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ABSTRACT
In this work, we demonstrate Flexible Query Processor (FQP), an
online reconfigurable event stream query processor. FQP is an
FPGA-based query processor that supports select, project and join
queries over event streams at line rate. While processing incoming
events, FQP can accept new query expressions, a key distinguish-
ing characteristic from related approaches employing FPGAs for
acceleration. Our solution aims to address performance limitations
experienced with general purpose processors needing to operate at
line rate and lack of on the fly reconfigurability with custom de-
signed hardware solutions on FPGAs.

1. INTRODUCTION
There is a growing interest in accelerating data management and

event stream processing with FPGAs [6, 7, 8]. These approaches
are characterized by a processing pipeline that synthesizes static
(sets of) queries into circuits operating on an FPGA (i.e., a field-
programmable gate array). The synthesis step often takes on the
order of hours. which is the norm for FPGA designs, but is too
inflexible for modern-day data processing needs, which requires
the application to be able to change the query on the fly, without
having to wait hours for the synthesis computations to complete.

Moreover, many existing approaches to accelerating data stream
processing through FPGAs [2, 4, 5] assume that for processing
query modifications, the incoming event stream is halted, the new
query or query set are synthesized into configuration information
for the FPGA, and the new configuration is uploaded onto the FPGA,
before processing the event stream resumes. While synthesis of
queries into circuits and processing of queries may overlap, a sig-
nificant amount of time is required to halt, re-configure, and re-
sume operation, which may take up to several minutes. More im-
portantly, this style of processing requires extra logic for buffer-
ing, handling of dropped events, requests for re-transmissions, and
additional data flow controlling tasks, which renders this style of
processing difficult in practice. Also, these concerns were often
ignored in the above listed approaches.

A common limitation most FPGA-based approaches suffer from,
relates to the inherent complexity of the design synthesis process
itself. This process and its inner workings like, for example, logic-
optimization and technology mapping, are NP-hard problems, and
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all exiting synthesis algorithms are heuristic in nature [1], which
leads to the drastic increase in synthesis time as applications grow
in size. Therefore, approaches that require fewer commitment in re-
synthesis are preferred because they offer far less amortized query
modification overhead. Furthermore, a design that requires synthe-
sis only once, may benefit from additional optimization of the input
query set, which may be applied to achieve a closer to an optimal
solution.

In this demonstration, we aim to fill the gap between software
solutions which provide the greatest degree of flexibility in query
modification needs, as opposed to hardware solutions which of-
fer massive performance gains, by designing FQP that accepts new
queries in an online fashion without disrupting the processing of
incoming event streams. While supporting query modifications at
run-time is almost trivial for software-based techniques, they are
highly uncommon for custom hardware-based approaches, such as
FPGAs, and have so far not received much attention in the growing
body of work on accelerating data processing with FPGAs.

FQP is based on an online reconfigurable query engine (ORQE)
that is a modifiable hardware circuit, which is comprised of a num-
ber of “online programmable” sub-blocks (referred to as OP-Blocks)
that are composed to implement the query semantics. The OP-
Block enables online changes to queries based on a number of pa-
rameters, including variable tuple size, projection, selection, join
conditions, and query window size.

In the design of FQP, we have dealt with a number of challenges
as summarized in the following. Often a static FPGA-based query
processor must over-provision resources to handle the largest ex-
pected (intermediate) tuple size, which under-utilizes system re-
sources. Secondly, the potential change in tuple size between the
join operation’s inputs and output adds new challenges, especially,
when there is the need to use the join result as input for other opera-
tions. The situation worsens when needing to support nested joins.
Thirdly, FQP is designed to support a number of OP-Block sets. In-
ternally, each OP-Block set consists of several chained OP-Blocks.
OP-Block sets are connected using a configurable bridge. Modi-
fying (or reprogramming) an OP-Block within a set requires visit-
ing all OP-Blocks in the chain until the target OP-Block is reached,
which imposes challenges for mapping operators onto an OP-Block
set. Finally, a robust method is needed to route and coordinate
events across a set of chained OP-Blocks and to selectively bypass
certain blocks.

The contributions of this work are four-fold: (1) We develop FQP
that unlike the state-of-the-art enables online changes of queries
without interrupting query processing over incoming event streams
and without the need to resynthesise the design. (2) We unify and
share the underlying storage buffer for both data and operator pa-
rameters of a query. (3) We support variable tuple sizes by propos-
ing a segment-at-a-time processing model, namely, an abstraction
that divides a tuple into smaller chunks that are streamed and pro-
cessed as a consecutive set of segments. This strategy avoids the
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Figure 1: Online programmable block (OP-Block)

need for over-provisioning of hardware resources. (4) We propose
a generic topology skeleton for chaining OP-Blocks in order to ef-
ficiently react to query workload changes through reprogramming.

