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ABSTRACT

Social media nowcasting—using online user activity to de-
scribe real-world phenomena—is an active area of research
to supplement more traditional and costly data collection
methods such as phone surveys. Given the potential impact
of such research, we would expect general-purpose nowcast-
ing systems to quickly become a standard tool among non-
computer scientists, yet it has largely remained a research
topic. We believe a major obstacle to widespread adoption
is the nowcasting feature selection problem. Typical now-
casting systems require the user to choose a handful of social
media objects from a pool of billions of potential candidates,
which can be a time-consuming and error-prone process.
We have built RINGTAIL, a nowcasting system that helps
the user by automatically suggesting high-quality signals.
We demonstrate that RINGTAIL can make nowcasting easier
by suggesting relevant features for a range of topics. The
user provides just a short topic query (e.g., unemployment)
and a small conventional dataset in order for RINGTAIL to
quickly return a usable predictive nowcasting model.

1. INTRODUCTION

Social media nowcasting—using online user activity to de-
scribe real-world phenomena—is an active area of research.
Past projects have used social media data like search queries
and Twitter messages to describe flu activity [13], unemploy-
ment [11], mortgage delinquencies [10], movie ticket sales [14]
and other real-world processes.

The potential benefits of nowcasting are enormous. Tra-
ditional data collection techniques, such as phone surveys,
are time-consuming and expensive. For example, the budget
for the US Bureau of Labor Statistics—just one of the US
government’s statistical bureaus, and responsible for num-
bers such as the unemployment rate—is over 600 million US
dollars each year [21]. If it were possible to vastly lower the
cost of collecting data on social phenomena, researchers and
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policy experts could ask many more questions and get the
answers much more quickly.

The direct impact of such data is potentially very large.
For example, economist Alan Greenspan correctly predicted
the mid-1970s recession would come to a close after ana-
lyzing “...ten-day auto sales figures, the weekly retail sales,
the data on housing permits and starts, detailed reports
coming out of the unemployment-insurance program, and
so on...” [15]. Unfortunately, US automakers stopped releas-
ing ten-day auto statistics in 1993 [19], making the modern
policymaker’s task more difficult. An effective nowcasting
system could potentially help make better policy by yield-
ing the auto sales number and many other signals. (Indeed,
we are collaborating with two economists and presented an
early version of this tool at the 2012 Summer Institute of
the National Bureau of Economic Research [9, 7].)

Given their potential impact, we would expect general-
purpose nowcasting systems to quickly become a standard
tool among non-computer scientists. However, we are un-
aware of any such tool for sale, let alone in widespread de-
ployment (two arguable exceptions are the use of Google Flu
data by the US Center for Disease Control, and intermittent
reports of social media data use by hedge funds [12]). Sur-
prisingly, nowcasting has largely remained a research topic.

Nowcasting Today — We believe a major obstacle to wide-
spread adoption is the problem of feature selection [8]. Con-
sider the steps followed by most nowcasting research projects
to date. First, the user chooses a number of salient phrases
or queries (e.g., “I feel sick” for flu prediction, or “I need
a job” for unemployment). Second, the user uses the so-
cial media data to generate a time-varying signal for each
such phrase (e.g., the signal for “I feel sick” would count, for
each day covered by the dataset, the number of people who
searched for that phrase). Third, the user trains a statisti-
cal model that accepts the social media signals as input and
outputs its estimate of the phenomenon’s true value, such
as the number of people with flu. This training procedure
also requires a conventional data set, such as flu information
collection via the health system.

The first step in this procedure is essentially one of fea-
ture selection, in which the user must determine the small
handful of strings that should be used to build the time-
varying signals. This step is much more burdensome than it
first appears, because users are only weakly able to choose
good signals. For example, consider the job-loss phrases laid
off, got let go, looking for a job, and was canned; we derived
Twitter signals for these phrases during the period of mid-
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2011 to mid-2012, and measured the signals’ correlation to
official US initial unemployment insurance claims data. To
the human eye, the four phrases seem reasonable, but their
Pearson correlations ranged from a terrific 0.74 (laid off) to
a terrible 0.14 (looking for a job).

