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ABSTRACT
Efficient processing of skyline queries has been an area of
growing interest over both static and stream environments.
Most existing static and streaming techniques assume that
the skyline query is applied to a single data source. Un-
fortunately, this is not true in many applications in which,
due to the complexity of the schema, the skyline query may
involve attributes belonging to multiple data sources. Re-
cently, in the context of static environments, various hybrid
skyline-join algorithms have been proposed. However, these
algorithms suffer from several drawbacks: they often need to
scan the data sources exhaustively in order to obtain the set
of skyline-join results; moreover, the pruning techniques em-
ployed to eliminate the tuples are largely based on expensive
pairwise tuple-to-tuple comparisons. On the other hand,
most existing streaming methods focus on single stream sky-
line analysis, thus rendering these techniques unsuitable for
applications that require a real-time “join” operation to be
carried out before the skyline query can be answered. Based
on these observations, we introduce and propose to demon-
strate SkySuite: a framework of skyline-join operators that
can be leveraged to efficiently process skyline-join queries
over both static and stream environments. Among others,
SkySuite includes (1) a novel Skyline-Sensitive Join (SSJ)
operator that effectively processes skyline-join queries in
static environments, and (2) a Layered Skyline-window-Join
(LSJ) operator that incrementally maintains skyline-join re-
sults over stream environments.

1. INTRODUCTION
Recently, there has been a growing interest in the effi-

cient processing of skyline queries over both static [5, 2] and
stream environments [7, 14]. Given a set, D, of data points
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Figure 1: Skyline of late-night restaurants

in a feature space, the skyline of D consists of the points
that are not dominated1 by any other data point in D [2].
Intuitively, the skyline is a set of interesting points that help
paint the “bigger picture” of the data in question, providing
insight into the diversity of the data across different features.

Searching for non-dominated data is valuable in many ap-
plications that involve multi-criteria decision making [11].
For instance, students in a university who stay up late at
night and need a snack at odd hours might find the skyline
of late-night restaurants useful. Figure 1 shows the ratings
and closing times of a set of restaurants: the points that are
connected represent restaurants that are part of the skyline;
this includes highest-rated restaurants that are open late
into the night. Other restaurants are not part of the skyline
because they are dominated in terms of time and/or rating
by at least one restaurant that is in the skyline. The shaded
area in Figure 1 is the dominance region of restaurant b: for
any restaurant in this range, b is either open till a later time
and/or has a better rating; therefore b is said to be more
interesting than all restaurants it dominates.

A particular shortcoming of existing static and stream
skyline algorithms is that they primarily focus on single-
source skyline processing in which all required skyline at-
tributes are present in the same source. However, there are
many applications in both static and stream environments
that require integration of data from different sources. In
such scenarios, the skyline query may involve attributes be-
longing to different data sources, thus making the join op-
eration an integral part of the overall process. For instance,
in static environments integrated skyline-join queries maybe
necessary over complex schemas in which the data is dis-
tributed onto many sources, whereas in stream environments
such integration is needed for streams that originate from

1A point dominates another point if it is as good or better
in all dimensions, and better in at least one dimension.
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Figure 2: The SkySuite framework

different sensors or from multiple sources in a distributed
publish/subscribe architecture.
Going back to our earlier example, in addition to the time

and restaurant rating attributes shown in Figure 1, students
might also consider the distance of a restaurant to the uni-
versity to be a factor in their decision-making process. If this
information is available from a different source, we would
then need to join the relevant sources in order to obtain the
restaurants that are part of the skyline.
Motivated by the above observations, we propose

SkySuite: a framework of skyline-join operators that can
be used to process skyline-join queries over both static and
stream environments (Figure 2). In particular, we demon-
strate (1) the Skyline-Sensitive Join (SSJ) operator [8] that
processes skyline-join queries in static environments, and (2)
the Layered Skyline-window-Join (LSJ) operator [9] that in-
crementally maintains skyline-joins in stream environments.
The rest of the paper is structured as follows: in Section 2,

we give an overview of the existing work in the field of skyline
query processing. Section 3 presents the suite of skyline-
join operators. In Section 4, we discuss the demonstration
scenarios. Lastly, we conclude the paper in Section 5.

