IBminer: A Text Mining Tool for Constructing and
Populating InfoBox Databases and Knowledge Bases

Hamid Mousavi
CSD, UCLA
Los Angeles, USA

hmousavi@cs.ucla.edu

ABSTRACT

Knowledge bases and structured summaries are playing a crucial
role in many applications, such as text summarization, question
answering, essay grading, and semantic search. Although, many
systems (e.g., DBpedia and YaGo2) provide massive knowledge
bases of such summaries, they all suffer from incompleteness, in-
consistencies, and inaccuracies. These problems can be addressed
and much improved by combining and integrating different knowl-
edge bases, but their very large sizes and their reliance on different
terminologies and ontologies make the task very difficult. In this
demo, we will demonstrate a system that is achieving good suc-
cess on this task by: i) employing available interlinks in the current
knowledge bases (e.g. externalLink and redirect links in DBpe-
dia) to combine information on individual entities, and ii) using
widely available text corpora (e.g. Wikipedia) and our /Bminer
text-mining system, to generate and verify structured information,
and reconcile terminologies across different knowledge bases. We
will also demonstrate two tools designed to support the integration
process in close collaboration with /Bminer. The first is the InfoBox
Knowledge-Base Browser (IBKB) which provides structured sum-
maries and their provenance, and the second is the InfoBox Editor
(IBE), which is designed to suggest relevant attributes for a user-
specified subject, whereby the user can easily improve the knowl-
edge base without requiring any knowledge about the internal ter-
minology of individual systems.

1. INTRODUCTION

Knowledge bases are playing a role of increasing importance in
many systems such as text summarization and classification, es-
say grading, semantic search, and question answering systems. In
recent years, several efforts have been devoted to creating such
knowledge bases; a prominent example is provided by the struc-
tured summaries in Wikipedia, called InfoBoxes, which list impor-
tant attributes and their values for entities. Similar knowledge bases
were created in recent years for specific domains or with a general
scope Table 1). Unfortunately, since a manual process is often used
to generate structured summaries, and standard ontologies are not
always used, the resulting knowledge bases are prone to inconsis-
tency, incorrectness and limited coverage.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 12

Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

Shi Gao
CSD, UCLA
Los Angeles, USA

gaoshi@cs.ucla.edu

Carlo Zaniolo
CSD, UCLA
Los Angeles, USA

zaniolo@cs.ucla.edu

To understand the first issue (low coverage), consider DBpedia
[5], which mainly contains the structured part of Wikipedia and
most importantly its InfoBoxes. An InfoBox can be seen as a set
of triples in the form of <s, a,, v> which indicates a value (v) for
a specific attribute («) of a given subject (s). Currently, around
43.9% of pages in DBpedia are missing their entire InfoBoxes.
Many other pages are also missing part of their InfoBoxes. This
mainly indicates DBpedia’s coverage is quite incomplete, which di-
rectly impacts applications using DBpedia. Other knowledge bases
suffer from the same problem as well. The second important chal-
lenge in using these knowledge bases is the inconsistency in their
knowledge representation. For instance, a single attribute may have
several synonyms or aliases (e.g., ‘birth date’, ‘date of birth’, and
‘born’). While this is a very common incident in DBpedia and
many other manually created knowledge bases, automatically rec-
oncile these differences is not a trivial task at all. The third issue
most of the current knowledge bases are suffering from is inaccu-
racy. As our experiments show, more than 3.7% of the summaries
provided in DBpedia are incorrect.

To address the aforementioned three issues, we pursue the two-
prong approach of: i) integrating different publicly-available knowl-
edge bases (Table 1) to create a more robust knowledge base, and
ii) completing and improving this initial knowledge base by using
our recently developed text mining tool, called /Bminer [10]. The
key idea for integrating current knowledge bases is to use the ex-
isting interlink information for the subjects and convert every piece
of information to the triple format used by InfoBoxes. These in-
terlinks are mainly provided by DBpedia through alias, redirect,
externalLink, or sameAs links. Since many other resources, includ-
ing YaGo2 and Freebase, link many of their subjects back to those
in DBpedia, these link structures are invaluable in our endeavor.
However, interlink information only covers a subset of the subjects
in current knowledge bases, and in particular attribute mappings are
completely missing. To find these missing interlinks or mappings
as well as improving the coverage of the initial knowledge base, we
use our newly developed /Bminer system as described next.