As a result, users must repeatedly choose-and-test phrases
until the nowcaster’s performance is “good enough.” Fur-
ther, because nowcasting is useful in exactly those scenar-
ios where conventional test data is rare, users must also be
concerned with statistical issues such as overfitting. As a
result, choosing good nowcasting signals is currently a time-
consuming process that requires a statistical background.
To obtain a popular general-purpose nowcasting tool, we
would like a feature selection technique that takes this bur-
den out of the user’s hands as much as possible.

Technical Challenge — Feature selection is a well-known
problem and has been studied intensively (see Guyon, et
al. [16] for an overview). The nowcasting domain is unusual
in its extreme paucity of conventional data when compared
to the potential number of feature candidates.

Our current implementation of RINGTAIL contains roughly
3.2 billion possible features (the (gram, signal) pairs de-
scribed in Section 2). In contrast, our conventional unem-
ployment dataset is a government-collected dataset that is
released just weekly, giving us about 52 data points that
overlap with our year of social media data. Given this
disparity in data size, any feature selection technique that
chooses signals according to correlation with the conven-
tional data will generate a massive number of spurious cor-
relations. For example, ranking all of our 3.2B social media
signals by correlation with the government unemployment
data yields a list of suggested features in which the first
truly relevant signal does not appear until position 1,376.
Asking a human to clean up such a list would likely be more
difficult than simply asking the human for the features in
the first place. Moreover, this problem is not limited to the
unemployment target; nowcasting will always be most useful
when conventional data is rare or unavailable.

Scott and Varian [20] described a “spike-and-slab” method
for choosing nowcasting features, but it relies on rare conven-
tional data. signals. Konda, et al. [17] recently described a
system for feature selection in a more traditional structured
data setting.

In other work [9], we described how to suggest features us-
ing semantic similarity information between the user’s query
and each candidate signal’s label. This domain-independent
technique relies on Web corpus statistics, and does not ex-
ploit the rare conventional data.

Demonstration — We have built RINGTAIL, a domain-
independent nowcasting system that helps the user by au-
tomatically suggesting high-quality signals. We will demon-
strate that RINGTAIL can make nowcasting easier by sug-
gesting relevant features for a range of topic searches. The
user must only provide a short topic query (e.g., unemploy-
ment) and a conventional dataset in order for RINGTAIL to
quickly return a usable predictive nowcasting model. RING-
TAIL does not address every nowcasting problem, but does
demonstrate that effective feature suggestion is possible.

In the rest of this paper we will provide an overview of
RINGTAIL’S data pipeline and query-time software architec-
ture (Section 2), describe its user interface (Section 3), and
discuss what our live demonstration will include (Section 4).

3. Group grams into
gram, signal pairs

1. Collect social
media messages

2. Extract daily
gram frequencies
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Figure 1: The pipeline RINGTAIL uses to convert a corpus of
tweets into a set of (gram, signal) pairs.

2. SYSTEM FRAMEWORK

We now describe the basics of RINGTAIL’s feature ranking
system, the datasets needed to support it, and the software
framework that supports user queries.

2.1 Feature Selection

Figure 1 describes RINGTAIL’s signal extraction pipeline,
which exists in most published nowcasting systems in some
form. The system takes a collection of social media messages
and transforms them into a series of (gram, signal) pairs.
Each gram represents a string of 4 or fewer consecutive words
drawn from social media text. For example, the tweet “lost
my job” generates the set of grams, {lost, my, job, lost my,
my job, lost my job}. Each accompanying signal contains a
count of the number of times the gram was observed in the
social media database in each 24-hour period. A number of
social systems might be able to generate such messages; the
only strict requirement is that the text have a timestamp.

We collected about 6 billion social media messages over
a year-long period, which we transformed into about 3.2
billion (gram, signal) pairs with more than 3 occurrences
in the data. We preprocessed the tweet corpus to remove
punctuation and non-English messages, and to normalize
some strings (e.g., all URLs are translated into the generic
<URL> token). The task of feature selection is to choose
k of these 3.2 billion (gram, signal) pairs to show to the
user for use in training a statistical model. Because the
conventional data can likely not support a large model, the
ultimate number of desired signals is likely very small.

