
Database Support for Unstructured Meshes

Alireza Rezaei Mahdiraji
supervised by: Peter Baumann

JacobsUniversity
Bremen, Germany

a.rezaeim@jacobsuniversity.de

ABSTRACT

Despite ubiquitous usage of unstructured mesh in many ap-
plication domains (e.g., computer aided design, scientific
simulation, climate modeling, etc.), there is no specialized
mesh database which supports storing and querying such
data structures. Existing mesh libraries use file-based APIs
which do not support declarative querying and are diffi-
cult to maintain. A mesh database can benefit these do-
mains in several ways such as: declarative query language,
ease of maintenance, query optimization, etc. In this thesis
work, the core idea is to have a very general model which
can represent objects from different domains and special-
ize it to smaller object classes using combina- torial con-
straints. We propose the Incidence multi-Graph Complex
(ImG-Complex) data model for storing combina- torial as-
pect of meshes in a database. We extend incidence graph
(IG) representation with multi-incidence information (ImG)
to represent a class of objects which we call ImG- Com-
plexes. ImG-Complex can support a wide range of ap- pli-
cation domains. We introduce optional and application- spe-
cific constraints to restrain the general ImG model to spe-
cific object classes or specific geometric representations. The
constraints check validity of meshes based on the properties
of the modeled object class. Finally, we show how graph
databases can be utilized and reused to query some combina-
torial mesh queries based on the (possibly constrained) ImG
model. In particular, we show the strengths and limitations
of a graph-only query language in expressing combinatorial
mesh queries.

1. INTRODUCTION
Meshes appear in many application domains such as com-

puter graphics, computer aided design, solid modeling, sci-
entific simulation (e.g., finite element analysis), oceanog-
raphy, climate modeling, Geographic Information Systems
(GIS), etc. In these domains, meshes are used as (often
approximate) representations of physical objects. By subdi-
viding a domain into smaller and simpler geometric elements

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12

Copyright 2013 VLDB Endowment 21508097/13/10... $ 10.00.

(typical examples are triangles, tetrahedrons, or other sim-
ple polyhedrons [14]), meshes provide the means to compu-
tationally manipulate complicated physical structures. In
principle, more accuracy of representation and approxima-
tion can be achieved by using a finer subdivision, i.e., more
cells. Informally, a mesh is composed of a set of (usually
simple) cells, which are connected to each other according
to some incidence relationships.

A mesh has three main components: 1) A combinatoric
structure which describes how cells are connected to form
the mesh, 2) A geometry which describes geometric embed-
dings of cells and the mesh, and 3) A set of fields which
assigns data values to cells (e.g., temperature to vertices).

Although meshes are used in many application domains,
there is no specialized mesh database which allows stor-
ing and querying such data structures. Researchers aimed
at identifying requirements for mesh algorithms and defi-
nition of algebraic framework to manipulate meshes [9][5],
but to the best of our knowledge there is no research in the
database community which investigates support of unstruc-
tured meshes in databases. Utilizing relational databases
for meshes is not efficient and it does not offer sufficient
abstraction mechanisms to deal with meshes [10]. Existing
mesh applications are usually written in languages such as
C++ and often low-level file-based APIs are used for I/O.
While it is possible to design data-structure neutral inter-
faces like in GrAL [6], the development of queries based
on such APIs requires deep programming knowledge and is
limited to a single language. More often, even the possible
abstraction mechanisms (e.g., by a C++ API) are not used,
and such implementations rely highly on input file structure
and internal mesh representation, i.e., any changes there re-
quire changes in the implementation. Hence, they are less
reusable and their maintenance cost is high.

A mesh database offers several advantages, namely: 1)
users easily describe their information need using a declar-
ative language (declarative access), 2) ease of maintenance,
3) hiding mesh storage structure from applications (physical
data independence), and 4) transparent query optimization.