IBminer infers attribute synonyms and generates more structured
summaries by learning patterns from text (widely available at re-
sources such as Wikipedia) and current structured summaries. To
perform this non-trivial task, IBminer first converts free text into
graph structures, called TextGraphs, using an NLP-based text min-
ing framework, called SemScape [10]. SemScape uses morpholog-
ical information in the text to capture the categorical, semantic, and
grammatical relations between words and terms in the text. Then,
IBminer uses i) the semantic links in the TextGraphs, ii) categor-
ical information (e.g. provided by Wikipedia and WordNet), and
iii) our initial knowledge base, to learn the patterns. In addition to
being used to generate structured summaries, these patterns enable

1330

IBminer to automatically build mappings between attribute names
used in different knowledge bases. using text mining techniques. In
this respect, IBminer extends Probase [13] which created a general
taxonomy with more than 2.7 million concepts from the textual web
documents; however, Probase contains only taxonomical informa-
tion rather than general structured summaries. Our demonstration
will focus on the following contributions:

e The InfoBox Knowledge-Base Browser (IBKB), which pro-
vides users with structured summaries and their originating
sources (provenance) for any given subject in our currently
integrated knowledge base. Using IBKB, users can easily
provide feedback on significance, correctness, or relevance
of each summary item in our knowledge base. Users’ feed-
back can be used for ranking the summaries, and also for
improving the performance of both /Bminer and SemScape.

e The InfoBox Editor (IBE) tool, that enables users to create
and edit structured summaries without requiring any knowl-
edge about the underlying terminology of the summaries. By
mining existing text in Wikipedia (or any user-supplied text)
on a subject, IBE generates a structured summary about the
subject and suggests possibly missing attributes for which
the user may want to provide further information.

As previously mentioned, /Bminer requires an initial knowledge
base to operate. The more complete this initial knowledge base is,
the better the quality of the learnt patterns will be. Thus, in Section
2, we explain how these knowledge bases are first integrated at a
syntactic level. Then in Section 3, we provide more details on the
IBminer’s approach to integrate them at the semantic level.Thus,
in Section 4, we discuss the key features of IBKB and IBE tools,
while their important applications are discussed in Section 5.

2. INTEGRATING KNOWLEDGE BASES
In this section, we explain the initial process of knowledge base
collection and integration.

2.1 Data Collection

We will consider several publicly available knowledge bases (Ta-
ble 1) and integrate them as explained later in this section. Among
the introduced knowledge bases, there are some domain specific
ones (e.g. MusicBrainz, Geonames, etc.), and some domain in-
dependent ones (e.g. DBpedia, YaGo2, etc.). Although pieces of
knowledge in these sources are represented in various ways, we
represent them in the form of triples <Subject, Attribute, Value> and
store them in Apache Cassandra which is designed for handing very
large amount of data. We recognize three main types of triples:

InfoBox triples: These triples provide information on a known sub-
ject in the subject/attribute/value format. For easing our discussion
we refer to these as InfoBoxes (<J.S. Bach, PlaceofBirth, Eisenach>).

Subject/Category triples: They provide the categories that a sub-
ject belongs to in the form of subject/link/category where, link rep-
resents a taxonomical relation (<J.S. Bach, isA, German Composers>).

Category/Category triples: They represent taxonomical links be-
tween categories(<German Composers, isA, German Musicians>).

Currently, we have converted all the knowledge bases listed in
Table 1 into the above triple formats.

2.2 Data Integration

Knowledge bases introduced in Table 1 contain a wealth of knowl-
edge as the numbers indicate. However, lack of a standard ontology
in these knowledge bases makes them very challenging to integrate.
Our main goal is to tackle this challenge and discover the initial

1331

Name Size (MB) | # of Entities (10%) | # of Triples (10°)
ConceptNet [12] 3075 0.30 1.6
DBpedia [5] 43895 3.77 400
FreeBase [6] 85035 ~25 585
Geonames [1] 2270 8.3 90
MusicBrainz [2] 17665 18.3 ~131
NELL [7] 1369 4.34 50
OpenCyc [3] 240 0.24 2.1
YaGo?2 [9] 19859 2.64 124

Table 1: Public Knowledge Bases

interlinks between subjects, attributes, and categories in order to
eliminate duplication, align attributes, and improve consistency.

