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ABSTRACT
GPU acceleration is a promising approach to speed up query
processing of database systems by using low cost graphic
processors as coprocessors. Two major trends have emerged
in this area: (1) The development of frameworks for schedul-
ing tasks in heterogeneous CPU/GPU platforms, which is
mainly in the context of coprocessing for applications and
does not consider specifics of database-query processing and
optimization. (2) The acceleration of database operations
using efficient GPU algorithms, which typically cannot be
applied easily on other database systems, because of their
analytical–algorithm-specific cost models. One major chal-
lenge is how to combine traditional database query process-
ing with GPU coprocessing techniques and efficient database
operation scheduling in a GPU-aware query optimizer. In
this thesis, we develop a hybrid query processing engine,
which extends the traditional physical optimization process
to generate hybrid query plans and to perform a cost-based
optimization in a way that the advantages of CPUs and
GPUs are combined. Furthermore, we aim at a portable so-
lution between different GPU-accelerated database manage-
ment systems to maximize applicability. Preliminary results
indicate great potential.

1. INTRODUCTION
Since the invention of relational database management

systems (DBMSs) 40 years ago, performance demands of ap-
plications have been ever increasing with no border in sight.
A new emerging trend applies General Purpose Graphical
Processing (GPGPU) on database systems to create GPU-
accelerated database management systems. In fact, a pleni-
tude of research has investigated the acceleration of database
systems using GPUs: relational operators [3, 10, 18], index-
scan acceleration [4, 28], kNN-search [12, 39], online ag-
gregation [29, 30, 38], sorting [14], spatial range queries
[35], XML path filtering [31], duplicate detection [11], and
MapReduce [17]. Due to the properties of GPUs, a GPU
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algorithm is not necessarily faster than its CPU counter-
part, because data has to be copied from the CPU’s main-
memory to the GPU’s device-memory to be processable by
the GPU. Hence, these copy operations introduce a signifi-
cant overhead and may lead to a slow down in system per-
formance [16]. Therefore, it is important to use the GPU
only, when it is beneficial for query processing. To this end,
the query optimizer has to be aware of the properties of dif-
ferent processing devices, such as CPU and GPU, and has
to make suitable scheduling decisions to maximize system
performance [7].

1.1 Problem Statement
The research challenge is, how to combine scheduling de-

cisions with the physical optimization process in database
optimizers to maximize performance. Since applications
have different requirements, it should be possible to sup-
port response-time or throughput optimization, which in
turn, may require completely different scheduling heuris-
tics. Therefore, the engine has to carefully evaluate a logical
query plan and create a suitable hybrid query plan; a physi-
cal query plan utilizing possibly multiple processing devices.
We identify hybrid query processing and optimization as a
challenging task in prior work [7]: The physical optimiza-
tion process becomes more complex, because the optimiza-
tion space increases with the possibility of using the CPU
or the GPU for executing an operator. Additionally, chang-
ing the processing device may require data transfers. Gregg
and Hazelwood investigated the performance impact of data
transfers and concluded that the storage location has a sig-
nificant impact on performance, because data transfers pose
a major bottleneck [16].

1.2 Research Goals
The goal of our research is to develop a hybrid query pro-

cessing engine (HyPE) that handles creation and optimiza-
tion of hybrid query plans w.r.t. an optimization criterion.1

We aim at a portable solution, so HyPE can be easily ap-
plied to different GPU-accelerated DBMSs, such as GDB
[18], Ocelot [21], or Virginian [2]. To achieve our goals, we
need to

• review the literature for suitable heterogeneous schedul-
ing approaches and GPU-accelerated data management
to be able to build on state-of-the-art results.

• create a flexible architecture for HyPE and apply it at
several hybrid DBMSs to prove applicability.

1http://wwwiti.cs.uni-magdeburg.de/iti_db/
research/gpu/hype/
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Figure 1: Relationship of research fields

• implement and evaluate different query processing tech-
niques for different optimization criteria.

1.3 Contribution and Paper Structure
In this paper, we contribute: (1) A literature review on

database query processing on GPUs and heterogeneous sched-
uling approaches. (2) Our design of HyPE, as well as (3) a
detailed research plan to achieve our goals.

The remaining article is organized as follows. In Section
2, we discuss preliminary considerations and summarize our
preliminary results for our PhD project in Section 3. We
present our design of HyPE in Section 4. Finally, we propose
our research plan in Section 5.

