability tree to hold the nodes reachable within a
certain time frame/” from an object current location. We assume
that objects follow shortest paths during their travel freaurce



to destinations [6, 7]. So, we organize the nodes insdehabil-

ity treesaccording to the shortest path from the object start node
which is the root of the tree. The time frarffeis a controllable
parameter used to determine the maximum prediction tiRoad
can support. However, we use 30 minutes as a default value for
T, based on the finding that mean trip length for private cai®is
minutes, NHTS [7]. By employing the reachability tre@pad

is able to prune the space around each object which sigrtifjcan
shrinks the number of nodes to be considered for predictijgch
possible destinations. A probability value is assignedaithenode
according to its position in the tree, such that closer nduee
higher probabilities. The probability of a nodg being a destina-
tion to the objecO is equal to the probability of its parent noglg
divided by the number of children of;, where the probability of
the object’s current node is one. According to the undeghap-
plication requirements, the system can be adjusted todensnly
objects with probabilities above a certain thresh@ldn the re-
ported answers. Based on this technique, handling largbeuof
objects can be done efficiently which guarantees the stisyadsii
theiRoad To control the depth of the reachable traBxadoffers
another tunable parameter,to compromise between the storage
consumption and computation overhead. Whénset to its min-
imum value, zero, a new reachability tree has to be obtaiaet e
time the object leaves its current node. This means, lesaggo
needed to hold the trees but more computation for trees remast
tion and pruning. On the other side, wheis set to its maximum
value, T, one tree only will be used during the object whole trip,
which means more storage to hold much bigger tree, but leas co
putation overhead.

2. SYSTEM OVERVIEW

In this section, we define the basic query we support, andits a
sumptions and extensions, then we briefly describéRbaddata
structures and modules.

Query. Initially, we focus on addressing thpeedictive pointquery

as our basic query on road networks. Tiredictive pointquery
can be formalized as: “Given (1) a set of moving obje@ts(2) a
road network grapl® = (V, E, W, whereV is the set of nodes

is the set of edges, andl is the edges weights (i.e., travel times),
(3) a maximum prediction tim&, and (4) a predictive point query
Q(v, t), wherev € V, andt is a time period such that< 7, we
aim to find the set of object® € O expected to show up around
the nodev within the future timet. The returned result should
identify the objects along with their probabilities to shap at the
node of interest. For example, within the next 30 mins, alj&cis
expected to be at nodg with probability 0.8, so, the query result
will be R(Q(v3,30)) ={<01,0.8>}.

Assumptions.We assume that moving objects follow shortest paths
in their routing trips. The intuitions behind this assuroptis based
on the fact that most of the moving objects, e.g., driveavet
through shortest paths to the destinations [6, 7]. Thealue is
bounded by the finding that the average trip length for peiwars

is approximately 19 minutes, national household traveleyf7].
Extensions. We consider thepredictive pointquery as a build-
ing block upon whichRoadcan support other types of predictive
queries including: (iPredictive rangequery, where a user defines
a query region that might contain more than one node and asks f
the list of objects expected to be inside the boundaries aif rix
gion within a specified future time, (iiPredictive KNN query to
find out the K objects expected with the highest probability to be
around the node of interest within a certain time period, @ind
Predictive aggregatejuery to return the number of predicted ob-
jects to be inside a given region in the next time period.
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Data Structures. In iRoad there are three basic data structures to
maintain: (1)Road Network Grapleontains a set of nodés and
edgesE, the edges weights in terms of travel times. For each node
v in the road network, we store thpredicted answero carry a
list of objects predicted to show up around the nedsith their
probabilities in the future time, determined in the query, e.g., 20-
minute. (2)Reachability Tregthe core data structure insideoad

For each node in the underlying road network graj we build

a reachability tree withv as a root, to hold all nodes reachable
to v within a prespecified time fram@&. Detailed discussion in
Section 3. (3)Trip History, for each moving object, we maintain a
buffer to hold the recent history of an object during its predrip.
System Architecture. Figure 1 gives the architecture of thiRoad
framework, which consists of two main modules, namelyntioge-
ment handlemodule and theuery processomodule. A brief il-
lustration will be provided in Section 4 and 5 respectively.

3. REACHABILITY TREES

Our proposed systetiRoad intelligently employs a novel data
structure namectkachability treeto prune the road network around
each moving object. Yet, only nodes reachable to an objact st
location within a specified time limil” are obtained and organized
in a tree structure rooted by the object start node. The tigend
zation is based on the shortest path from the root node tethef
nodes in theeachability tree meaning that, traversing a tree from
the root node to a leaf node gives the shortest path from ttda@o
this leaf.