Interlinking Subjects: Fortunately, the same names are often used
to denote the same subjects in different databases. Moreover, DB-
Pedia is interlinked with many existing knowledge bases, such as
YaGo2 and FreeBase, which can serve as a source of subject inter-
links. For the knowledge bases which do not provide such inter-
links (e.g. NELL), in addition to exact matching, we use synonym
matching. Synonyms can be obtained from links such as redirect
and sameAs, WordNet, or using our recently proposed ontology
generator OntoHarvester [11].

Interlinking Attributes: Similar to the subject interlinking, we
use exact matching and synonym matching for finding initial at-
tribute interlinks. In Section 3.3, we explain how we can find
synonym attributes and interlink different aliases for the attribute
names used in different knowledge bases.

Interlinking Categories: In addition to exact matching, we com-
pute the similarity of the categories in different knowledge bases
based on their instances. Consider two categories ¢; and cz, and
Let S(c) be the set of subjects in category c. The similarity func-
tion for categories interlink is defined as Sim(c1,c2) = |S(c1) N
S(e2)]/|S(e1) v S(e2)|. If the Sim(cq, c2) is greater than a cer-
tain threshold, we consider c; and c as aliases of each other, which
simply means that if the instances of two categories are highly over-
lapping, they can be assumed to represent the same category.

After retrieving these interlinks, we will merge similar triples
based on the retrieved interlinks. Currently this task is finished for
Geonames and MusicBrainz and partially done for DBpedia and
YaGo2. We are quickly covering more of these two knowledge
bases as well as the remaining ones in Table 1. All triples are also
assigned with accuracy confidence and frequency values. As ex-
plained in [10], more evidence supporting the same piece of infor-
mation will increase its confidence and frequency values. Observe
that the sources from which the triples are generated are also stored
for the provenance purposes.

Integrating current knowledge bases using the techniques ex-
plained above has several advantages discussed next. A) The in-
tegrated knowledge base covers more structured summaries, which
results in richer and more confident patterns for /Bminer. B) More
attributes are encountered, since the focus on different sources are
different. This also improves IBminer’s performance as explained
in the next section. C) The use of multiple knowledge bases repre-
sents an effective way to validate preexisting structured summaries
and those newly generated from text. Using these techniques, we
can also evaluate the quality of the textual part of a page.

3. IMPROVING THE KNOWLEDGE BASE
USING TEXT MINING

This section explains how /Bminer uses the text describing a sub-
ject (mainly retrieved from Wikipedia) to improve the coverage,
consistency, and accuracy of the integrated knowledge base for that

subject. For more details, readers are referred to [10]. The key idea
is to learn patterns from text that can generate new structured sum-
maries (Subsection 3.1) and use the patterns to find more structured
summaries (Subsection 3.2). We then use the same set of patterns
to find synonyms for the attribute names in the existing knowledge
bases (Subsection 3.3), and finally verify the correctness of some
of the existing summaries (Subsection 3.4).

3.1 Learning Patterns

The key idea for learning patterns is to find a mapping between
the current structured summaries for each subject in the knowl-
edge base and links in the TextGraphs of its accompanying text
(e.g. from Wikipedia page). For instance consider the two seman-
tic triples (links) <bach, was, composer> and <bach, was, German>
in the TextGraph generated from the text in the Wikipedia page for
bach. These triples are generated by the SemScape framework us-
ing an NLP-based technique [10]. Obviously the link name was
should be interpreted differently in these two cases, since the for-
mer one is connecting a ‘person’ to an ‘occupation’, while the latter
is between a ‘person’ and a ‘nationality’. Now, consider two ex-
isting InfoBox items <bach, occupation, composer> and <bach, na-
tionality, German> which respectively match the mentioned triples
from the text. These items clearly indicate that the link name was in
our two triples should be interpreted respectively as occupation and
nationality. Thus we can learn following two patterns from these
examples:

® <cat:Person, was, cat:Occupation_in_-Music>: occupation

e <cat:Person, was, cat:German>: nationality

Here the pattern <c1, [, co>:« indicates that the link named /,
connecting a subject in category c; to an entity or value in cate-
gory c2, can be interpreted as the attribute name . Note that for
each triple with a matching InfoBox item, we create several pat-
terns since the subject and the values usually belong to more than
one (direct or indirect) categories. Each pattern is also assigned a
frequency value, so we can use the most frequent ones for generat-
ing new structured summaries and interlinking attributes as respec-
tively explained in next two sections.

3.2 Generating New Structured Summaries

To extract new structured summaries using the generated pat-
terns, for any semantic TextGraph triple, say <s, [, v>, we find the
matching patterns, such as <cs, [, ¢, >:c, where s € ¢; and v € c¢,.
If one or more such matches exist, considering the most frequent
pattern, we generate the new InfoBox triple <s, a, v>. [Bminer
also uses a type checking technique to enhance the quality of the
generated results [10]. As our preliminary experiments indicate,
the accuracy of the generated results is more than 94%.

3.3 Generating Attribute Interlinks

Different knowledge bases use different terminologies for nam-
ing their attributes. Even in the same knowledge base, there may be
many inconsistent attribute names. For instance in DBpedia, the at-
tribute names ‘birthdate’, ‘data of birth’, ‘born’ are all used to indi-
cate the birthdate of a person, while YaGo2 uses ‘wasBornOnDate’
sometimes. Moreover, the attribute name ‘born’ is used both for
birthdate and for birth place. As explained earlier, attribute inter-
linking is completely missing from current knowledge bases, where
synonyms and anonyms can be the source of significant ambiguities
and inconsistence. To address this problem, we use multiple match-
ing patterns for the same TextGraph triples. Formally, if TextGraph
triple <s, I, v> matches with patterns <cs, I, ¢,>:a1 and <cs, [,
¢y > g respectively with evidence frequency f1 and fo (f1 = f2),
we create following potential synonym pattern:

1332

o <Cs,Q1,Cy>1 Q2

The synonym pattern is also assigned a positive support sp, a
negative support s, and an evidence frequency f. Every time new
evidence of the same synonym pattern is observed, s,, is increased
by f2, sn is increased by fi — f2, and f is incremented by 1. In
simpler words, a synonym pattern indicates that attribute name oy
from subject category c, to value category c, may be also called
a2 with positive support s, negative support s, and evidence fre-
quency f. Again less frequent patterns and those with low supports
are filtered and the rest is used to suggest attribute interlinks for the
existing or generated InfoBoxes [10].

3.4 Verifying the Structured Summaries

More evidence for the same piece of information is a good in-
dicator of its correctness. However, the knowledge from different
resources is usually represented in different ways. Therefore, /B-
miner uses the synonym patterns introduced earlier to resolve some
of these differences. Then, it assigns initial weights to different
sources, combines triples from them, and calculates their signif-
icance and accuracy based on their initial weights, evidence fre-
quency, the patterns correctness confidence, etc. If the same piece
of information is generated from the text, /Bminer accordingly up-
dates its significance and accuracy.

We also try to find mismatches between items generated by /B-
miner and those were already part of the initial knowledge base.
We say two triples <si, l1, v1> and <s2, l2, v2> mismatch if
$1=82, V1=u2, l1#l2, and [; and l2 are not synonyms. These mis-
matches are reported as incorrect summaries. Our experiments [10]
indicate that IBminer reports 1.2% of the existing summary items
as potential incorrect items, whereas only 57% of those are actually
incorrect (a false negative rate that is under 1.2 x 0.57 = 0.52%).

