
A Demonstration of Iterative Parallel Array Processing

in Support of Telescope Image Analysis

Matthew Moyers

1
, Emad Soroush

1
, Spencer C Wallace

2
, Simon Krughoff

1
,

Jake Vanderplas

1
, Magdalena Balazinska

1
, and Andrew Connolly

1

1
University of Washington

2
University of Arizona

{mmoyers, soroush, jakevdp, magda}@cs.washington.edu

{krughoff, ajc}@astro.washington.edu

spencerw@email.arizona.edu

Abstract
In this demonstration, we present AscotDB, a new tool for
the analysis of telescope image data. AscotDB results from
the integration of ASCOT, a Web-based tool for the collab-
orative analysis of telescope images and their metadata, and
SciDB, a parallel array processing engine. We demonstrate
the novel data exploration supported by this integrated tool
on a 1 TB dataset comprising scientifically accurate, simu-
lated telescope images. We also demonstrate novel iterative-
processing features that we added to SciDB in order to sup-
port this use-case.

1. INTRODUCTION
Scientists today are able to generate data at an unprece-

dented scale and rate [4, 5]. Because scientific data often
takes the form of multidimensional arrays (e.g., 2D images or
3D environment simulations), many engines are being built
to support this model natively [2, 7, 8]. SciDB [7] is one
such engine. To handle today’s large-scale datasets, arrays
must also be partitioned and processed in a shared-nothing
cluster [7]. In array-based systems, structural information is
associated with each cell through its dimension values. Ad-
ditionally, array dimensions provide a natural index for the
data, which improves query performance.

Many data analysis tasks today require iterative process-
ing [3]: machine learning, model fitting, pattern discovery,
flow simulations, cluster extraction, and more. This need
extends to analysis executed on multidimensionnal scientific
arrays as we show in Section 3. While it is possible to per-
form iterative computations by iteratively invoking array
queries from a script, this approach is highly ine�cient. In-
stead, large-scale data management systems such as SciDB
should support iterative computations as first-class citizens.
We demonstrate new SciDB features for e�cient iterative

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were invited to present

their results at The 39th International Conference on Very Large Data Bases,

August 26th - 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 12

Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

processing in the context of real data analysis from the as-
tronomy domain.

The AStronomical COllaborative Toolkit (ASCOT) [1] is
a collection of Web-based gadgets that facilitate collabora-
tion between astronomers. These gadgets can be assem-
bled into a dashboard and communicate using a node.js
server. Through the use of a customizable dashboard inter-
face, users can easily visualize, manipulate, and share large
data sets from many di↵erent sources.

Our demonstration makes two contributions: (1) First
we demonstrate a scientifically useful integration of ASCOT
and SciDB. We call the integrated tool AscotDB. We demon-
strate the data exploration enabled by this integrated tool
on a terabyte-sized dataset. (2) Second, we demonstrate ba-
sic iterative processing in SciDB and several optimizations
that significantly improve performance.

2. WHAT THE USER WILL SEE AND DO?
We will take visitors to the demonstration through the

following steps. The result of each task will appear in a
new window and users will be able to go back and forth
between windows. Figure 1 shows a sample screenshot from
AscotDB.

1. The user will start by selecting a region of the sky and a
timestep. AscotDB will display a composite telescope
image that is representative of the selected region at
the chosen time.

2. The user will then have the option to select a subregion
of the sky within the image by drawing a bounding
box on the original pixel image. She will be able to
further manipulate her selection by either zooming in
or zooming out.

3. For the selected region, the user will be able to run
an image analysis task called “co-addition” where im-
ages in the database that overlap the selected location
are added together, enabling faint sources to become
visible.

4. The result from the previous step is noisy. We will
show how to launch an iterative outlier removal algo-
rithm, called “sigma-clipping”, before the co-addition
to achieve a much cleaner result.

5. An important component of this demonstration is the
exploration of SciDB’s new iterative processing fea-
tures. For this, the user will be able to switch between

1322



Figure 1: Demonstration: A sample screenshot from

AscotDB with a pixel image and a time-series chart.

näıve iterative processing and optimized in-engine pro-
cessing. To test the selected configuration, the user
will re-run step 4.