2. PRELIMINARY CONSIDERATIONS
GPU-accelerated data management can highly benefit from

heterogeneous scheduling approaches, whereas GPU-acceler-
ated data management may allow custom optimizations.
Therefore, in this section, we briefly describe the basics of
GPUs and explore the literature for GPU-accelerated query
processing and heterogeneous scheduling. Figure 1 illus-
trates the relationship between the research areas.

2.1 Graphics Processing Units
GPUs are specialized processing devices with the follow-

ing properties: (1) They have a significant higher theoreti-
cal computational power than CPUs for the same monetary
costs. (2) GPUs have a highly parallel architecture based
on threads, designed for scenarios where thousands to ten
thousands of threads run in parallel to solve a problem. (3)
They are optimized for numeric computation. Therefore, a
lot of control flow in a GPU algorithm brakes the perfor-
mance, because several computing units share one control
unit in a symmetric multiprocessor. (4) Data can only be
processed, if it is dormant in the GPU RAM. Hence, we have
to transfer data between CPU RAM and GPU RAM when
the input data is not present in the memory of the current
processing device. However, these data transfers slow down
the system, because the PCIe Bus is significantly slower than
the memory bandwidth of the CPU or GPU RAM [37].

2.2 Literature Review
We now discuss related work in the field of GPU-accelerat-

ed data management as well as heterogeneous scheduling
and hybrid query processing.

2.2.1 GPU-accelerated Data Management
In 2004, Govindaraju and others were the first to investi-

gate the GPU as coprocessor for database query processing
[15]. They accelerated database operators such as selec-
tions and aggregations. They represented data as textures

in GPU RAM and used fragment programs on those textures
to perform computations. With the capability of GPUs to
perform general purpose computations using CUDA or other
frameworks, new approaches were developed. He and oth-
ers investigated efficient algorithms for join processing in
GPUs [19], as well as for the remaining relational operators
[18] and implemented them in their prototype GDB. Fur-
thermore, they proposed an analytical cost model for their
relational operators and developed a coprocessing technique
that considers the resources of CPU and GPU as well as
the cost of data transfers to utilize suitable processors for
an operator [18]. He and others also investigated through-
put optimization of transactions using GPUs in their proto-
type GPUTx. They group multiple transactions into bulks
and execute them concurrently on the GPU while maintain-
ing conflict serializability. They observe an improvement of
throughput by 4-10 times compared to a CPU-based coun-
terpart [20]. Diamos and others designed and implemented
GPU algorithms for relational operators as well [10]. The
authors state that their algorithms are 1.69 to 3.54 times
faster than the algorithms of He and others [18]. Bakkum
and others extend the SQLite command processor by GPU
algorithms with focus on accelerating a subset of possible
SQL queries [3]. Furthermore, they investigated efficient
data management on GPUs in their prototype Virginian and
propose the data structure tablet, which utilizes a major col-
umn format of data, supporting coalescing memory access
on GPU and cache awareness on CPU side, respectively [2].
The approach does not assume that input or output results
fit completely in GPU memory, supporting arbitrarily large
databases. Virginian represents query plans as a sequence
of opcodes, which are executed by a virtual machine. This
avoids that data has to be read and written from global de-
vice memory and can be kept in local and shared memory,
when further operations are performed on the GPU, leading
to significant performance improvements.

Pirk and others studied the acceleration of foreign key
joins. Their approach streams the keys to the GPU RAM
and performs the random lookups on the GPU [34]. Pirk and
others argue that operation-based scheduling may overuti-
lize a processing device, while keeping the other devices idle.
They propose the coprocessing technique bitwise distribu-
tion, where a compressed approximating version of the data
is stored in the GPU’s RAM while the CPU RAM contains
the complete data. The query processing has two steps: (1)
In the GPU preselection phase, the data is prefiltered on a
best effort base, keeping some false positives. After trans-
ferring the result in the CPU RAM, the CPU constructs
the final tuple values and removes the false positives in the
refinement phase to obtain the final result [33, 35]. Gh-
odsnia proposed a new generation of in-memory databases:
a column store kept entirely in GPU RAM to minimize the
data transfer overheads [13]. He argues that GPU RAM
size increases with each generation and large data sets can
be distributed on multiple GPUs. However, he did not yet
provide a qualitative evaluation of his concepts. Kaczmarski
compared OLAP cube creation on CPUs and GPUs and
identified advantages and challenges of GPU coprocessing
in databases [26]. Riha and others proposed an architecture
for adaptive hybrid OLAP systems [36]. The idea is to uti-
lize CPUs and GPUs and exploiting their specific properties
to reduce system response time. They use data formats op-
timized for the characteristics of the respective processing
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devices and consider data locality information. Riha and
others found that (1) their approach achieves the fourfold
performance compared to the best related solutions and (2)
a GPU increases the systems speed by a factor of two for
10% higher monetary costs [36]. Zhong and He proposed to
use the GPU as additional in-memory buffer to avoid costly
I/O operations. They applied their solution on the virtu-
alization platform Xen and observed a reduction of average
I/O cost by up to 68%.

