
PAQO: A Preference-Aware Query Optimizer for
PostgreSQL

Nicholas L. Farnan, Adam J. Lee, Panos K. Chrysanthis1 Ting Yu2,3

{nlf4, adamlee, panos}@cs.pitt.edu yu@csc.ncsu.edu
1Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA

2Department of Computer Science, North Carolina State University Raleigh, NC, USA
3Qatar Computing Research Institute, Doha, Qatar

ABSTRACT
Although the declarative nature of SQL provides great util-
ity to database users, its use in distributed database manage-
ment systems can leave users unaware of which servers in the
system are evaluating portions of their queries. By allowing
users to merely say what data they are interested in access-
ing without providing guidance regarding how to retrieve it,
query optimizers can generate plans with unintended conse-
quences to the user (e.g., violating user privacy by revealing
sensitive portions of a user’s query to untrusted servers, or
impacting result freshness by pulling data from stale data
stores). To address these types of issues, we have created a
framework that empowers users with the ability to specify
constraints on the kinds of plans that can be produced by
the optimizer to evaluate their queries. Such constraints are
specified through an extended version of SQL that we have
developed which we call PASQL. With this proposal, we aim
to demonstrate PAQO, a version of PostgreSQL’s query op-
timizer that we have modified to produce plans that respect
constraints specified through PASQL while optimizing user-
specified SQL queries in terms of performance.

1. INTRODUCTION
The declarative nature of SQL has been a major strength

of relational database systems: users can simply specify what
data they are interested in accessing and the database man-
agement system (DBMS) will determine the best plan for ac-
cessing that data. Traditionally, the best plan has been sim-
ply the plan that returns results to the user in the shortest
amount of time. When user queries are issued to distributed
DBMSs, however, two plans generating the same results for
the same query can vary greatly in how they disseminate
portions of that query during its evaluation. These vari-
ances in where portions of a query are evaluated can cause
a number of problems for the user.

Consider, for example, a user’s wish to uphold a separa-
tion of duty restriction on certain portions of her query, i.e.,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

the query contains operations that should not be evaluated
by the same server. If a distributed database system were
to construct and execute a plan that evaluated any such op-
erations on the same server, the user’s separation of duty
requirement would be violated. This situation would be es-
pecially problematic if this requirement is dictated by the
user’s employer and violating it could put her job at risk.
As another example, consider a user issuing a query that
contains sensitive information (e.g., interest in a medical
condition or personally identifiable information). Generat-
ing a plan that reveals such information to a server the user
considers untrustworthy would violate the user’s privacy. Is-
sues such as these are further complicated by the fact that
after issuing an SQL query, users are left completely un-
aware of how it is disseminated and evaluated. This leaves
users unaware if a separation of duty requirement is violated
or sensitive information is divulged to untrusted sites.

To assuage problems such as these, we have developed a
preference-aware query optimizer (PAQO) that can uphold
declarative, user-specified constraints on the query plans
generated during the optimization process. Such constraints
are capable of capturing user privacy concerns and are speci-
fied by users via an extended versions of SQL we have devel-
oped called Preference-Aware SQL (PASQL). PASQL adds
two extension clauses to the SQL SELECT statement that
have been formally established in [1].

In this demonstration, we illustrate the functionality of
PAQO. Specifically, we show how the use of constraints spec-
ified via PASQL affects the optimization process. Towards
this end, we visualize the incremental sub-plans constructed
by the optimizer and used as the building blocks in generat-
ing a final query plan for queries with and without PASQL
constraints attached. The visualizations of these intermedi-
ate plans demonstrate how PAQO is able to accommodate
user preferences in a declarative manner and ensure that the
plans it generates adhere to such preferences.

In the next section, we describe our assumed system model
and present a motivating example that forms the core of our
demonstration. Section 3 describes our framework, the ex-
tensions to SQL that we have developed as an interface to
it, and our implementation of this framework within Post-
greSQL’s optimizer. Section 4 describes our demonstration.

2. SYSTEM MODEL AND USE CASE
In our work, we consider the system model illustrated in

Figure 1. The distributed query evaluation process begins
when a user submits a query to the system which the system

1334

Figure 1: An illustration of the workflow of distributed query processing. Here, Alice’s issuance of Query 1
and the dissemination of the query plan presented in Figure 2 is shown. Query plan nodes are shown as
ternaries consisting of the relational algebra operation to be performed, the arguments to that operation,
and the site assigned to evaluate the operation.

validates and passes on to a query optimizer. The optimizer
then determines the best plan for evaluating this query, and
distributes portions of this plan to each server needed to
evaluate the query. These servers will evaluate their assigned
portions of the query, combine their intermediate results as
needed, and return the final query result to the user.