6. The demonstration will also explore optimizations that
speed-up re-executions of the same iterative analysis.
To test this new feature, the user will be able to change
the threshold k in the “sigma-clipping” algorithm (Al-
gorithm 1) and re-run the computation. Similarly, the
user will be able to generate a time-series graph of
aggregate pixel values for a given location on the sky
as shown in Figure 1 and use that graph to focus on
or to exclude certain timesteps from the analysis be-
fore re-executing it. In both cases, we will demonstrate
that AscotDB executes these subsequent re-runs faster
thanks to iteration-specific caching features.

3. USE-CASE
The Large Synoptic Survey Telescope (LSST [5]) is a

large-scale, multi-organization initiative to build a new tele-
scope and use it to continuously survey the visible sky. The
LSST will generate tens of TB of telescope images every
night. The planned survey will cover more sky with more
visits than any survey before. The novelty of the project
means that no current dataset can exercise the full com-
plexity of the data expected from the LSST. For this reason,
before the telescope produces its first images, astronomers
are testing their data analysis pipelines, storage techniques,
and data exploration using realistic but simulated images.
In this demonstration, we use a 1TB dataset of such simu-
lated images and present a simple but fundamental type of
processing that needs to be performed on those images.

ASCOT [1] is a tool used in the astronomy domain that
enables scientists to visualize sky survey data and to share
their visualizations with others for discussion. ASCOT is
a collection of Web-based gadgets running in communica-
tion with a node.js server. The gadgets can be assembled
into a dashboard. The current set of gadgets is geared to-
ward exploratory analysis including viewing images, query-
ing catalogs, and plotting the results. ASCOT’s query capa-
bilities are currently limited to querying only the metadata
about telescope images, such as selecting and displaying the
sources detected in the images. However, significantly more

(a) Single Image (b) Co-added image

Figure 2: Illustrative comparison of one single image

and its corresponding co-added image. There are

many faint objects that show up in the co-added

image but not in the single image

Listing 1 Pseudocode for sigma-clipping and co-addition
Input: Array A with pixels from all the x-y images over time.

//Part 1: Iterative sigma-clipping

While(some pixel changes)

For each (x,y) location

Compute mean/stddev of all pixel values at (x,y).

Filter any pixel value that is k

standard deviations away from the mean

//Part 2: Image co-addition

Sum all non-null pixel values grouped by x-y

interesting science can be derived from querying the raw
pixel data directly. AscotDB is the extended version of AS-
COT with the ability to query raw pixel images using SciDB.
The challenge is that some of the required processing tasks
are iterative in nature. In this section, we present the details
of one of those tasks and later we present the novel SciDB
features necessary to support it.

The integrated AscotDB tool enables several new types of
analysis. We focus on two specific tasks here, one of which
is iterative:

Sigma-Clipping and Co-Addition in LSST images.

When analyzing telescope images, some sources (a “source”
can be a galaxy, a star, etc.) are too faint to be detected in
one image but can be detected by stacking multiple images
from the same location on the sky. The pixel value (flux
value) summation over all images is called image co-addition.
Figure 2 shows a single image and the corresponding co-
added image. Before the co-addition is applied, astronomers
often run a “sigma-clipping” noise-reduction algorithm. The
analysis in this case has two steps: (1) outlier filtering with
“sigma-clipping” and then (2) image co-addition. Listing 1
shows the pseudocode for both steps.

Algorithm 1 illustrates the pseudocode in AQL, the SQL-
equivalent language used by SciDB. The 3D input array
Array A <float data>[x,y,t] comprises all x-y images
over time t.

4. USER INTERACTION WITH AscotDB
We now describe the AscotDB capabilities in more detail.

There are two fundamental phases as the user interacts with
AscotDB: the Analysis phase and the Exploration phase.

Analysis Phase. In this phase, the user can run and ob-
serve the results of the “co-addition” and iterative “sigma-
clipping” tasks as described in Section 3. The user selects
the region of the sky that forms the input to the analysis.

In the context of the demonstration, the user also has the
choice to run the “sigma-clipping” algorithm in a näıve way

1323



Algorithm 1 Sigma-clipping iterative algorithm followed by image co-addition

1: Input: Array A <float data>[x,y,t]
2: Input: k a constant parameter.
3: while (some pixels A[x, y, t] are filtered) do
4: T [x, y] = SELECT AV G(A.data) AS µ, STDV (A.data) AS � FROM A GROUP BY x, y

5: S[x, y, t] = SELECT A.data, T.µ, T.� FROM T join A on T.x = A.x AND T.y=A.y

6: A[x, y, t] = SELECT S.data FROM S WHERE S.data � S.µ� k ⇥ S.� AND S.data  S.µ+ k ⇥ S.�

7: end while

8: R[x, y] = SELECT SUM(A.data) AS coadd from A GROUP BY x, y

or to enable various optimizations (described in Section 5)
and observe the performance di↵erences. The user can also
tune parameters, such as the threshold k, to observe its e↵ect
on the number of iterations until convergence. The sequence
of tasks in this phase is illustrated in Figure 3(a).