2.2.2 Heterogeneous Scheduling and Hybrid Query
Processing

In contrast to the following approaches, HyPE is a library
designed for effective database query processing and opti-
mization. The design goal is that HyPE handles physi-
cal cost-based query optimization, a property state of the
art approaches lack. Query processing techniques for dis-
tributed database systems do not consider special properties
of a hybrid CPU/GPU system (e.g., bus topology, highly
differing processing devices, or a tight coupling of the pro-
cessing devices).

Therefore, we argue that concepts for distributed query
processing are not applicable to hybrid CPU/GPU systems
without modifications. In contrast to parallel database sys-
tems, hybrid CPU/GPU systems possess heterogeneous pro-
cessing devices. In hybrid CPU/GPU systems, it is more
difficult to decide, which processor should be allocated for
which operation, because of the heterogeneous nature of
such systems. Consequently, research identified the need
for heterogeneous scheduling frameworks, which allocate for
each task the most suitable processor [1, 24].

Malik and others introduce a scheduling approach for hy-
brid OLAP systems [30]. They use a tailor-made calibration-
based analytical cost model to estimate execution times of
CPU and GPU algorithms. Since the cost model is opera-
tion and system specific, it is not easily portable to other
database operations and DBMS. Kerr and others propose
a model for static selection of CPU and GPU algorithms
[27]. Therefore, the approach does not introduce run-time
overhead, but does not allow inter-device parallelism be-
tween operations of the same type (e.g., sort operations),
and cannot exploit possible break even points of CPU and
GPU algorithms to increase system performance compared
to dynamic approaches (e.g., [5, 25]). Iverson and others [25]
introduce an approach based on an estimation of task execu-
tion times using a learning-based approach. Similar to our
model [5], their solution requires no hardware specific infor-
mation. Augonnet and others develop StarPU, a run-time
system with unified execution environment that is able to
distribute parallel tasks in systems with heterogeneous pro-
cessors [1]. Experiments with StarPU showed super-linear
efficiency, meaning computational power the hybrid system
is higher than the sum of each heterogeneous processors’
computational power. Similar to our approach, StarPU is
capable of creating performance models for tasks automati-
cally as well. Ilić and others introduce CHPS, an execution
environment for platforms including heterogeneous proces-
sors such as hybrid CPU/GPU systems [24]. CHPS sup-
ports a flexible task description mechanism and overlapping
of processor computation and data transfers. Furthermore,
it can automatically construct performance models for tasks,
similar to StarPU or our approach. Ilić and others applied
CHPS on query Q3 and Q6 of the TPC-H benchmark and

observed significant performance improvements [23]. How-
ever, the queries where implemented using tailor-made op-
timizations for each query and were integrated into CHPS.
We target a portable solution, where a query plan is auto-
matically optimized to run in a heterogeneous environment.
Furthermore, our decision can be easily integrated in an ex-
isting DBMS by design.

3. PRELIMINARY RESULTS
Most heterogeneous scheduling approaches work as exten-

sible frameworks for task-based scheduling. But in a DBMS,
the heterogeneous scheduling approach has to be integrated
in the query optimizer, which may pose a severe constraint.

Therefore, we developed a heterogeneous scheduling ap-
proach, which distributes database operations on CPU and
GPU processing devices with minimal response time [8].
Cost models are the base of such decisions, but estimat-
ing the cost of an operation for heterogeneous processors is
a complex task. Mostly, an analytical cost model is built
for the processing device and has to be calibrated according
to the specific hardware in a system [18, 30]. Some ap-
proaches use learning-based strategies, which map feature
values (e.g., input data size, selectivity, data skew) to exe-
cution times [5, 25]. According to Wu et al., well calibrated
cost models with sufficiently accurate cardinality estimation
are either equally good or better than approaches using ma-
chine learning [40]. However, the performance estimation
with analytical models has the drawback that the models
have to be refined with each new hardware generation and
their parameters have to be maintained and properly ad-
justed by a database administrator. Therefore, we use a
learning-based approach to estimate the execution times of
operations on different processing devices [5]. In this sec-
tion, we discuss our preliminary results: our decision model,
the challenges for hybrid query processing and our approach
for hybrid query optimization.