In this paper, we propose the ImG-Complex model (see
Section 5) to store meshes in a database system. Our model
has very few inherent limitations and thus its object do-
main encompasses the requirements of the wide range of
mesh applications. We instrument ImG with sets of op-
tional and application-specific constraints which can be used
to check validity of meshes for a specific class of object such
as manifold meshes, pseudo-manifold, simplicial manifold,
etc. Currently, our model is only concerned with combina-

1404

torial aspect of meshes; we are working to add support for
other aspects of meshes (i.e., geometric realization and data
association) to the model in the future.
This paper is organized as follows: Section 2 presents two

motivating application examples, Section 3 introduces some
basic concepts, and Section 4 discusses related work. In Sec-
tion 5 we present the ImG-Complex data model in detail,
and discuss some mesh constraints in Section 6. Section 7
presents important combinatorial mesh queries. In Section
8 we investigate potentials and limitations of existing graph
databases for representing combinatorial aspects of meshes
based on the (constrained) ImG Model, and present some
mesh queries built on top of graph queries. Section 9 con-
cludes the paper.

2. MOTIVATING MESH APPLICATIONS
The need for a specialized mesh database is motivated by

many real-world applications. Two motivating application
domains are briefly described here. These domains have
similar queries and operational requirements such as finding
neighbors of a cell, subsetting (i.e., to find cells contained
or overlapping with a query bounding box), mapping data
from one mesh to another, etc.
Oceanography: Unstructured meshes are used in several

branches of oceanography such as tidal and coastal model-
ing, global ocean model, etc. Advantages of unstructured
meshes for ocean modeling are: 1) a more accurate and ef-
ficient representation of the domain, 2) variable resolution
which is very important for focused regional modeling, and
3) continuous representation of coastlines. Recently, ocean
or coastal models based on unstructured meshes are grow-
ing, but large-scale ocean circulation modeling based on un-
structured mesh are computationally expensive and hence
not common [16]. Figure 1 shows surface of North Atlantic
modeled as unstructured mesh [16].

Figure 1: See floor surface of North Atlantic modeled

as 2D simplicial mesh [16].

Seismology: In earthquake simulation, the earthquake
propagation is computed for a given piece of earth and its
initial conditions. The goal of the simulation is to enable
modeling and prediction of strong earth movement during
earthquakes. The simulation needs a discrete model of the
earth as input and computes the velocity of each mesh point.
The mesh model needs terabytes of storage [8].

3. CONCEPTS AND NOTATIONS
In this section, we introduce some of the concepts and

notation which will be used in later sections.
Boundary of a subset S of a topological space (repre-

sented by ∂S) is the set of points p of S such that every

neighborhood of p contains points from S and its comple-
ment. An n-dimensional Closed n-ball Dn with radius r

is defined as: Dn =
{

(x1, x2, ..., xn) |
∑

x2
i ≤ r2

}

.

Definition 1 (n-Manifold with Boundary).
n-Manifold with boundary is a topological space in which
each interior point has a neighborhood topologically equiv-
alent (i.e., one can be transformed to the other without cut-
ting or creating holes) to Dn and each boundary point has a
neighborhood equivalent to the “half n-ball” Dn∩{x | x1 ≥ 0}
[11].

Definition 2 (CW -Complex).
A (finite) CW -complex is a partition of a space S into pair-
wise disjoint open sets called (open) cells such that for each
cell c of dimension n (an n-cell) there is a continuous bijec-
tive (one-to-one) map from Dn to c mapping the boundary
of the ball to the union of lower dimensional cells in S.

If the map in definition of CW -complex is bijective on the
closure of Dn (i.e., on its interior and boundary), then the
complex is called regular. The maximal dimension d of its
cells is called the dimension of the complex.
A d-mesh is a finite CW-complex of dimension d.

Definition 3 (Side-Of Relationship). For two cells
c1 and c2, if c1 ⊂ ∂c2 holds, then c1 is side-of c2 and we
write c1 ≺ c2. We also say that c1 and c2 are incident if
one is the side of the other.