Exploration Phase. AscotDB supports multiple ex-
ploratory tasks such as viewing images, querying catalogs,
and plotting time-series data. This phase is illustrated in
Figure 3(b). In this demonstration, we focus on the time-
series capability: the user can select an arbitrary region on
the sky and generate a time-series for that region as shown
in Figure 1. The time-series plot that AscotDB supports
shows the value of one of the attributes (e.g. flux value)
over time. The value shown is an aggregate value computed
over the entire selected region.

Each point in the time-series plot corresponds to one
timestep in our original pixel images. AscotDB gives the op-
tion to the user to select interesting points in the time series,
filter out the rest, and redo the analysis (i.e., sigma-clipping
and co-addition) on a subset of pixel images corresponding
to the interesting points in the time series. As Figure 4 il-
lustrates, the output of the exploration phase is fed back
as refined input to the next analysis phase. Repetitions of
the analysis tasks as a result of the exploration phase open
up opportunities for optimizations as we discuss in the next
section.

5. ITERATIVE OPTIMIZATION TECH-
NIQUES

To execute an iterative computation in SciDB, a näıve ap-
proach is to simply recursively invoke array queries from a
script. This approach, however, prevents (or at least com-
plicates) the automated optimization of iterative computa-
tions. Instead, we extend SciDB with two types of opti-
mizations: incremental iterative processing and caching In-
termediate results and statistics to speed-up re-executions
of iterative computations in the face of changes in the input
data or input parameters.

Incremental Iterative Processing. In a wide range of it-
erative algorithms, the output at each iteration di↵ers only
partly from the output at the previous iteration. Perfor-
mance can thus significantly improve if the system com-
putes, at each iteration, only the part of the output that
changes rather than re-computing the entire result every
time. This method, called incremental iterative process-
ing [3], has been shown to significantly improve performance
in relational and graph systems. In AscotDB, we show how
this optimization can be applied to arrays. Our key observa-
tion is that increments between iterations translate into up-

Select&Sky&
Region&

Select&threshold&
K&and&Itera4ve&
Op4miza4on&
strategies&&

Sigma&
Clipping&

Co;addi4on&

Analysis(Phase(

(a) Analysis phase: The user selects a region on the sky, tunes
parameters, and runs the “sigma-clipping” algorithm followed
by image “co-addition”. The user also has the option to per-
form “co-addition” on the original images directly.

Viewing'Images''

Explora(on*Phase*

Select'Sky'Region'

Time'Series'Plot' Query'Catalogs'

(b) Exploration phase: AscotDB supports multiple ex-
ploratory tasks such as viewing images, querying catalogs,
and plotting time-series data.

Figure 3: “Analysis” and “Exploration” phases

Explora(on*
Phase*

Analysis*
Phase*

Feedback:)e.g.)filter)
out)slice(s))of)pixel)

images)

Figure 4: The user interacts with AscotDB by al-

ternating between exploration and analysis, which

enables optimizations that leverage earlier compu-

tations.

dates to array cells and can thus be captured with two auxil-
iary arrays: a positive delta array and a negative delta array.
At each iteration, the positive delta array �A

+ records the
new values of updated cells and the negative delta array
�A

� keeps track of the old values of updated cells. These
two arrays can automatically be computed by the system di-
rectly at the storage manager level. To achieve high perfor-
mance, the storage manager keeps chunks of the result array
A together on disk with the corresponding chunks from the
auxiliary �A

+ and �A

� arrays. Furthermore, we extend
the Scan() and Store() operators to read and write partial
arrays �A

+ and �A

�, respectively. The user does not need
to explicitly write a user-defined diff() function in order
to extract �A

+ and �A

� from the output of the last iter-
ation nor to write an explicit merge() function to combine

1324



Algorithm 2 The incremental version of “sigma-clipping” iterative algorithm followed by image “co-addition”

1: Input: Array A <float data>[x,y,t], k a constant parameter.
2: Initialize �A

� = A

3: while (�A

� is not empty) do
4: T1[x, y] = SELECT COUNT(A.data) AS c, SUM(A.data) AS s, SUM(data2) AS s