3.1 Decision Model
We developed a self-tuning decision model that distributes

database operations on processing devices w.r.t. an opti-
mization criterion [8]. A set of algorithms can execute an op-
eration O. The idea is to learn an algorithms execution be-
havior depending on the features of input datasets. In other
words, the model observes the correlation between input
datasets and resulting execution times and learns the cor-
relation using a statistical method. This statistical method
computes an approximation function, when it has collected
enough observations.

The model selects the optimal algorithm for an operation
by (1) computing estimated execution times for all avail-
able algorithms capable of executing O and (2) using the
estimated execution times and an optimization heuristic to
select the optimal algorithm. For response-time optimiza-
tion, the system selects the algorithm with lowest estimated
execution time.

We investigated suitable use cases of operator-based of-
floading to coprocessors in prior work and evaluated the
model on three use cases: update merging in in-memory
column stores, lookup operations on index structures, and
sort operations. Depending on use case and use case specific
parameters, we observed improvements in overall execution
time up to 30% [6].
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3.2 Challenges for Hybrid Query Processing
As the second step, we developed a query-optimization

approach using our decision model. Hybrid query processing
and optimization introduces new challenges that a query
optimizer has to consider to achieve maximal performance.

We identified five challenges [7]: (1) The Pipelining Chal-
lenge states that regular pipelining is not possible between
two GPU algorithms, because inter-kernel communication
is undefined [32]. However, it is possible to compile sev-
eral operations in one kernel using OpenCL [21]. (2) The
Execution-Time-Prediction Challenge declares that estimat-
ing execution times becomes problematic when several GPU
kernels are executed in parallel, because the impact of multi-
kernel execution on a kernels performance is difficult to pre-
dict. (3) The Copy-Serialization Challenge states that data
needed by different operations cannot be transferred concur-
rently between CPU and GPU, because concurrent copy op-
erations are not allowed [32]. (4) The Critical-Query Chal-
lenge declares that an optimizer needs a heuristic that de-
cides which queries should be accelerated by the GPU. Not
every query can benefit from GPU acceleration, because it
depends on the operation, the number of operations concur-
rently executable on the GPU and the PCIe bandwidth. (5)
The Optimization-Impact Challenge states the difficulty to
estimate the impact of an optimization of one query Q1 on
another query Q2 or even the overall system performance.

3.3 Hybrid Query Optimization using Deci-
sion Model

We proposed a simple algorithm for physical optimization
of query sequences [9] and query trees [7]. We considered
two basic approaches: (1) The greedy algorithm utilizes the
operator-based decision model to select the optimal algo-
rithm for each operation in a logical query plan. Afterwards,
the algorithm inserts copy operations whenever the model
decides to change the processing device. (2) The n-copy
operation heuristic, which is a cost-based algorithm. It gen-
erates a set of candidate plans and uses the estimated execu-
tion times of our decision model to compute the cost of the
hybrid query plans. The algorithm chooses the query plan
with lowest cost for execution. Based on the observations
of Gregg and Hazelwood [16], the heuristic only considers
query plans with less than n-copy operations. This sub-
stantially reduces the optimization space, but the heuristic
cannot find the optimal query plan when it has more than
n copy operations [7].

4. THE VISION: A QUERY PROCESSING
ARCHITECTURE

Query processing and optimization is highly specific to
the architecture of a database management system. Hence,
when we investigate a query processing engine for hybrid
query processing, we have to investigate two things: (1) a
GPU-aware database architecture and (2) a hybrid query
processing engine.

The hybrid query processing engine should be indepen-
dent of database architecture and database model indepen-
dent to ensure generality, because it handles common con-
cepts such as considering the data location, utilizing inter-
mediate result size and selectivity estimation to choose a
suitable query plan.

However, the estimation of intermediate result size or se-
lectivity estimation is dependent on database architecture
and database model. To close the gap of these contradicting
limitations, we split the hybrid query processing engine in
two layers: (1) a database system independent layer, which
implements query optimization strategies, cost estimation
and query plan selection and (2) a database system depen-
dent layer, which basically maps the first layer to a con-
crete database management system. Since we need a hybrid
DBMS as back-end, we are currently working on a GPU-
aware database architecture, which is, in essence, a column-
oriented-GPU-accelerated DBMS (CoGaDB).

4.1 HyPE
The database architecture independent layer of our hybrid

query processing engine has the following tasks: (1) cost
estimation of operators in consideration of data locality, (2)
implementing hybrid query optimization strategies, and (3)
selecting a query plan w.r.t. an optimization criterion.