Note that RINGTAIL’s primary goal is not necessarily to
obtain the highest-accuracy nowcasting model. There are
many factors that go into the model’s success besides the
selection of features: the difficulty of the target topic, the
quantity of social media data, the choice of statistical model,
and so on. Rather, RINGTAIL exists to make (gram, signal)
suggestions that are close enough to human quality that
non-computer-scientist users do not have to focus on this
step, but can instead focus on the actual domain-specific
implications of the nowcasting information.

2.2 Our Approach

Given a user’s topic query g, RINGTAIL scores and ranks
candidate features using a three-step process.

Synonym Expansion transforms the topic query into a
number of roughly synonymous queries. The goal of this
step is to make RINGTAIL feature selection robust to the
user’s word choice. In other words, queries for gas prices and
fuel prices should yield similar and high-quality results. We
simply run each of the ¢ tokens in ¢ through several standard
thesauri, yielding t sets of synonyms; we then compute the
Cartesian product of these sets. For example, if the topic
query gas prices has token synonyms gas = {gas, fuel} and
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Figure 2: RINGTAIL’S runtime software framework.

prices = {prices, costs}, we get expanded topic queries {gas
prices, gas costs, fuel prices, fuel costs}.

PMI Scoring scores each candidate (gram, signal) pair ac-
cording to the semantic relatedness between the gram and
a topic query from the previous step. We then sort all the
(gram, signal) candidates in descending order of relatedness,
and pass the top k to the next step.

Pointwise Mutual Information, or PMI, is used in the Web
mining literature to determine the relatedness of two strings.
For a string x, P(z) is the probability of seeing x in a corpus
of text. P(z,y) is the probability of seeing strings = and y
together. PMI is defined as:

P(z,y)

PMI(z,y) = log P(z)P(y)

The resulting equation will yield a large value when = and
y occur together more often than random chance. If a (gram,
signal) pair is a good feature for the user’s topic query, then
we expect the gram to be highly related to the query string.
Critically, we can use Web corpus data to compute PMI,
all while not using any of the rare conventional data (e.g.,
the governmental unemployment statistics). We use PMI
to rank (gram, signal) candidates for each topic query, then
combine them into a unified list sorted by average rank.

(1)

In the standard version of the demo, the output from PMI
Scoring is what we show to the user, who can then choose
to retain or eliminate (gram, signal) pairs. However, if the
user is willing to build a predictive model using signals that
do not necessarily have human-understandable grams, we
can also pursue the next and final step.

PCA Data Reduction uses principal component analysis
to transform the input signals into a space of features that
are linear combinations of the original signals. We also ob-
tain a ranking over these new synthetic signals that tells us
which account for the most variance in the observed data.
These synthetic signals likely capture a substantial amount
of information in the entire PMI Ranking output, and our
experiments show that these signals are in general higher-
quality than those that stop at the previous step; however,
the signals are not human-understandable.

2.3 System Architecture

Figure 2 describes the query-time software architecture of
RINGTAIL. Several databases (at the top of the figure) are
prepared offline before any user submits a query. Naturally,
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Figure 3: The RINGTAIL search result page shows Suggested
Signals results in the left-hand column.

this offline phase includes recording a stream of Social Me-
dia Messages and transforming them into a set of Time-
Varying Signals, or (gram, signal) pairs. We store the re-
sulting signals in a distributed database (Apache HBase) for
retrieval at query-time, and periodically update them with
new data points. We also crawl Web Corpus Documents
for use in the PMI step described in the above section.

Much of the intellectual contribution of RINGTAIL lies in
the Signal Suggestion component. The Signal Lookup
and Message Lookup components mainly serve interface
ends, as we describe below in Section 3.