Two cells are adjacent (neighbor) if both of them are
side-of another cell or there is a cell which is side-of both.

Definition 4 (n-dimensional Simplex).
The convex hull of the (n+1) points defines a n-dimensional
simplex.

Simplex is a generalization of the triangle and tetrahedron
to higher dimension (d > 3).

Definition 5 (Simplicial Complex).
A simplicial complex C is a set of simplices which satisfies
two conditions: 1) any face of a simplex in C is a simplex
in C, and 2) the intersection of any two simplices of C is a
face of the both simplices [13].

The set of cells of a mesh and the side-of relationship form
a finite strict poset (partially ordered set) (M,≺) which is
irreflexive, transitive, and antisymmetric.

A chain is a subset of a poset which is totally ordered,
it is maximal if it cannot be extended. A poset is graded if
every maximal chain has the same length, i.e., d. The poset
of a homogeneous mesh is graded. The rank of a poset is
the length of its maximal chain.

If a ≺ b, then the interval [a, b] is the set of all cells which
”a” is incident to and they are incident to ”b”: [a, b] =
{c ∈ S|a ≺ c ≺ b}.

Definition 6 (Incidence Graph).
An incidence graph (IG) of a mesh M is a graph (N,E)
where N is the finite set of cells of the mesh labeled by di-
mension, and E is the finite set of edges linking the cells
using the side-of relationship.

Figure 2 depicts a tetrahedron and its corresponding IG.

1405

X Y

Z

W

a

bc

d e

f

f1

f2f3

BackFace : f4

b

b

b

b

π

4 2 3 1

a b c d e f

X Y Z W

Figure 2: Tetrahedron (left) and its corresponding
IG (right).

4. RELATEDWORK
Cw-complexes, a concept from topology, are too general

for many practical applications (in particular w.r.t. geom-
etry). Several mesh representation models presented in the
literature aim to restrict the cw-complexes to specific ob-
ject domains, and to make them amenable to computation.
However, in some cases the representations are very limited.

4.1 WingedEdge
A widely used data structure in CAD systems is winged-

edge data structure. The winged-edge uses edges to keep
track of vertices and faces, i.e., each edge keeps informa-
tion about its two vertices, the two incident faces, and the
four edges that immediately follow in the boundary of its
two faces. Each vertex/face contains a pointer to an ar-
bitrary incident edge [4]. Euler operations can be used to
construct such objects [3]. Winged-edge can represent 2D
manifold polyhedral and some non-manifold meshes. Simi-
lar approaches are the quad-edge, half-edge and facet-edge
data structures, all of which are special cases of the cell-tuple
structure (see below).

4.2 CellTuple
The cell-tuple represents a mesh as a pair (T, switchi)

(0 ≤ i ≤ d) where T is a set of (d + 1)-tuples and switchi

is a set of operators. Each tuple (c0, c1, . . . , cd−1, cd) is a
maximal chain in the corresponding mesh poset: c0 � c1 �
.. � cd−1 � cd holds. The switch operator maps each tu-
ple to a unique tuple differing in only one dimension. More
formally, the switch operator switchk(t) is defined as the
unique cell tuple that agrees with t in all dimensions ex-
cept in its k-th dimension [7]. A n-dimensional generalized
combinatorial map (GMap) is similar to the cell-tuple [12].
Both are limited to manifold objects. Furthermore, Howe’s
research shows both models suffer from scalability issues [9].

4.3 Indexed Cell Set (ICS)
ICS is a compact mesh representation which stores coordi-

nates of 0-cells and d-cells as ordered list of its vertices. ICS
needs to infer information about k-cells (0 < k < d) which
grows fast for d > 3 [17]. ICS makes an implicit assumption
about combinatorial structure of cells. The assumption does
not affect simplicial complexes, because there is only one
sensible combinatorial structure. But in other cases such
as quad, we must know the order of vertex storage to be
able to extract edges. In 3D, if d-cells have 6 vertices then
we can either have prism, octahedron, a pyramid. ICS can
represent manifold, some non-manifold, and multi-incidence
objects.