3.5 InfoBox Templates Suggestion

Finding a right InfoBox template (or simply a list of relevant
attributes) for a subject can be a very time consuming task for users.
To alleviate this issue, /Bminer (through IBE as explained in the
next section) suggests the most relevant attribute names for a given
subject. To this end, /Bminer first finds the most popular attributes
currently used for the subjects in each category in our knowledge
base. Then, for a subject of interest, all popular attributes from the
categories listed for the subject are suggested as relevant attributes.
For each attribute, say a1, we also find the most popular attributes
used with a1 in the same InfoBox (i.e. for the same subject). Based
on this co-occurrence data set, we suggest missing attributes which
their counterpart is already in the current attributes for the subject.
With this feature, users would use more standard attribute names
and are more likely to enter structured information.

4. DEMONSTRATION

The following tools and applications were exhibited:

The InfoBox Knowledge-Base Browser (IBKB): IBKB is imple-
mented to let users browse the current knowledge base. Its user
interface is very similar to the one for IBE (Figure 1). For a given
subject, the tool provides 1) structured summary items in user spec-
ified order, ii) the synonyms found by /Bminer for the attributes
used in the summaries, and iii) wrong summary items recognized
by IBminer. The tool can also determine the provenance of each
piece of information and report the knowledge base from which it
was originally taken, or that it was actually discovered by IBminer.
By clicking on each source name, the user will be provided with the
original form of the triple in that source. Each entity in the result
pages is also connected to its own page to make the browsing easier
for the users.

Johann Sebastian Bach (edit mode) Searcha Subject | Q@
<<< Add More text for this Subject. >»> - Run [Bminer
e.g. Johann Sebastian Bach was born on March 21, 1685,
in Eisenach, Germany, the youngest child of Johann il
Ambrosius Bach, a church organist, and Elizabeth p
Feedback [~] Sortby: Significance Accuracy Relevance
 Attribute Value(s) Source(s)
New Attribure /Add Value for your attribute @ IBminer User
[Abstract: Johann Sebastian Bach was a DBA original Triple in Freebase:
German composer, organist, Shj: Johann Sebastian Bach
harpsichordist, violist, and violinist Attr: Profession
@cfthe Baroque period. ... Val: Composer
] Occupation: Composer |Bminer, Freebase, MusicBrainz
Aliases for BirthDate: [Musician Freebase, MusicBrainz, NELL
DBpedia: birthData Organist |Bminer, Freebase
Freebase: date of birth [Violist |Bminer, Freebase
MusicBrainz: Born Violinist IBminer, Freebase
YaGo: wasBornOnDate|Harpsichordist @IBminer
[BirthDate: 1685-03-21 DBpedia, IBminer, MusicBrainz
O 1685-03-31 Freebase
a] 1685(3%) DBpedia
) @21® @YaGcZ‘ Freebase
[J BirthPlace Eisenach @IBminer DBpedia,Freebase
[DeathDate 1750-07-28 IBminer, DBpedia
= @1750() @ raGo2, Freebase
[DeathPlace: Leipzig @IBminer DBpedia, Freebase
] Nationality: German @IBminer
[Gender: Male @YaGcZ‘ MusicBrainZ, Freebase
[J Names: (7) Johan_Sebastian_Bach DBpedia, Freebase
(] J_S_Bach @DBpedia‘ Freebase
[Parternt (Father): Johann Ambrosius Bach @IBminer
] General Ctgrs: People IBminer, DBpedia
O Musicians IBminer
] External Links: Wwikipedia page DBpedia
] DBpedia DBpedia
O YaGo2 DBpedia
[} Ereebase DBpedia
] ®cie (@ DBpedia
@ Expand @ Collapse @ Add Value @ Inaccurate value G-) Add&Refresh

Figure 1: A sample view of the InfoBox Editor (IBE) page. By
hovering over the source names (as shown for Freebase) user
can see the original triple in that source. Similarly, user can
see the synonyms used for each attribute by hovering over that
attribute name (as shown for BirthDate).

Using IBKB, users can select one or more summary items from
the user interface, and provide their feedback on the correctness,
relevance, and significance of the items. In addition to using such
feedback to improve IBminer’s performance and to tune its pat-
terns, users’ feedback will be used to rank the structured sum-
maries. The ranking mainly improves the user experience with
IBKB, since many of the provided summaries are just common
sense information for the users, and they usually do not want to
see them on top of the list of summaries.