By pruning the space around each moving object, we signifi-
cantly reduce the computation overhead required to conmgude
update the predicted objects along with their probabdiae each
node in the underlying road network. The usageezfchability
tree facilitates the computation of the probability that the emtj
will be at each reachable node within a certain time unitepBy,
the probability of an objedD; to be at a certain nodeaftert time
units is equal to one divided by the number of nodes in thetsad-
underneath the object current node Surely, the employment of
reachability treednside theiRoadframework improves the query
processing efficiency and guarantees the system scalabillie
reason for that is because the possible destinations ofdkiction
become limited. Thus, we only need to consider a limited rermb
of nodes for predication computation, instead of milliofisades
in a real road network. Therefori&koadcan efficiently scale up to
support large number of objects over real sized road nesvork

The main idea to constructreachability treds to use a best-first
expansion algorithm, similar to incremental network exgian al-
gorithm INE [8], to visit the nodes and edges on the road n¢wo
that are reachable through shortest path traversing. Ptimscon-
struction, we consider two parameters, the prediction finvehich
determines the maximum prediction tinfRoad can support, and
the time buffere which takes values from zero 6 to decide the



§ % Juap | smeins |
@ s 3

Predictive Query Results (in 15 mins ) H
Location

Object ID Probability %

0ID 526 377794122 4252 65%

oD 219 37.7804,-122.4220 60%

oD 314 37.7815.-122 4305 50%

0oID 921 37.7781,-122.4279 18%

oD 858 37.7794,122.4252 15%

oID 423 37.7819.122 4211 10% Gapen

Figure 2: iRoad GUI for Predictive Range Query

depth of thereachability tree The basiaeachability treeis able

to hold nodes reachable to an object in a limited time boundar
if the object travels over that time boundary, we need toinkda
new reachability tree. We can load a new reachability tree if
precomputed and saved on disk in advance or instantly caniput
during the run time. In all cases, it is time consuming to wbta
a new reachability tree with each single movement of an ébjec
On the other side, we can obtain one huge reachability tegeath
lows the handling of the whole object trip without the neetbtd
other trees. As a side consequence, the system will ovemvtied
available storage. In between the two extremes, we providma
trollable parameter to allow the system to decide a buffer time for
each reachability tree as a tradeoff between the query psoue
cost and the storage overhead. Whés equal to zero, this means
consuming less storage but with more computation overtvetaite
the vise versa will occur with equal to7.

4. MOVEMENT HANDLER

This module is triggered when there is an object startingva ne
trip, @ new movement for existing object, or an object ensistitr-
rent trip. The idea of thenovement handlenodule is to limit the
updates caused by an object movement by limiting the spacedr
each object. This is done by setting the maximum prediciioe t
we can support to a specific time limit, e.g., 30 minutes, in the fu-
ture. This space framing significantly reduces the costumes to
update all nodes in the underlying road network graph bytiigi
update to those nodes inside the in-hagmthability tree Initially,
when an object starts a new trip, thrvement handlezonstructs
a reachability treeto hold the object limited space. Then, the list
of predicted answerassociated with each node in this tree is up-
dated by inserting a new record carrying object identifiet ainject
probability. Once, the object leaves its current node tove ore,
we cascade deleting the object record from phedicted answers
in all nodes no longer on the shortest paths from the objest ne
node. At this moment, the sub-tree under the object new rede i
expected to be much smaller, yet, the probability to visjt aithe
nodes in this sub-tree increases. Therefore, we travezstitree
rooted by the object new node to reflect the new probabilityhen
predicted answers

It is worthy to mention here thaRoadoffers another adjustable
probability thresholdP. By tuningP, themovement handlenod-
ule can be controlled to consider only the movement thatesatie
probability to be above a certain val@® otherwise, it is ignored.
For example, when an objeCt starts its trip, it is expected to have
many reachable nodes, e.g., 200 nodes, from the startdacdthe
probability of O, to be at each of these nodes will be very small,
e.g., 0.05, and not significant in some applications, eajffi¢ man-

Figure 3: iRoad GUI for Predictive HeatMap

agement. So, the system can be controlled to ignore updtiting
predicted results with this probability until it becomeggler than a
specifiedP value, e.g., 0.10, which intuitively saves proportion of
the computation overhead.