4.4 GridFields
Howe [10] defines GridFields as a grid (mesh) with data

associated to its cells. It is a general combinatorial grid
model that separates the topology from the geometry and is
not bound to any data structures, i.e., it models grid as a set
of cells and incidence relationships between cells. Different
operators have been defined which operate on grid (e.g., sub-
grid) or gridfield (e.g., regrid). Several data structures have
been evaluated for implementing gridfield model. Howe’s
experiments on grid and gridfield show that more general
models (e.g., ICS and a variation of IG) perform better.
The work provides an algebraic framework for manipulat-
ing gridfields, but the model does not provide constraints
to support different object classes. Furthermore, there is no
declarative query language for gridfields.

4.5 Incidence Graph
Incidence Graph (IG) uses the incidence graph of a mesh

as its representation, using the directed side-of relationship
(two options are to link all sides of a cell or only those of
one dimension less). IGs make it easy to access the bound-
aries of a cell. Indexed Cell Set (ICS) is a special case of
IG with implicit assumption about the cells’ combinatorial
structure. It stores only coordinates of 0-cells, and each d-
cell is stored as ordered list of its vertices. ICS needs to
infer information about k-cells (0 < k < d) which grows fast
for d > 3 [17]. The cell-tuple graph is more redundant than
the IG, e.g., in order to store a single tetrahedron, a cell-
tuple representation needs 4 · 3 · 2 = 24 tuples each linked
to 3 other tuples, so 72 links in general, while IG needs only
1+4+6+4 = 15 nodes and 14+(4 ·6)+(6 ·2) = 50 links, if
all sides are referenced, or 4+(4·3)+(6·2) = 28 links, if only
sides of dim (k − 1) are stored for each k-cell. In compari-
son to cell-tuples, IG does not support multi-incidence and
does not directly give access to ordering information (such
as list of vertices around a face which must be inferred).
Furthermore, constraints on combinatorial structures must
be added and checked explicitly. IG encompasses all object
classes representable with previous models and more. To
overcome IG limitations, we generalize IG to support multi-
incidences and add checkable constraints.

Table 1 shows a comparison of the models above along the
following dimensions: 1) Object Domain describes different
topological models supported by each model (i.e., how cells
are connected to each others), 2) Dimension Independence
(DI) means that a n-dimensional object is recursively rep-
resented as a collection of objects of dimension (n− 1) con-
nected through facets of dimension (n − 2). The recursive
process stops when vertices are reached [11], 3) Integrity
Constraint (IC) checks if an object belongs to the object
domain, i.e., structurally valid, and 4) Order describes how
lower dimensional cells are located around a higher dimen-
sional cell, e.g., order of vertices around a face.

It is worth mentioning that Geo-databases such as Post-
GIS (partially) implement Simple Features, OGC and ISO
standard (ISO 19125), for only two-dimensional geographi-
cal data and do not provide unstructured mesh functionali-
ties [15].

5. COMBINATORIALMESHDATAMODEL
Our data model is built on the incidence graph model. It

is a multi-graph data model (i.e., allows multiple links in

1406

Table 1: Summary of mesh representations’ fea-
tures.

Model Object Domain DI IC Order
IG Not Multi-incidence Yes No No

Winged-Edge 2D Manifold No Yes Yes
ICS Manifold Yes No No

Gridfield Not Multi-incidence Yes No No
Cell-Tuple Manifold Yes Yes Yes

the incidence graph) which support representation of multi-
incidences which can occur in geometric modeling. Exam-
ples of multi-incidence objects which cannot be represented
by simple graphs are: loop (one edge with one vertex), torus
with one cell (one vertex and two edges), pinched torus with
one cell, etc. Before defining the ImG-Complex model, we
formally define multi-incidence and incidence multi-graph:

Definition 7 (Multi-Incidence).
Suppose that c is a cell in a cw-complex and c1 � c, if the
pre-image of the neighborhood of any point p in the image
of c1 in Dn consists of k connected components, then c1 is
k-incident or multi-incident to c.