2. BACKGROUND & RELATED WORK
An FPGA is a semiconductor device with programmable lookup-

tables that are used to implement truth tables for logic circuits with
a small number of inputs (on the order of 4 to 6, typically). FP-
GAs may also contain memory in the form of flip-flops and block
RAMs (BRAMs), which are small memories (on the order of a few
kilo-bits), that together provide a small storage capacity but a large
bandwidth for circuits in the FPGA. Thousands of these building
blocks are connected with a programmable interconnect to imple-
ment large circuits.

Related approaches are focused on accelerating event stream pro-
cessing and SQL query processing on FPGAs.

Sadoghi et al. [6] developed a design to accelerate the evalu-
ation of Boolean expression queries on FPGAs. Although their
design allows changes to queries that are stored in off- and on-
chip memories, methods for supporting online query changes were
not discussed in-depth. Furthermore, Sadoghi et al. [5] proposed
a Rete-based multi-query processing engine on FPGAs by devel-
oping custom circuit blocks for join, select, and project operations
that exploit both inter- and intra-parallelism of queries. However,
their work aimed to support the processing of event streams over
a static set of queries and did not allow the application to change
queries without re-synthesizing the circuit.

Teubner et al. [8] proposed an FPGA-based stream processing
engine for realizing XML projections that maintains XML path
expressions in FPGA on-chip memory (i.e., in BRAM). This al-
lows to dynamically add new XPath expressions or modify existing
XPath expressions without the need to re-synthesis. While their
work shares the similar objective of achieving flexible query pro-
cessing, their focuses was limited to XML projections, while we fo-
cus on SQL-like query processing. Furthermore, Teubner et al. [7]
proposed a design for implementing a stream join on FPGAs. Their
design aimed to efficiently evaluate a single join operation over two
event streams; however, their design is static and lacks the flexibil-
ity for online changes to queries.

3. STREAM PROCESSING MODEL
Our event stream data processing model follows an attribute-

value pair form, which closely resembles a database tuple, but, un-
like traditional databases, we do not assume a fixed schema for the
event data stream. Similarly, our event stream language follows the
traditional database SPJ queries including selection (σ), projection
(π), and join (./, ./θ) operations.

In fact, we adapt PADRES SQL (PSQL) [3], an expressive SQL-
based declarative language for registering continuous queries agai-
nst event streams over a count-based sliding window model. Essen-
tially, the sliding window is a snapshot of an observed finite portion
of the event stream. Formally, the stream processing model is de-
fined as follows: Given a stream of events and a set of SPJ queries,
execute the queries continuously over the event stream and output
the resulting tuples.

In what follows, we use the term event and tuple interchangeably.

4. FLEXIBLE QUERY PROCESSOR
FQP is comprised of three key modules. (1) A reprogrammable

circuit, namely, the OP-Block that is able to realize selection, pro-
jection, and join functionalities. (2) The online reconfigurable query
engine (ORQE) that manages the interactions among sets of OP-
Blocks and an architectural skeleton that defines how OP-Blocks
are connected. Different instances of FQP may comprise differ-
ent connection topologies among OP-Blocks or may be configured
with a different number of OP-Blocks per set of OP-Blocks. (3)
The query assigner module is responsible for scheduling and map-
ping queries onto the available OP-Blocks.

4.1 OP-Block
The OP-Block is the basic building block of ORQE that is pro-

grammable to implement either a selection and projection operat-
ing on a single event stream or a join operating on two incoming
event streams. OP-Blocks enable the efficient utilization of the
FPGA’s resources while offering the ability to support online query
changes.

The internal structure of an OP-Block is detailed in Figure 1.
Event streams flow between input and output ports of an OP-Block.
For example, for realizing a join operation, the right join input
stream flows through an OP-Block via the Stream Right (input) port
to the Stream Right (output) port, while the left input stream flows
through via the Stream/Query Left (input) port to the Stream/Query
Left (output) port. The signal that triggers changes to a query al-
ways arrives at the Stream/Query Left (input) port. In contrast,
for implementing selection and projection operations, only a sin-
gle event stream is needed, and the stream always flows from the
Stream Right (input) to the Stream Right (output) port.

There are two notable properties reflected in our OP-Block de-
sign. First, the advantage of an OP-Block compared to creating
a specialized non-reusable join, selection, and projection circuitry,
i.e., the challenge to achieve the right balance between a general-
purpose processing unit and many (over-)provisioned specialized
processing units. Second, identifying a minimum set of OP-Block
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Figure 2: Flexible query processor

features that are necessary to allow OP-Blocks to serve as a basic
building block of our hardware query engine.