2. RELATED WORK
The task of finding the non-dominated set of data points

was attempted by Kung et al. [5] in 1975 under the name
of the maximum vector problem. Kung’s algorithm lead to
the development of various skyline algorithms designed for
static [2, 16] and stream environments [7, 14].

2.1 Skylines over a Single Static Data Source
Borzsonyi et al. [2] were the first to coin and investigate

the skyline computation problem in the context of databases.
Later contributions to skyline query processing include sort-
based techniques (SFS [3]), progressive methods (bitmap
and index [13]), and online algorithms [10].

2.2 Skylines on Multiple Static Data Sources
Some of the prior work on skylines over multiple static

data sources include [4, 12, 16]. Sun et al. [12] introduce
an operator called skyline-join, and two algorithms to sup-
port skyline-join queries. The first extends the SaLSa algo-
rithm [1] to cope with multiple relations, whereas the second
algorithm (Iterative) prunes the search space iteratively.
More recently, Vlachou et al. [16] introduced the Sort-

First-Skyline-Join (SFSJ) algorithm that fuses the identi-
fication of skyline tuples with the computation of the join.
SFSJ provides a way to prune the input tuples if they do not
contribute to the set of skyline-join results, thus reducing the
number of generated join results and dominance checks.

However, SFSJ does not carry out the pruning in a block-
based manner and largely depends on time-consuming tuple-
to-tuple comparisons to find the pruned region. The Skyline-
Sensitive Join (SSJ) operator, demonstrated in this paper,
overcomes this drawback by pruning the join space in terms
of blocks of data, as opposed to individual data points,
thereby avoiding excessive point-to-point dominance checks.

Over the last decade, the advent of a wide array of stream-
based applications has necessitated a push towards the de-
velopment of algorithms that take into consideration the
constant changes in stream environments. The following sec-
tions provide an overview of the existing work in the fields
of skyline and join query processing over streaming data.

2.3 Join Processing over Data Streams
[17] presents a symmetric hash join method that is op-

timized for in-memory performance. Following this, a
plethora of techniques have been developed for processing
join queries over data streams [6, 15]. Many of these focus
on eliminating redundancy in join processing to maximize
the output rate [6]. Others focus on memory; they present
join processing and load shedding techniques that minimize
loss in accuracy when the memory is insufficient [15].

2.4 Skyline Processing over Data Streams
As mentioned earlier, in the conventional setting of static

data, there is a large body of work for both single-source
skyline processing [2, 3, 1] and multiple source skyline-join
processing [12, 16]. These methods assume that the data is
unchanging during query execution and focus on computing
a single skyline rather than continuously tracking skyline
changes. Recently, several algorithms have been developed
to track skyline changes over data streams. These methods
continuously monitor the changes in the skyline according
to the arrival of new tuples and expiration of old ones.

Data stream skyline processing under the sliding window
model is addressed in [7] and [14]. An important issue
that needs to be addressed here is the expiration of sky-
line objects. To tackle this issue, Tao et al. present the
Eager algorithm [14] that employs an event list, while Lin
et al. propose a method (StabSky) that leverages dominance
graphs [7]. Both these methods memorize the relationship
between a current skyline object and its successor(s). Once
skyline objects expire, their successor(s) can be presented as
the updated skyline without any added computation.

The above-mentioned approaches focus on skyline queries
in which the skyline attributes belong to a single stream,
thus rendering them inapplicable to the problem of comput-
ing skyline-joins over multiple streams. In this paper, we
demonstrate the novel Layered Skyline-window-Join (LSJ)
operator; this operator is first of its kind for answering
skyline-window-join (SWJ) queries over data streams.

3. SKYSUITE
This section introduces SkySuite: a framework of skyline-

join operators for processing skyline-join queries over both
static and stream environments (Figure 2). In particular, we
explain the methodologies behind the Skyline-Sensitive Join
(SSJ) and Layered Skyline-window-Join (LSJ) operators.