HyPE consists of three components, which are the self-
tuning execution time estimator (STEMOD), the algorithm
selector (ALRIC) and the hybrid query optimizer (HOPE
[Hybrid OPtimizEr]). STEMOD is responsible to provide
accurate, reliable, database architecture and model inde-
pendent estimated execution times for database algorithms.
For an incoming algorithm A and a dataset D, STEMOD
computes an estimated execution time Test(D,A). ALRIC
uses STEMOD to obtain estimated execution times for all
available algorithms to execute an operation. For an op-
erator Op(D,O), composed of a dataset D and an opera-
tion O, ALRIC looks up all available algorithms for O and
utilizes STEMOD to compute estimated execution times
(Test(D,A)) for them and then decides on the optimal al-
gorithm Aopt. HOPE utilizes STEMOD and/or ALRIC to
construct a promising physical query plan Qphy for a given
logical query plan Qlog. Depending on the optimization al-
gorithm, HOPE generates query plans and uses STEMOD
to compute their costs or it directly relies on the decisions
provided by ALRIC. Figure 2 summarizes the architecture
of our hybrid query processing engine. The system depen-
dent and independent layers are highlighted in different gray
shades. CoGaDB can utilize all components of HyPE sepa-
rately. Therefore, it can query STEMOD to obtain an esti-
mated execution time for an algorithm, let ALRIC decide on
an algorithm or utilizes HOPE to take care of the physical
optimization. This loose coupling between the components
allows an existing system to choose, which functionality it
likes to use. A system with a well working optimizer might
only be interested in estimated execution times, whereas a
system without a physical optimizer such as CoGaDB might
rely completely on HyPE.

4.2 CoGaDB
CoGaDB2 is a column-oriented-GPU-accelerated DBMS

with the purpose of investigating new possible database ar-
chitectures and coprocessing schemes. It utilizes the capa-
bilities of HOPE to construct for each logical query plan an
optimized hybrid query plan. Furthermore, it implements a
coprocessing scheme, where columns belonging to the work-
ing set are cached in the GPU RAM. Intermediate results

2http://wwwiti.cs.uni-magdeburg.de/iti_db/
research/gpu/cogadb
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Figure 2: Architecture of HyPE

are represented as list of tuple identifiers (TIDs). If a col-
umn is cached in GPU memory, then only the tid list repre-
senting the intermediate result has to be transferred to the
GPU RAM. Then, the intermediate result is constructed by
applying the TID list to the cached column. Finally, the
data is processed by the operation, which returns a TID
list representing the result. Again, only the TID list has to
be transfered between the CPU RAM and the GPU RAM.
This minimizes the performance penalty of the data trans-
fers, which were identified as major bottleneck [16]. Further-
more, data is often encoded differently in CPU RAM and
GPU RAM. By transferring only the TIDs, no data trans-
coding has to be done, as long as the relative positions of
values in a column is not changed by the coding technique.

5. RESEARCH PLAN
According to the challenges for hybrid query processing

described in Section 3.2 and our discussions, we propose the
following research plan:

• We will develop alternative optimization heuristics for
ALRIC to allow a fine-granular customization of HyPE’s
behavior.

• We will implement and evaluate different query eval-
uation approaches, such as streaming-based operator
processing, single-query-plan optimization, and global-
query-graph optimization:
streaming-based operator processing: n query

plans are serialized in an operator sequence and
the streams are merged to one stream, which is
scheduled by ALRIC.

single-query-plan optimization: Query plans are
optimized separately from each other by HOPE.

global-query-graph optimization: Query plans are
merged into one global query graph and HOPE
performs a global optimization.

• For the single-query-plan and global-query-graph op-
timization, we will investigate and evaluate different

query optimization algorithms for HOPE using greedy
and cost-based approaches, such as [7].

• We will apply HyPE on at least two GPU-accelerated
database management systems. We are currently work-
ing on integrating HyPE in CoGaDB and Ocelot [22].

• The aforementioned concepts should be combined and
evaluated to identify the pitfalls for designing, imple-
menting and using a hybrid database management sys-
tem as well as proving their applicability.

6. CONCLUSION
Effective GPU coprocessing in database systems is still an

open challenge yet to overcome. In this paper, we identify
the need for a hybrid query processing engine, which sup-
ports a broad range of database management systems re-
gardless of their architecture, data model, specifics of their
algorithms or the hardware in the deployment environment.
We summarize the goals, preliminary results and future work
of our PhD project. We expect to accelerate database op-
erations further using (1) advanced optimization criteria for
operator stream scheduling, (2) cost-based query optimiza-
tion based on our decision model, and (3) a combination of
HyPE and several GPU-accelerated DBMS as a symbiosis
of an advanced database architecture and a learning-based-
hybrid query optimizer.
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