The InfoBox Editor (IBE): In addition to the browsing tool for the
current knowledge base, we provide an easy-to-use tool, referred to
as IBE, for enhancing the manual process of generating structured
information by the users such as in Wikipedia. Figure 1 shows
the IBE user interface for the subject ”J.S. Bach”. For the exist-
ing subjects, IBE allows users to add more textual information and
structured summaries. To create a new subject, users are asked to
enter the name (a descriptive subject), one or more categories for
the subject, and a descriptive text for it. They can optionally add
as many structured summaries as they desire. The tool suggests
a domain, an InfoBox template, and some structured summaries
extracted from the entered text. In this way, users can easily edit
the summaries and fill the missing spots in the suggested templates

1333

without worrying about the underlying attribute names. As a result,
the manually generated summaries will follow a more standard ter-
minology; this will improve the quality of the final knowledge base.

Notice that the main difference between IBE and Wikipedia is
that IBE’s focus is on generating structured summaries for machine
use that requires a standard ontology, while Wikipedia is mainly de-
signed for human readers. Moreover, IBE is able to automatically
generate structured summaries and suggest InfoBox templates so
users can provide structured summaries more efficiently.

5. APPLICATIONS

A very important class of applications that is expected to benefit
from our system is semantic-web search systems such as SWiPE [4]
and Faceted Wikipedia Search [8]. Indeed, the summaries currently
provided by many InfoBoxes are such that many queries cannot re-
turn correct and complete answers due to the inconsistency and
incompleteness of the knowledge base. For instance, the query
“find female musicians in 16th century” does not provide any an-
swer since the gender attributes are not usually reported in general
knowledge bases. However, IBminer is able to extract such pieces
of information from the text. This will enable applications such as
SWiPE to provide better query results.

A second set of important applications for our tools is those deal-
ing with textual documents. Document summarization and clas-
sification, review summarization, co-reference resolution, and es-
say/short answer grading systems are only a few examples of such
applications. For instance in essay grading, one can use /Bminer
to extract structured summaries from the essay and map them to
the ones extracted from the prompt essay. This will move us from
current grammar checkers to semantic checkers.

Acknowledgments: This work was supported by the National Sci-
ence Foundation under grant No. IIS 1118107.

6. REFERENCES

[1] Geonames. http://www.geonames.org.

[2] Musicbrainz. http://musicbrainz.org.

[3] Opencyc. http://www.cyc.com/platform/opencyc.

[4] M. Atzori and C. Zaniolo. Swipe: searching wikipedia by example.
In WWW (Companion Volume), pages 309-312, 2012.
C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,
R. Cyganiak, and S. Hellmann. Dbpedia - a crystallization point for
the web of data. J. Web Sem., 7(3):154-165, 2009.
K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.
Freebase: a collaboratively created graph database for structuring
human knowledge. In SIGMOD, 2008.
A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M.
Mitchell. Toward an architecture for never-ending language learning.
In AAAI, 2010.
R. Hahn, C. Bizer, C. Sahnwaldt, C. Herta, S. Robinson, M. Biirgle,
H. Diiwiger, and U. Scheel. Faceted wikipedia search. In BIS, pages
1-11, 2010.
J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. Yago2: A
spatially and temporally enhanced knowledge base from wikipedia.
Artif. Intell., 194:28-61, 2013.
H. Mousavi, D. Kerr, M. Iseli, and C. Zaniolo. Deducing infoboxes
from unstructured text in wikipedia pages. In CSD Technical Report
#130001), UCLA, 2013.
H. Mousavi, D. Kerr, M. Iseli, and C. Zaniolo. Ontoharvester: An
unsupervised ontology generator from free text. In CSD Technical
Report #130003), UCLA, 2013.
P. Singh, T. Lin, E. T. Mueller, G. Lim, T. Perkins, and W. L. Zhu.
Open mind common sense: Knowledge acquisition from the general
public. In Confederated International Conferences DOA, CooplS
and ODBASE, London, UK, 2002.
W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: a probabilistic
taxonomy for text understanding. In SIGMOD Conference, pages
481-492, 2012.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