Definition 8 (Incidence Multi-Graph).
Incidence multi-Graph (ImG) extends the graph of IG (N,E)
to a multi-graph (N,Em), where each edge e ∈ E is repli-
cated k times in Em if the corresponding side-of relationship
is a k-incidence.

This leads to the definition of ImG-Complex data model:

Definition 9 (ImG-Complex).
A cell complex is called an Incidence multi-Graph Complex
(ImG-Complex) if its cells and incidence relationships form
an incidence multi graph.

The definition of ImG-complex is very general and covers
a wide range of mesh application domains. For a given ImG-
complex, we need to store all side-of relationships Iij where
0 ≤ i ≤ (d − 1), 1 ≤ j ≤ d, i < j. For efficiency reasons,
some of the inverse relationships should also be stored. If
the shapes of the cells are known (e.g., triangle, tetrahedron,
etc.), then it suffices to store only I0d (similar to the ICS
representation) and infer other incidence relationship from
it.
Although, ImG can represent meshes which incidence graph

cannot, topologically different meshes may have the same
ImG model, e.g., torus (with one cell) and Kelin bottle. In
such cases, users should ensure sufficient subdivision if they
need a unique representation
It can be shown that order information can be extracted

from ImG model using Brisson’s switch operators [7].
The merits of the ImG model are two folds: 1) represent-

ing a broad class of meshes, and 2) several admissible mesh
classes (see Section 6). The latter is not specific to ImG.
In comparison to specialized models for simplicial meshes,

a general model like ImG-Complex cannot help in process-
ing and can exhibit performance problems. We can aug-
ment the ImG as a general data structure by maintaining
simpler auxiliary structures (depending on additional con-
straints satisfied by the mesh) which facilitate query pro-
cessing. For instance, to retrieve neighbors of a given d-cell,
we can precompute and store those neighbors for each cell.

Thus, query operations can be sped up transparently, at the
expense of additional precomputing work and storage. Note
that the query interface will hide representation specific de-
tails.

6. MESH CONSTRAINTS
ImG-Complex model can represent a large class of objects,

but in practice we usually need to restrict ourself to a specific
class of objects. One class of objects which plays a central
role is manifold. However, in practice, manifolds are too
restrictive, i.e., the union of all cells of a mesh may not form
a manifold but rather form pseudo-manifold. We built sets
of constraints to validate different classes of objects such as
manifold, simplicial manifold, and pseudo-manifold. In this
section, we show the sets of constraints for manifold and
pseudo-manifold objects.

The constraints are not specific to ImG model and can be
used with any other general model for validity check.

6.1 Manifold Mesh Constraints
In principle, we must check that each point of a d-mesh

fulfills the manifold property. Followings constraints ensure
that a given mesh dataset represent a valid manifold:

1. Graded IG: The poset of a manifold IG-Complex must
be graded, i.e., every maximal chain has the same length.
(Otherwise, there would not be a d-dimensional neighbor-
hood for some points).

2. Diamond Property: If f1 � f2 and f1 and f2 are faces
of dimension (k−1) and (k+1) (i.e., dim(f2)−dim(f1) = 2),
then the interval (f1, f2) contains exactly two faces f3, f4
of dimension k such that f1 � f3, f4 � f2 [7][18]. Figure 3
shows the diamond property for f1 and f2.

f3 f4

f2

f1

b

b

b

b

Figure 3: Diamond property between f1 and f2, the

interval (f1, f2) contains only f3 and f4 .

The diamond property is proved for convex polytopes [18].
It guarantees that each (d−1)-cell f has exactly two incident
d-cells and thus each interior point of f is a manifold point.