3.1 SSJ Operator for Static Environments
At the core of the SSJ operator are two skyline-join algo-

rithms, namely S2J (skyline-sensitive join) and S3J (symmet-
ric skyline-sensitive join) [8]. Both S2J and S3J are single-
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Figure 3: S2J and S3J efficiently process skyline-join
queries over static data [8]
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Figure 4: (a) Viewing layers as separate “virtual
streams” that feed the upper layers of iteration; (b)
Sample SWJ execution for 6 consecutive windows
(10% new and 10% expiring tuples per window):
the plots show that the skyline-join process iterate
somewhere between 20 to 35 times for different win-
dows and the overlaps (among consecutive windows)
of tuples considered at different layers of iterations
remain high across layers of iteration

pass, two-way skyline-join algorithms that avoid tuple-to-
tuple dominance checks wherever possible. These algorithms
rely on a novel layer/region pruning (LR-pruning) strategy
in order to avoid excessive pairwise dominance checks.
The key features of S2J are as follows:

• The tuples in the outer table are organized into layers
of dominance.

• The tuples of the inner table are clustered into regions
based on the Z-values of the skyline attributes to sup-
port block-based pruning.

• A trie-based data structure on the inner table keeps
track of the so-called dominated, not-dominated, and
partially-dominated regions of the inner table relative
to the layers of the outer table.

• S2J obtains the skyline set by scanning the outer table,
only once, while pruning the inner table.

S3J is similar to S2J in principle, but repeatedly swaps
the roles of the outer and inner tables. One key outcome
of this strategy is that (unlike S2J, where the outer table
is fully scanned), S3J rarely needs to scan any of the input
tables entirely in order to obtain the set of skyline points.
The effectiveness of S2J and S3J compared to the SFSJ

methods [16], PrefJoin [4], and iterative skyline-join [12] can
be seen in the sample experimental result shown in Figure 3.
Please refer to [8] for further details.

3.2 LSJ Operator for Stream Environments
The LSJ operator processes SWJ queries over two data

streams by maintaining skyline-join results in a layered, in-
cremental manner. It continuously monitors the changes in
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Figure 5: The LSJ operator effectively handles
skyline-join queries over streaming data [9]

the data streams, and eliminates redundant work between
consecutive windows by leveraging shared skyline objects
across all iteration layers of skyline-join processing.
LSJ is based on the observation that the consecutive it-

erations of the algorithm, spanning multiple windows, can
be viewed as separate iteration layers (Figure 4(a)). The
key insight here is that overlaps exist not only at the lowest
data layer (across consecutive data windows), but also at the
individual iteration layers, where the tuples processed can be
considered as “virtual streams” that evolve from one window
to the next (see Figure 4(b) for a sample execution).

Therefore, we argue that if we naively execute the SWJ
operation by applying the iterative skyline join algorithm
separately for each window, we can end up with significant
amount of redundant work. We further argue that if we can
quickly identify and eliminate these per-layer overlaps, we
can achieve significant savings in processing time.

Based on these insights, we develop the iteration-
fabric [9]; this forms the backbone of the LSJ operator. The
iteration-fabric helps combine the advantages of two exist-
ing skyline methods, StabSky [7] and Iterative [12], in de-
veloping a Layered Skyline-window-Join (LSJ) operator that
maintains skyline-join results in an incremental manner by
continuously monitoring the changes in the input streams
and leveraging any overlaps that exist between the data con-
sidered at individual layers of consecutive sliding windows.

The efficiency of the LSJ operator compared to Naive,
ISJ [9], and LSJ (l = 1) (where LSJ is applied only at the
first layer of each window) is illustrated in the sample results
shown in Figure 5. Please refer to [9] for further details.

4. USER INTERACTION SCENARIOS
This section describes the demonstration scenarios. We

will use real data sets (JCI building energy simula-
tion/observation2, NBA3 and Intel Berkeley Research4) and
the TPC-H benchmark data sets5. Through an interactive
graphical user interface, the attendees of this demonstration
will be able to experience the suite of skyline-join operators
up close and personal. Described next, are some example
user interactive demonstration scenarios.