Much of the systems-building challenge of RINGTAIL lies
in efficiently calculating PMI scores for each topic query. A
single query requires a huge number of PMI scores (one for
each candidate), a single computation could integrate fre-
quency counts from many Web pages, and PMI is difficult
to precompute (since in principle there are as many possible
PMI scores as the square of the number of grams, which lies
in the billions). RINGTAIL has three techniques for obtain-
ing PMI scores. The first method is accurate but induces
huge latency: for each query it runs a MapReduce job across
a cluster of servers. The second method approximates the
PMI scores by using a random sampling of the Web cor-
pus. Some accuracy is lost, but speedup is near linear with
corpus reduction. Finally, we have experimented with using
matrix completion methods [18] to very efficiently approxi-
mate PMI scores even when we have relatively few samples
of PMI scores. This last approach again trades accuracy of
the scores for improved runtime performance.

3. USER INTERFACE

RINGTAIL’s external presentation is that of a web appli-
cation with three primary pages. The first page is a simple
search box, which prompts the user to provide a topic query
(“unemployment”) and a conventional dataset (e.g., the US
weekly initial unemployment claims data for the past year).
This is processed by RINGTAIL as described in Section 2.

The second page is shown in Figure 3 and is where the user
spends most of his or her time. The Suggested Signals
are the main output of the system, given in response to the



Target Phenomenon Source Potential User Label
Box Office Sales B.O. Mojo [2] | movie tickets

Flu Activity CDC [3] flu rates

Gas Prices U.S. EIA [6] gas prices

Mortgage Refinancings | MBA [4] mortgage refinance
E-commerce Traffic Alexa [1] online shopping

US Unemployment US DOL |[5] unemployment

Table 1: Datasets the user can use to train a model.

user’s Original Topic Query. The suggested signals can
be highlighted by clicking on them. When a gram is clicked,
the Single-Signal Closeup shows the corresponding signal
data, as a percentage of social media messages over time.
When the user clicks on a specific date within that signal,
RiINGTAIL displays some Sample Messages drawn from
that date. Finally, the user can retain or reject RINGTAIL’s
suggestions to build the set of User-Chosen Signals that
are sent to the last phase.

The final page allows the user to process the signals cho-
sen in the previous step. It offers a few basic model train-
ing methods (e.g., a simple linear regression, autoregressive
model); these methods are offered as a convenience rather
than a deep contribution of the system. The user can also
download the signal data for use with an external tool.

4. DEMONSTRATION DETAILS

Our demonstration will allow conference attendees to use
RINGTAIL to query for arbitrary topics and manage the re-
sulting list of signals. We will put the system into a special
“demonstration mode” that allows users to query for a topic
even when a conventional dataset is not available; however,
in this mode RINGTAIL can only suggest features, not train a
working model. We will have several conventional datasets
(listed in Table 1) for attendees to use; they are also welcome
to upload and test any datasets of their own.

If conference attendees prefer to avoid writing their own
queries and instead let the authors run a standard demon-
stration, we will show how an economic policymaker “Ben”
might use the tool:

1. Ben is concerned about the unemployment rate. He
visits the first page of RINGTAIL and enters “unem-
ployment” into the search box. He also provides a re-
cent weekly dataset: a year’s worth of unemployment
insurance claims. He then clicks on the Go button.

RINGTAIL quickly shows a result similar to that seen
in Figure 3. Ben can see a number of signal grams
proposed by the system: [ need a job, I got laid off,
and so on. When Ben clicks on a gram, the relevant
time series is shown in the central window. He can also
click on an individual data point to list tweets that
contain the relevant gram on the day in question; this
feature is often useful when trying to explain sudden
and surprising moves in the data.

Ben adjusts the list of grams until he is satisfied. He
then clicks Next to proceed to the final page of the
application. On this page, he can train a simple re-
gression model based on the chosen signals and the up-
loaded conventional data. The central window shows
the conventional data series overlaid with a predicted
signal generated by the trained model.

In addition, we will keep a running tally of past queries to
suggest interesting demonstration ideas to potential users.
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S. CONCLUSIONS

RINGTAIL is a new social media nowcasting system with
a signal suggestion system that makes it easier to use than
current published systems. It is enabled by a variable rank-
ing mechanism that, critically, does not rely on conven-
tional data to obtain high-quality suggestions. We believe
the ideas behind RINGTAIL will make nowcasting systems a
much more realistic proposition for typical domain experts
and policymakers.
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