We recognize that the join operation is inherently more costly
than selection and projection operations, both from a design com-
plexity and from an amount of required resources point of view,
e.g., preallocating two window buffers when joining two event str-
eams. In absence of OP-Blocks, if queries were modified to in-
clude an additional join operation, while there are only unused,
pre-allocated projection/selection blocks on the board, then this
modification would have to be rejected and a full re-synthesis of
all queries would be required despite the available, unused and
idle resources on the board – the block over-provisioning problem.
Nevertheless, one could argue that an over-provisioning is the an-
swer to this problem at the cost of ignoring resource underutiliza-
tion. However, this over-provisioning raises yet another challenge
in hardware because adding nested joins or new projection poten-
tially changes the width of the resulting tuple, thereby forcing an
over-provision of precious wiring (input and output ports) of each
block in order to accommodate the increasing and variable tuple
size – the wire over-provisioning problem.

Our proposed OP-Block has two novel features for solving these
above-mentioned challenges. To address the block over-provision-
ing problem, the internal structure of an OP-Block is designed to be
reusable, either as a join operation, or multiple selection/projection
operations. An OP-Block instantiates two separate buffer windows
(right and left) which are necessary for a join operation. In a join
operation, the right window is allocated to the right event stream,
and the left buffer window is used to store the left event stream.
A join operation fills a portion (i.e., segment) of the left window,
and the rest is devoted to the left event stream. Similarly, for se-
lection and projection, instead of allocating additional buffers, our
design uses buffers in the left window to store a variable number
of selection and projection conditions (limited by the size of the
left window) to prevent wasting FPGA resources. The wire over-
provisioning limitation is addressed by proposing a segment-at-a-
time processing model in order to limit the width of input and out-
put ports of OP-Blocks. Each tuple is divided into a set of consec-
utive segments, where the segment is the smallest processing unit
and the segment size is denoted by ts. Using the segment-at-a-
time model, we are able to develop tuple-size independent circuitry
that supports any arbitrary tuple size at runtime without the need to
resynthesize the design.

4.2 OP-Block Internal Architecture
The internal structure of an OP-Block is shown in Figure 1. Each

OP-Block is (re)programmable to support operators such as selec-

tion, project, or join. When a new tuple enters an OP-Block, the tu-
ple undergoes three steps. First, existing tuples in OP-Block buffers
(if any) and operator conditions are fetched from the OP-Block’s
on-chip BRAM memory. Storing the operator conditions in BRAM
is one of the enabling features for dynamically changing queries
online. Second, depending on the encoded operator, the relevant
comparison or evaluation is applied to the tuple. Third, any result-
ing tuples (e.g., if tuple passes the selection filtering condition) are
written to the output buffer, which are also BRAM-resident.

A unique feature of the OP-Block is to support variable size
tuples. We refer to this feature as segment-at-a-time processing
model, in which tuples are pushed to OP-Blocks in chunks, driven
by the tunable tuple segment size ts. If the tuple is longer than
the OP-Block’s configured segment size, then the tuple is read in
several iterations, one segment is read in each iteration. For exam-
ple, operations on a tuple that has size equal to 2 × ts, forces the
OP-Block to process the tuple one segment at a time. In the first
iteration, the operation is applied on the first segment of the tuple
and in the second iteration the operation is executed over the second
segment of the tuple. In each iteration, the result of the operation is
fed to the output buffer. In the last iteration, a valid flag is added to
the last segment of the result. This flag is necessary because the va-
lidity for each tuple segment result can not be determined until the
very end of the execution (as soon as the result of the last segment
is produced). In other words, this valid flag specifies the validity of
the tuple as a whole. In addition, the segment-at-a-time processing
model prevents long stalls and buffering that is required to deal with
large tuple sizes; thus, our model reduces the interruption flow of
tuples in the hardware circuitry. Our segment-at-a-time processing
model of OP-Blocks enables fixed wiring in and out of an the OP-
Block, which transforms an OP-Block to a re-usable and a generic
SQL primitive construct that can be reprogrammed online.

The segment-at-a-time processing model favors predictable OP-
Block output width size (i.e., the size of the tuples produced). In
any hardware solution, there is always an upper-bound on the sus-
tainable bandwidth. When the maximum sustainable bandwidth
is reached (a highly plausible scenario for low selective queries),
many new challenges are introduced. In particularly, to cope with
the excess load, there is a need to provision intermediate buffers
with variable width size due to variable tuple sizes, to trace variable-
width data flow for re-transmission of data, and to place stalling
mechanisms in order to prevent data loss. Our proposed segment-
at-a-time processing model substantially simplifies these concerns
and allows generic, tuple-size independent circuitry to be shared
among saturated reprogrammable OP-Blocks.