In this traditional setting, the user has no part in deciding
to disseminate partial query plans to database servers. This
provides the opportunity for issues such as those outlined
in Section 1 to occur. To highlight such issues, consider the
following example:

Example 1. Alice is an astronomy researcher working at
the Polytechnic Institute of Technology (PIT). Alice has
recently decided to investigate whether combined readings
from radio and infrared telescopes viewing the same stellar
object can be used to efficiently predict the elements that
make up that object in a novel way. Towards investigating
this theory, she will query a small database of radio tele-
scope readings and the elements known to be found in those
objects that is maintained by PIT (in a table called simply
“radio”). To get infrared readings to work with as well, how-
ever, Alice will have to query a much larger database main-
tained by State University (SU), specifically their “ir” table.
For the greater good, the PIT and SU astronomy depart-
ments allow each other access to their respective databases.
In spite of this, though, Alice would like to keep her new the-
ory secret from researchers at SU to ensure she is the first to
publish it in the case that she is, indeed, on to something.

Alice is interested in the result of the following SQL query:

(1)
SELECT radio.reading, ir.reading, radio.elements

FROM radio, ir
WHERE radio.coordinates = ir.coordinates;

Without the aid of our framework, an optimizer could pro-
duce a query evaluation plan like the one shown in Figure 2.
The nodes of this query plan represent the relational algebra
operations to be performed. Specifically, they are ternaries
of the form 〈 op, params, p 〉. In these ternaries, op rep-
resents the relational operation to be performed; params is

Join,
{(radio.coordinates, =, ir.coordinates)},

SU

Scan,
{(ir)},
SU

Scan,
{(radio)},

PIT

Project,
{(radio.reading, ir.reading, radio.elements)},

SU

Figure 2: A potential plan for evaluating Alice’s
query that reveals sensitive intension to the adver-
sarial server SU. The execution location of each node
is represented by its border. Nodes with a dashed
border are to be executed by SU, while those with
a solid border are assigned to PIT.

a set of sets that represents the parameters to that opera-
tion (e.g., the table to be scanned, the condition on a join
of two relations, the attributes that tuples should be pro-
jected down to, etc.); and p represents the site annotated to
evaluate this operation.

It can be seen that the example plan from Figure 2 reveals
to SU sensitive aspects of Alice’s query: by having SU eval-
uate the join of data from the radio and ir tables, SU learns
that Alice is interested in both radio and ir telescope read-
ings, the very information that she wished to keep private.
To solve such problems for users like Alice, we empower
users to constrain the types of plans generated to evaluate
their queries.

3. OUR APPROACH
PAQO differs from the query optimizer shown in our sys-

tem model in that it accepts not only user queries, but also
constraints on the plans that can be generated to evaluate
those queries. These constraints are then effectively utilized
as optimization metrics.

1335

3.1 SQL Extensions
The constraints supported by PAQO can be specified as

either requirements (constraints that must be upheld by any
plan to evaluate the query) or preferences (constraints that
the use does not consider necessary but would like to have
upheld by a plan to evaluate her query). To express each of
these to the optimizer, in [1] we developed the two extensions
to the SQL SELECT for use in PASQL: the REQUIRING and
PREFERRING clauses.1

Required constraints are fairly straightforward: Alice (from
Example 1) could require that any plan produced by the
optimizer for her query presented in Section 2 keeps her in-
terest in radio and infrared telescope readings from SU. The
REQUIRING clause takes the following general form:

REQUIRING condition 1 HOLDS OVER node descriptor 1

[AND condition 2 HOLDS OVER node descriptor 2]

Node descriptors are used to identify the portions of the
query that the user wishes to constrain the evaluation of.
Node descriptors are defined as a mirror to our representa-
tion of query tree nodes, ternaries consisting of op, params,
and p. They are used to “match” query tree nodes that
the user would prefer to have evaluated in a specific way. A
node descriptor designed to specify the mention of radio and
infrared telescope readings as sensitive, for example, would
match against the project operation in Figure 2 as this node
operates on both the radio table’s reading attribute and the
ir table’s reading attribute. In node descriptors, “*” is used
as a general wildcard for portions of the ternary that the
user wishes a given node descriptor to match against any
value of. To construct a node descriptor matching any query
tree node that operates on radio and infrared readings, for
example, the user could instantiate op and p as “*” while
defining params as a combination of these two attributes.
Finally, the “@” character is used to identify free variables
over which conditions can be authored. By stating the p
part of her node descriptor to be a free variable, and au-
thoring a condition that that free variable should not have
the value SU, Alice can inform the optimizer of her con-
straint that query tree nodes matching her node descriptor
are not evaluated by SU. This constraint could be expressed
through our REQUIRING clause as follows:

(2)

SELECT radio.reading, ir.reading, radio.elements
FROM radio, ir
WHERE radio.coordinates = ir.coordinates
REQUIRING @p <> SU HOLDS OVER

<*, {(radio.reading, ir.reading)}, @p>;

User preferences are not always so straightforward, how-
ever. In order to allow users to express complex and par-
tially ordered hierarchies of constraints, PASQL includes the
PREFERRING clause. The PREFERRING clause is made up of the
same basic constraint HOLDS OVER node descriptors building
blocks as the REQUIRING clause. It is differentiated in that
the optimizer may choose a plan to evaluate the query that
does not uphold some (or any) constraints from a PREFERRING

clause. Users can also indicate that certain PREFERRING clause
constraints as more important than others.

Returning to our example, let us say that Alice would pre-
fer to keep SU from learning that she is interested in both

1Though we utilize similar syntax to that presented in [2],
we apply user preferences to query plan generation while [2]
worked on ordering query results.

infrared telescope readings and radio telescope readings. Al-
ice would like it if neither of those aspects of her query were
revealed to SU, but if that is not possible, she would prefer
that either one or the other is revealed as opposed to reveal-
ing her interest in both. This relatively complex notion of
query privacy can be succinctly captured in our framework
using simply the AND keyword (as Alice does not consider the
revelation of her interest in either radio or infrared readings
to be more important than the other).

(3)

SELECT radio.reading, ir.reading, radio.elements
FROM radio, ir
WHERE radio.coordinates = ir.coordinates
PREFERRING @p <> SU HOLDS OVER

<*, {(radio.reading)}, @p>
AND @p <> SU HOLDS OVER

<*, {(ir.reading)}, @p>;

Note that the AND keyword in a PREFERRING clause indicates
to PAQO that it separates two constraints that the user
considers equally preferred. Each may be independently se-
lected by PAQO to be upheld over the other. PAQO will
consider a plan that upholds both to be better than a plan
that upholds only one (and similarly, a plan that upholds
one is better than a plan that upholds neither). A plan
that upholds only the first constraint is considered just as
good as a plan that upholds only the the second, however.
If Alice wished to add another constraint that should be
considered less important, that all join operations are per-
formed by PIT’s database server, for example, she could use
the CASCADE keyword instead of AND before this constraint:

(4)

SELECT radio.reading, ir.reading, radio.elements
FROM radio, ir
WHERE radio.coordinates = ir.coordinates
PREFERRING @p <> SU HOLDS OVER

<*, {(radio.reading)}, @p>
AND @p <> SU HOLDS OVER

<*, {(ir.reading)}, @p>
CASCADE @q == PIT HOLDS OVER

<Join, *, @q>;

While two constraints joined by AND are considered equally
preferred, any constraint before a given CASCADE is considered
more important by the optimizer than any that are listed af-
ter that CASCADE. PAQO further allows the use of multiple
CASCADEs in a PREFERRING clause to denote multiple levels of
preference. Upon receiving this extended query specifica-
tion with preferred constraints, the optimizer will attempt
to construct a plan that upholds the constraints for keeping
radio.reading and ir.reading from SU. If it can construct
a plan that further executes all joins at PIT, all the better.
The optimizer will only emit a plan that evaluates all joins
at PIT and reveals sensitive information to SU if revealing
such information is unavoidable in any plan the optimizer is
able to build. Because Alice states that keeping her inter-
ests secret from SU is more important to her than executing
joins at PIT, the optimizer will not trade off revealing infor-
mation to SU in favor of executing joins at PIT.

Such an optimization process could result in the query
plan shown in Figure 3. This query plan upholds all of the
example constraints mentioned in this section.

3.2 Implementation
PostgreSQL is a widely-used, open-source, object-relational

DBMS [4]. It consists of over 700,000 lines of code. Post-
greSQL serves as the basis for PAQO. We have extensively

1336

Join,
{(radio.coordinates, =, ir.coordinates)},

PIT

Scan,
{(ir)},
SU

Scan,
{(radio)},

PIT

Project,
{(radio.reading, ir.reading, radio.elements)},

PIT

Figure 3: A privacy-preserving plan for evaluating
Alice’s query.

modified PostgreSQL’s parser and optimizer to support PASQL
constraints. Our modifications to PostgreSQL touch a sub-
set of the code base totaling over 60,000 lines of code.

Parsing and Data Structures. To be able to process PASQL
constraints during optimization, we first need to parse these
constraints out of incoming queries. As such, we extended
PostgreSQL’s query parser to support PASQL’s REQUIRING

and PREFERRING clauses. This further necessitated the cre-
ation of new data structures to house the additional output
of this modified parser. Further, as PostgreSQL is not a
distributed DBMS, we needed to extend all query plan data
structures to include execution location state.