4.1 Twoway SkylineJoins over Static Data
This scenario demonstrates how the SSJ operator is de-

signed to handle skyline-joins between two static data sets.

2JCI is an energy IT company, with access to model, simu-
lation, and sensory data for buildings of all types and sizes.
3http://skyline.dbai.tuwien.ac.at/datasets/nba/.
4http://db.csail.mit.edu/labdata/labdata.html.
5http://www.tpc.org/tpch/default.asp.
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As seen in Figure 2, the SSJ operator utilizes the S2J and S3J

algorithms, interchangeably, to execute skyline-join queries.
This query scenario is executed over the NBA and TPC-H
benchmark data sets. Attendees of this demonstration will
be able to compare the performance of S2J and S3J against
other algorithms, and will be able to observe the behaviour
of the SSJ operator over different skyline-join queries.

Example 1 (SSJ Operation). Give two tables,
Player-points (playerID, points, fieldGoals) and
Player-assists (playerID, assists, freeThrows), both
derived from the NBA data set, a skyline-join query over
Player-points and Player-assists could be:

Skyline = SSJ * FROM Player-points P,

Player-assists A,

WHERE P.playerID = A.playerID,

points MAX, fieldGoals MAX,

assists MAX, freeThrows MAX.

This query equi-joins the tables on playerID and returns
results that are in the skyline based on the attributes points,
fieldGoals, assists, freeThrows. Intuitively, this query
obtains the skyline of good offensive players in the NBA. ⋄

4.2 Twoway SWJ queries over Data Streams
Through this scenario, we demonstrate how the LSJ op-

erator handles skyline-window-join (SWJ) queries between
two input data streams (Figure 2). The LSJ operator utilizes
the iteration-fabric framework to run SWJ queries over the
Intel Berkeley Research lab data streams. Attendees will
have the opportunity to view the behaviour of the LSJ op-
erator and observe the advantages that the iteration-fabric
provides over other alternative solutions.

Example 2 (LSJ Operation). Consider a scenario
in which a set of sensors produce readings only related
to temperature and voltage, while another set of sen-
sors give readings of humidity and light. This re-
sults in two input streams, namely stream-1 (moteid,

temperature, voltage, epoch) and stream-2 (moteid,

humidity, light, epoch). Given these, a SWJ query over
the set of sensors on the attributes temperature, voltage,
humidity and light could be:

Skyline = SWJ * FROM stream-1 S1, stream-2 S2,

WHERE S1.moteid = S2.moteid,

S1.epoch within last 24 hours,

S2.epoch within last 24 hours,

temperature MAX, voltage MAX,

humidity MAX, light MAX.

This query returns a set of interesting readings produced by
the sensors over the past 24 hours. ⋄

4.3 Other SkylineJoin Operations
In this scenario, we demonstrate SkySuite’s ability to pro-

cess skyline-join queries over multiple data sources. Addi-
tionally, we also show how SkySuite handles a scenario in
which one of the data sources is static, while the other is
streaming. As show in Figure 2, SkySuite utilizes a hy-
brid form of the SSJ and LSJ operators to tackle skyline-join
queries over hybrid input sources.

5. CONCLUSION
This demonstration introduces SkySuite: a framework of

skyline-join operators that can be leveraged to efficiently
process skyline-join queries over both static and stream
environments. In particular, we demonstrate the Skyline-
Sensitive Join (SSJ) and the Layered Skyline-window-Join
(LSJ) operators. The SSJ operator overcomes the draw-
backs of existing static skyline-join algorithms by pruning
the join space in terms of blocks of data, as opposed to
individual data points, thereby avoiding excessive point-to-
point dominance checks. While, the LSJ operator provides
an efficient technique for computing skyline-joins over pairs
of streams. LSJ is first of its kind for answering skyline-
window-join (SWJ) queries over data streams.
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