To check the diamond property in a graph, we focus on
(k + 1)-cell c1 and (k − 1)-cell c2 such that c2 � c1, and
then, if the diamond property holds, there must be exactly
two cells of dimension k in interval (c2, c1) incident to both
c1 and c2. (If we look from another (k + 1)-cell, then there
will be 2 different k-cells.)

3. Cell Ring: What is missing now is the manifold prop-
erty for points on cells of dimension k ≤ (d−2). However, we
can use some properties stemming from the diamond prop-
erty: If cd−2 � cd+1 in a mesh having the diamond property,
all the cells in the interval [cd−2, cd+1] form a set of circu-
larly ordered rings. Note that cd−2 or cd+1 may be improper
cells. For instance, edges and faces around a vertex (which

1407

are incident to the same 3-cell c in a 3D mesh) form a vertex
ring, faces and 3-cells around an edge form an edge ring.
In a 2D mesh, the only points remaining to be checked for

manifold property are vertices. We can do so by verifying
algorithmically that there is exactly one vertex ring, and
hence this ring forms the appropriate neighborhood. Figure
4 shows a vertex with two rings.
In a 3D mesh, we need to check vertex ring and edge ring.

For edges, we check that there is a single edge ring around
each edge.

Definition 10 (Vertex Star).
For vertex v, the (open) star of v is the set of cells which v

is side-of: st(v) =
⋃

v�c
c.

For each vertex v we need to check that st(v) is a neigh-
borhood of v: first, v 6∈ ∂st(v) (v is not side of any cell in
∂st(v)) and second, st(v) is equivalent to D3, i.e., ∂st(v) is
a 2D manifold-mesh which is a 2-sphere. Now this is essen-
tially the 2D case, where we can use the 2D Euler charac-
teristic χ = V −E+F −2 (where V, E, F are the number of
vertices, edges, faces of the mesh) to check that in addition
∂st(v) has the right topological genus and thus is homeomor-
phic to a sphere. Unfortunately, in higher dimensions, the
Euler characteristic is not sufficient to guarantee topological
equivalence between manifolds.

Figure 4: The object is non-manifold in point P, because

edges and faces around point P creates two distinct rings.

6.2 Simplicial Manifold Constraints
A simplicial manifold satisfies all manifold constraints plus

the following combinatorial constraints:

• Each 2-cell must have three edges.

• Each non-boundary edge belongs to exactly two 2-cells
and each boundary edge belong to one or two 2-cells.

6.3 PseudoManifold Mesh Constraints
A manifold with possible singular points not fulfilling the

manifold property is called a pseudo-manifold. Two compo-
nents of a pseudo-manifold must not be connected only by
singular points.
Pseudo-manifold objects must satisfy graded and diamond

property from manifold constraints. Additionally, any com-
ponent of pseudo-manifold objects must be strongly con-
nected. On cells of lower dimension, the manifold property
can be violated, but any component of a pseudo-manifold
must be strongly connected, i.e. there is a path between
any two d-cells of a component consisting alternatively of
d-cells and (d− 1)-cells.

7. COMBINATORIAL MESH QUERIES
We consolidated a list of recurrent mesh combinatorial

queries which appear in many domains [5][9].

Q1. Enumeration of cells in a mesh (e.g., total number
of cells, vertices, edges, etc. in a mesh)
Q2. Iteration over cells e.g., all cells of a mesh, cells of a
particular dimension, etc.
Q3. Check if the vertex set of each facet is unique
Q4. Get list of cells which a particular cell is side-of
Q5. Get list of cells which are side-of a particular cell
Q6. Get the number of neighbors (adjacent) of a cell and
iterating over them

8. GRAPH DATABASES FOR MESHES
ImG is a theoretical model to represent a broad class of

meshes. Selecting the data structure for ImG is an imple-
mentation detail. For instance, one option is to use graph
databases. More efficient data structures can be used when
the object class is known.