Cost Estimation. We have rewritten the cost estimation
functions of PostgreSQL to account for distributed query
plan execution. As a first step toward this goal, we included
network transfer costs to PostgreSQL’s cost estimations for
all operations on relations coming from a different site. This
was accomplished by scaling its calculation of disk read costs
to Internet speeds. We further account for the parallel exe-
cution of applicable sub-trees of the query plan at different
sites. Additionally, we assume that tuples can be streamed
from site to site as they are generated.

Optimization. With all of the above modifications in hand,
we were able to implement preference-aware query optimiza-
tion through two changes to the generation of new interme-
diate query plans (though these same changes also apply to
the generation of final query plans). First, we adapted the
optimization process to utilize REQUIRING clauses to prune
the optimization search space. Any sub-plan that violates
a required constraint cannot be emitted as part of a final
query plan and can hence be discarded from further con-
sideration during plan construction. Second, to support the
PREFERRING clause, we have modified PostgreSQL’s dynamic
programming approach to query optimization to maintain
only the most highly preferred plans over the course of op-
timization. This heuristic allows us include user preferences
as optimization metrics while offering optimization perfor-
mance near that of the unmodified optimizer. It is enforced
in two steps during the optimization process. For each inter-
mediate plan generated, the optimizer will determine which
preferred constraints (if any) it upholds. This information is
stored in a list of bitmaps (each representing a different pref-
erence level) that is attached to the internal representation
of each plan. These plan bitmap lists are then compared
to efficiently determine the relative preference of different
intermediate query plans. In general, a plan is considered
more preferred if it upholds more constraints at a higher
level of preference.

Evaluation. We have established the correctness of PAQO
by conducting a case study utilizing the example scenario
we demonstrate here.

4. DEMONSTRATION
In this demonstration, we first illustrate how easily a user

with knowledge of SQL and site topology can specify con-
straints on her queries and second, the effect of such con-
straints on the query optimization process. We show how,
when passed to PAQO alongside a user query, user pref-
erences can alter the optimization process to ensure they
are supported by resulting plans. We present the example
scenario and query shown in Section 2, and a look at the
different intermediate plans generated by optimizing Alice’s
query with and without PASQL constraints applied.

To set up this demonstration, we consulted with the au-
thors of the Astroshelf project [3] to create database tables
simulating PIT and SU’s stores of telescope readings. Due
to practical limitations of the demonstration, we store rela-
tively low cardinality tables on the demonstration machine
and scale table size meta data read in during optimization
to table sizes of 1TB for PIT and 4TB for SU. This allows us
to effectively simulate the optimization of queries over large
scale astronomical data.

As a baseline, our demonstration presents the optimiza-
tion of Alice’s query without any constraints on the resulting
plan. We show graphical representations of the intermediate
plans constructed by PAQO during the optimization pro-
cess, as well as their estimated costs. In parallel with this,
we similarly present an overview of the process for optimiz-
ing Queries 2 and 3 from Section 3.1. We use Query 2 to
show how required constraints are used to trim the search
space by dismissing any further processing on intermediate
plans that violate a required constraint. We further demon-
strate (using Query 3) how, in a manner similar to Post-
greSQL’s maintenance of different plans for generating the
same intermediate relation but in a different sorted order,
PAQO maintains different plans that uphold different user
preferences. After exploring the optimization processes for
these three queries, we show that our optimizer generates
final query evaluation plans that respect Alice’s specified
constraints. We further discuss the minimal impact of our
modification on query optimization time. Finally, we invite
participants to submit queries if time permits.

Acknowledgments. This work was supported in part by the

National Science Foundation under awards CCF–0916015, CNS–

0964295, CNS–0914946, CNS–0747247, and OIA-1028162. It was

further partially supported by a gift from EMC/Greenplum.

5. REFERENCES
[1] N. L. Farnan, A. J. Lee, P. K. Chrysanthis, and T. Yu. Don’t

reveal my intension: Protecting user privacy using declarative
preferences during distributed query processing. In ESORICS,
pages 628–647, 2011.

[2] W. Kießling and G. Köstler. Preference SQL - design,
implementation, experiences. VLDB, pages 990–1001, 2002.

[3] P. Neophytou, R. Gheorghiu, R. Hachey, T. Luciani, D. Bao,
A. Labrinidis, E. G. Marai, and P. K. Chrysanthis. Astroshelf:
Understanding the universe through scalable navigation of a
galaxy of annotations. In SIGMOD, pages 713–716, 2012.

[4] The PostgreSQL Global Development Group. Postgresql.
http://www.postgresql.org/, Dec. 2012.

1337