2 FROM �A

� GROUP BY x, y

5: T [x, y] = SELECT T1.s
T1.c

AS µ, 2

q
T1.s2

T1.c
� (T1.s

T1.c
)2 AS � FROM T1

6: S[x, y, t] = SELECT A.data, �T

+
.µ, �T

+
.� FROM �T

+ join A on �T

+
.x = A.x AND �T

+
.y=A.y

7: A[x, y, t] = SELECT S.data FROM S WHERE S.data � S.µ� k ⇥ S.� AND S.data  S.µ+ k ⇥ S.�

8: end while

9: R[x, y] = SELECT SUM(A.data) AS coadd from A GROUP BY x, y

(a) Original Image (b) Iteration-1

(c) Iteration-2 (d) Iteration-3

Figure 5: Snapshots from the first 3 iterations of the

“sigma-clipping” algorithm with incremental opti-

mization on the LSST dataset. Green-colored points

are the ones that change across iterations. As the it-

erative computation proceeds, the number of green-

colored points drops dramatically.

the output of the last iteration with the current result of
the iteration. Those functions are pushed into the storage
manager and are automatically handled by the system with
some hints from the user.

In the current extension of SciDB, the engine calculates
the algebraic average function AVG() based on the combi-
nation of SUM() and COUNT() to leverage incremental itera-
tion. The incremental version of “sigma-clipping” algorithm
is shown in Algorithm 2.

Multiple snapshots from applying the incremental sigma-
clipping algorithm to a subset of the LSST dataset are shown
in Figure 5.

Caching Intermediate Results and Statistics. In As-
cotDB, the user alternates between the “analysis phase” and
the “exploration phase”. During the “exploration phase”,
the user can leverage the time-series view to focus her in-
terest on a subset of timesteps. She can then re-execute
the analysis on this slice of the input data array. Similarly,
the user can change input parameters, such as the “sigma-
clipping” parameter k, and re-execute the analysis. In this
demonstration, we explore two techniques to speed-up such
re-runs of iterative computations. In the first technique,
AscotDB caches intermediate results from the first and last
iterations of each computation and leverages these interme-
diate results to speed-up subsequent re-runs of the analysis
when either the input array or the input parameters change.

Unlike Naiad [6], which includes extensive caching of inter-
mediate results, we focus on the first and last iterations only
to ensure benefit from caching at a lower cost. In the sec-
ond technique, AscotDB computes extra statistics on the
data during the first run of the iterative analysis to speed-
up subsequent runs. This technique also speeds-up the body
of iterations within the same execution of the analysis. In
the demonstrated use-case, the statistics capture the min-
imum and maximum value of all cells in an array chunk,
which enables AscotDB to skip over chunks where no values
need to be filtered out during one sigma-clipping iteration.

6. CONCLUSION
In summary, we demonstrate new capabilities in SciDB

for e�cient iterative processing. While these capabilities are
generally applicable, we demonstrate them in the context of
the analysis of a 1 TB set of astronomy telescope images.

7. ACKNOWLEDGMENTS
This work is partially supported by grants from the

LSST corporation, NASA grant NNX09AK84G, DOE award
DESC0002607, NSF grant IIS-1110370 and the Intel Science
and Technology Center for Big Data.

8. REFERENCES
[1] Ascot:the astronomical collaborative toolkit.

http://ascot.github.com.
[2] B. et. al. The multidimensional database system

RasDaMan. In Proc. of the SIGMOD Conf., pages
575–577, 1998.

[3] S. Ewen et al. Spinning fast iterative data flows. In
Proc. of the 38th Int. Conf. on Very Large DataBases
(VLDB), pages 1268–1279, 2012.

[4] Hey et. al., editor. The Fourth Paradigm:
Data-Intensive Scientific Discovery. Microsoft
Research, 2009.

[5] Large Synoptic Survey Telescope.
http://www.lsst.org/.

[6] F. McSherry, D. Murray, R. Isaacs, and M. Isard.
Di↵erential dataow. In Proc. of the Sixth CIDR Conf.,
2013.

[7] J. Rogers et al. Overview of SciDB: Large scale array
storage, processing and analysis. In Proc. of the
SIGMOD Conf., 2010.

[8] Zhang et. al. RIOT: I/O-e�cient numerical computing
without SQL. In Proc. of the Fourth CIDR Conf., 2009.

1325