Graph databases model objects and the relationships be-
tween objects as graphs. They represent data by nodes, links
and properties. Nodes represent objects and links show the
relationship between nodes. A typical graph data model
contains two main components: 1) nodes with properties,
and 2) named relationships with properties. Some graph
models also contains hypergraph [2].

8.1 Neo4j
Neo4j is an open source NOSQL graph database under

AGPLv3 license which is operational since 2003. Neo4j is
schema-less (i.e., allows modeling of complex and densely
connected datasets), supports ACID properties, and can do
high performance graph operations [1].

Neo4j’s data model is property multigraph, i.e., data is
stored in nodes and relationships (both with pairs of key-
values properties) of a pseudo-graph. Relationships are di-
rected, but graph traversal can be done bidirectional at
equal speed.

Cypher, Neo4j’s Query Language, is a declarative lan-
guage, i.e., the user specifies the starting point and the
desired outcome using graph pattern matching and Neo4j
adapts the algorithm based on the user query. Cypher sup-
ports the most important graph algorithms such as shortest
path and graph pattern matching. Patterns are very impor-
tant in Cypher. It allows graph traversal. The user can use
MATCH clause to describe the shape of the data he/she is
looking for. Patterns have starting point(s) which are bound
to a set of graph nodes or relationships. A pattern where
parts of it are not accessible from any starting point will be
rejected. We refer the interested reader to Neo4j documen-
tation for further details [1].

8.2 Combinatorial Queries as Neo4j Queries
We can express only some of the combinatorial queries

as single graph queries e.g., Q1, Q2; Q4 can be expressed
only when the length of the path (i.e., the length of maximal
chain) is known; Q3 needs a Java API and Q6 in its general
form is cumbersome to write as graph query. We formulate
Q4, Q6, and Brisson’s switch operator [7] as examples in
Cypher.

We assume the ImG model of the tetrahedron in Figure
2. An excerpt of Cypher DDL to define the tetrahedron is
shown in following listing:

CREATE (t{name:’t’,dim:’3’}),
(f1{name:’f1’,dim:’2’}),
...

1408

(f4{name:’f4’,dim:’2’}),
(a{name:’a’,dim:’1’}),
...
(X{name:’X’,dim:’0’}),
t-[: INCIDENT]->f1 ,...,t-[: INCIDENT]->f4,
f3 -[:INCIDENT]->f,f4 -[:INCIDENT]->a,
...
a-[: INCIDENT]->X,
...

RETURN t;

Q4. To get the list of cells which a given edge ”e” is
side-of, the query below matches a pattern for interval (e,r]
where r is the root. It returns all intermediate nodes r and
f, i.e., all faces and 3-cells which ”e” is side-of:

START r=node(0), e=node (12)
MATCH r--f--e
RETURN r,f

Symbol ”- -” means ”related to” which ignores the direction.
Node(0) refers to root of the graph.

Q6. This query appears in many mesh domains. It has
several variations, namely, vertex-to-vertex, edge-to-edge,
face-to-face, and body-to-body adjacency. The query below
extracts adjacent edges to edge ”a” which share a vertex:

START a = node (20)
MATCH a-[: INCIDENT]->v<-[: INCIDENT]-e
RETURN e;

The pattern has two parts. The part a-[:INCIDENT]-¿v ex-
tracts all the vertices of edge ”a”. The parts v¡-[:INCIDENT]-
e finds all the edges which the vertices are side-of. The set
”e” does not contain edge ”e”. Note that here we used di-
rected relationships, because the direction matters. ”INCI-
DENT” in the query is the type of the relationship between
nodes of the graph.

Switch Operator. Switch operators can be expressed
as graph pattern matching. For instance, following Cypher
query returns answer to switch1(tet, f4, a,X):

START r=node(0), f=node(5), a=node (10),
v=node (12)

MATCH r--f--e--v
WITH collect(e) as c, a
RETURN filter(x in c: x<>a)

To sum up, we can write some of the queries as a single
graph query, but to express other queries (e.g., Q6, Q3, and
switch operator) several graph queries are needed depend-
ing on some input parameter, e.g., parameter k in switch
operator. Furthermore, graph databases do not support
the constraints and the constraints can not be written as
a graph-only query and we need an API for each. Note that
general graphs do not support geometric queries.