5. QUERY PROCESSOR

The main idea of processing predictive queriesRoad is to
have the predicted objects at each node precomputed in @lvan
by themovement handlenodule, so for coming queries, tqaery
processomodule fetches those results, adapts them according to
the type of received query and returns the answer in a vety fas
response time.

To evaluate gredictive pointquery, thequery processomod-
ule initially finds the node of interest for which the quenaiking
about its predictable objects. Then, it retrieves the prgmded
predicted answesaved with this node. For predictive range
query, where the user asks for the prediction inside a retjiah
might contain many nodes rather than single nodegtrexy pro-
cessorcombines the answers at those nodes of interest into a sin-
gle basket by taking the union of tipeedicted answelists associ-
ated with them. This will get ride of redundant objects. Tafyun
the probabilities for object that appears in the result ofartban
one node of interest, we use the maximum probability amang it
occurrences. Finally, according the query type, (predictange,

K NN, aggregate), we adjust the in hand results. For example if th
combined predicted results{sc01,0.75>, <0,,0.25>, <03,0.35>,
<04,0.65>}, the final answer for predictive aggregate query will
indicate that two objects are expected to show up at the noides
interest, while for predictivd( NN query with K = 3, the answer
will contain the three objects with highest probabiliti¢6):, O4,
Os}, and for predictive range query, the four objects will beelis

in the returned final query result.

6. DEMO SCENARIOS

This section presents the demo scenarios oiRbadframework
to illustrate its main functionalities through nicely dgséd set of
graphical user interfaces. During this demo, we will be wear
two hats, the first is the users’ one to describe how they careis
predictive queries and the formats of the results they veceihile
the second is the system one to give an insight on its intemwet
ations and depict the hidden processing required to anssezsu
queries. The demo is based on a large set of synthetic datavef m
ing objects generated using the Brinkhoff’s generator fLhaeal
road network map extracted from the shape files of differenne
ties in USA. TheRoadserver is written in Java while the interfaces
are web-enabled implemented using a combination of javptser
HTML, and CSS. Four different scenarios will be providedidgr
the demonstration venue, described as follows.
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Figure 4: Reachability Tree Dynamics in iRoad Framework

6.1 Scenario 1: Issuing Predictive Queries shrinking the in-hand tree when the object moves furtherdiéfer-
Initially, the audience can interact with tiRoadsystem by issu- ~ €nt node, uploading new reachability tree when the trip goes

ing different types of predictive queries including preilie point, the preset maximum prediction tin, or pruning the yet loaded

range, KNN, and aggregate queries. Figure 2 gives a screen shot!ree by cutting out some branches based on the recent ttgris

for a predictive range query where a user specifies a redmngu The audience also can control the system behavior by chautigin

region that contains a number nodes on the map of San Francisc € value to decide the depth of reachability trees.

USA, and 15 minutes as the prediction time frame. Then the sys ; .

tem responds by the list of objects predicted to show up étid 6.4 Scenario 4: Stress Test

boundaries of the query region within the 15 minutes. Therned ~ This scenario is a stress test for tifioad framework. Its ob-
answer has three columns, objectld as identifier, latituddangi- jective is to give a glance on the system efficiency and sdajab
tude of the current location of the predicted objects, ardtioba- by running the system on heavy workloads. This is done by exe-

bility of how likely this object will be there within the det@ined cuting batches of queries, rather than a single query, andsing
time period. The resulted objects are plotted as car iconthen large road networks that contain millions of nodes, instefaamall
map. For predictivdc NN query, the user can select a value for county or city, and large numbers of moving objects prepaséug
to list only the K objects with the highest probability to appear in  the Brinkhoff generator. The audience will be able to exantire
the query region. size of the used data sets and choose between differentosoikl
of road networks, queries, and moving objects. Then theysean
6.2 Scenario 2: Predictive HeatMap the system parameters such as maximum prediction fimehe
Figure 3 provides a screen shot for predictive heatmap wisich ~ éachability tree buffee, and the probability threshol®. In addi-
be seen as a set of predictive point queries that cover eiregles tion, audllence vylll be able to assess the overall systenopasgnce
node in a wide area of the map. Using the predictive heat map, a through inspection of the generated charts and graphsttbatthe
dience can monitor the predicted objects in the area oféstemd ~ CPU and memory costs for executing each workload.
watch the updates on the predicted result using a nice ociense.
Heat map colors the zone around each node in the underlyipgma 7.  REFERENCES
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