By generalizing our segment-at-a-time processing model, we are
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also able to support join operations with a wide and variable win-
dow size that go beyond the OP-Block’s predetermined buffer sizes.
To support arbitrary window sizes, we instantiate a chain of OP-
Blocks, configured with identical join operations. In each OP-
Block, a portion of the join’s right window is devoted to the pre-
viously sent tuple from one OP-Block to its right. This is to keep
two adjacent OP-Blocks synchronized, while an OP-Block trans-
mits and receives a tuple to and from its neighbouring blocks.

In the following a brief description of the internal sub-blocks of
an OP-Block is presented.

Buffer Manager is responsible for the receiving and transmit-
ting of tuples in and out of the left and right buffer windows. To
support variable tuple sizes, this module takes more cycles to oper-
ate on each segment of a tuple.

Coordinator Unit is the global synchronizer among sub-blocks
in an OP-Block. It manages sub-blocks when receiving and pro-
cessing new tuples.

Processing Unit is responsible for comparing and evaluating
tuples.

Join Auxiliary Block monitors ports to and from the OP-Bl-
ocks’ neighbour to coordinate simultaneous transmissions and re-
ceptions of tuples for join operations that straddle OP-Blocks. This
sub-block also notifies the processing unit to include the tuple seg-
ment in the comparison process.

Bypass Unit deals with the left event stream and query opera-
tions. The Stream/Query Left (input) port is used for programming
of OP-Blocks as well as receiving the left event stream. The re-
sponsibility of this unit is to bypass query operations that do not
belong to this OP-Block.

Block ID is a statically assigned identifier to uniquely identify
each OP-Block. This ID is also used to program operations for
chained OP-Blocks.

Query Writer is responsible for reprogramming an OP-Block
and setting tuple segment sizes.

4.3 ORQE Skeleton Architecture
OP-Blocks can be attached in any arbitrary configuration to con-

struct an OP-Block skeleton with a complex topology. However,
in this work, we propose a basic expandable structure as the ini-
tial skeleton. Any particular topology could be optimized for a set
of known queries and workload characteristics, but our objective
is to devise a general topology that can easily be maintained and
reprogrammed. Our ORQE block diagram is illustrated in Figure 2
consisting of the following internal blocks.

Packet Hash Distributor is the gateway for receiving incom-
ing event streams/queries and, based on its internal mapping table,
decides to either process the request in its connected OP-Blocks,
or to delegate the request to the next Packet Hash Distributor. The
proposed architecture for distributing events/queries is suitable to
keep latencies bounded while transmitting operations to their rel-
evant OP-Blocks. This unit can also be configured to selectively
route specific events to given OP-Blocks; however, in its default
mode, it relies on broadcasting all incoming events.

Stream Demultiplexer guides left the event stream and query
operations to the left window buffer of the chained OP-Blocks and
the right event stream to the right window buffer.

Programmable Bridge is programmed to connect OP-Blocks
to form a chain (e.g., to implement join operation with arbitrary
window size).

Result Aggregation Buffers are responsible for gathering event
stream processing results.

4.4 Query Assigner
The query assigner is responsible for assigning and instantiating

new queries to our ORQE as shown in Figure 2. This block pro-
cesses queries, an event stream schema, and skeleton meta data as
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Figure 3: Demonstration setup

input and produces mapped operations as output. Queries are sub-
mitted for processing. The event stream schema is the set of event
schemas. The skeleton meta data holds the topology placement
map of OP-Blocks.

5. SOFTWARE DEMONSTRATION
We demonstrate the operation of FQP that processes event stre-

ams over user issued queries. Our platform (cf. Figure 3) provides
a complete hardware solution residing on an FPGA, with related
components (e.g., the query assigner) residing on the event stream
generator machine.

The input is an event stream, and for evaluation, the system
throughput is measured, i.e., the maximum sustainable input event
rate. Events are encoded in UDP packets, which are transmitted
over a directly connected 1 Gb/s Ethernet link. The direct, un-
shared Ethernet link reduces transmission reliability issues, except
for packet drops that result from filling up of input/output buffers
on the connected FPGA board, which then indicates the maximally
sustainable processing rate.

Our setup includes a laptop that transmits the event stream in ad-
dition to the requested queries through a user interface over a 1 Gb/s
Ethernet interface to FQP hosted on an Xilinx ML505 board featur-
ing a Virtex-5 XC5VLX50T FPGA. The second laptop in Figure 3,
namely the profiler system, is responsible for monitoring the pro-
cessed event stream to gather processing statistics, which are shown
in a graphical user interface, the profiler utility. A USB-JTAG link
is used to upload the initial design onto the FPGA from the Xilinx
ISE14.4 EDK development tool.
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