9. CONCLUSIONS
In this paper, we presented some initial result of the PhD

work as follows: 1) discuss and motivate the need for a spe-
cialized mesh database, 2) present ImG-Complex model for
combinatorial aspect of meshes, 3) introduce sets of con-
straints which limits ImG to subclasses of objects like man-
ifold, pseudo-manifold, etc., and 4) present graph database
potentials and limitation as a base for ImG model.
In the future, we want to extend the ImG model to sup-

port geometric embedding and data association, augment

the model with indexing techniques (e.g., storing neighbors)
to overcome performance issues, validate mesh properties
(e.g., non-branching, homogeneous, etc.), and implement
the model.

10. REFERENCES
[1] http://neo4j.org.

[2] R. Angles and C. Gutierrez. Survey of graph database
models. ACM Comput. Surv., 40(1):1:1–1:39, Feb.
2008.

[3] P. Baumann. A formal specification of a boundary
representation. In Eurographics, volume 88, pages
141–154, 1988.

[4] B. G. Baumgart. A polyhedron representation for
computer vision. In Proc. National computer
conference and exposition, AFIPS ’75, pages 589–596,
New York, NY, USA, 1975. ACM.

[5] G. Berti. Generic software components for Scientific
Computing. PhD thesis, BTU Cottbus, 2000.

[6] G. Berti. Gral - the grid algorithms library. Future
Generation Computer Systems, 22, 2006.

[7] E. Brisson. Representing geometric structures in d
dimensions: topology and order. In Proc. 5th ann.
symp. on Computational geometry, SCG ’89, pages
218–227, New York, NY, USA, 1989. ACM.

[8] V. A. et al. High resolution forward and inverse
earthquake modeling on terascale computers. In SC,
page 52, 2003.

[9] B. Howe. Gridfields: model-driven data transformation
in the physical sciences. PhD thesis, Portland, OR,
USA, 2007. AAI3255425.

[10] B. Howe and D. Maier. Algebraic manipulation of
scientific datasets. In Proc. 30th Int’l Conf. on Very
large data bases, VLDB ’04, pages 924–935, 2004.

[11] B. Levy and J.-L. Mallet. Cellular modelling in
arbitrary dimension using generalized maps. Technical
report, ISA-GOCAD (Inria-Lorraine/CNRS), 1999.

[12] P. Lienhardt. Topological models for boundary
representation: a comparison with n-dimensional
generalized maps. Comput. Aided Des., 23(1):59–82,
Feb. 1991.

[13] P. Lienhardt, L. Fuchs, Y. Bertrand, et al.
Combinatorial models for topology-based geometric
modeling. Theory and applications of proximity,
nearness and uniformity, pages 151–198, 2009.

[14] D. W. Moore. Simplicial mesh generation with
applications. PhD thesis, Ithaca, NY, USA, 1992. UMI
Order No. GAX93-00795.

[15] OGC. Opengis simple features specification for sql.
Technical report, Revision 1.0, 1998.

[16] C. Pain, M. Piggott, A. Goddard, F. Fang,
G. Gorman, D. Marshall, M. Eaton, P. Power, and
C. De Oliveira. Three-dimensional unstructured mesh
ocean modelling. Ocean Modelling, 10(1):5–33, 2005.

[17] C. Silva, Y. jen Chiang, W. Corrêa, J. El-sana, and
P. Lindstrom. Out-of-core algorithms for scientific
visualization and computer graphics. In Visualization
2002 Course Notes, 2002.

[18] G. M. Ziegler. Lectures on polytopes. Springer-Verlag,
New York, 1995.

1409

