
Mining Frequent Patterns with Differential Privacy

Luca Bonomi
(Supervised by Prof. Li Xiong)

Department of Mathematics & Computer Science
Emory University

Atlanta, USA
lbonomi@mathcs.emory.edu

ABSTRACT
The mining of frequent patterns is a fundamental component in
many data mining tasks. A considerable amount of research on
this problem has led to a wide series of efficient and scalable al-
gorithms for mining frequent patterns. However, releasing these
patterns is posing concerns on the privacy of the users participating
in the data. Indeed the information from the patterns can be linked
with a large amount of data available from other sources creating
opportunities for adversaries to break the individual privacy of the
users and disclose sensitive information. In this proposal, we study
the mining of frequent patterns in a privacy preserving setting. We
first investigate the difference between sequential and itemset pat-
terns, and second we extend the definition of patterns by consider-
ing the absence and presence of noise in the data. This leads us in
distinguishing the patterns between exact and noisy. For exact pat-
terns, we describe two novel mining techniques that we previously
developed. The first approach has been applied in a privacy pre-
serving record linkage setting, where our solution is used to mine
frequent patterns which are employed in a secure transformation
procedure to link records that are similar. The second approach im-
proves the mining utility results using a two-phase strategy which
allows to effectively mine frequent substrings as well as prefixes
patterns. For noisy patterns, first we formally define the patterns
according to the type of noise and second we provide a set of po-
tential applications that require the mining of these patterns. We
conclude the paper by stating the challenges in this new setting and
possible future research directions.

1. INTRODUCTION
In this paper, we are interested in the privacy preserving frequent

pattern mining problem which is the process of finding (i.e. min-
ing) repetitive patterns from the data without compromising the
individual privacy. Frequent pattern mining has been first investi-
gated by Agrawal et al. [1]. In that setting, the frequent patterns are
represented as itemsets that are mined from transactional databases
with the intent of analyzing the customer purchasing habits. The
analysis of these patterns by finding the associations between the
different items purchased by users in their shopping basket can help
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retailers in develop marketing strategies. In this proposal, we focus
our study on mining sequential patterns in sequential data, such as
trajectories and DNA sequences. In contrast to itemsets, sequential
patterns are extensively used in those applications where it is im-
portant to capture the sequentiality of the real events in the data. An
example is trajectory data, where the mining of sequential pattern
could be use to predict traffic congestions.

Frequent patterns have drawn the attention of the data mining
community over several decades leading to the development of
many algorithmic techniques, see [11] for a survey of results. Al-
though the mining of frequent patterns has been well studied and
extended in various ways, the privacy concerns rising in the com-
munity are posing new challenges on this problem. The rapid growth
of digital information from different sources (e.g. web, institu-
tions, individuals etc) has been creating tremendous opportunities
for disclosing personal information. While the concerns of reveal-
ing sensitive and private information have led researches to develop
a variety of privacy models [8, 14, 21], the design of effective and
efficient data mining algorithms with privacy is very challenging.
In this scenario, we investigate the problem of releasing frequent
patterns while preserving the individual privacy of the users that
contribute to the data. Differential privacy [8] has become the de
facto standard for research in data privacy since it provides strong
and provable guarantees of privacy. Our goal is to study frequent
pattern mining problem under the differential privacy model.

In this setting, only few works have been proposed to mine fre-
quent patterns [3, 16, 25]. Although these techniques have been
shown effective in certain scenarios, they have the following lim-
itations. The mining process in these strategies is based on the
concept of support for an itemset p which is defined as the number
of transactions containing p. In this way, patterns that are repeated
multiple times within the same record/transaction may not be re-
ported as frequent. This may lead to a loss of informative patterns,
such as periodic patterns in time-series data. Furthermore, patterns
are represented as a subset of an universe of items and this may
not well represent the sequentiality of important events in reality.
As a final drawback these approaches do not considered the fact
that real data are usually noisy, and therefore some patterns may
be lost. The goal of this proposal consists in addressing these lim-
itations and studying the new challenges in the privacy preserving
frequent pattern mining problem as follows.

• We propose a distinction between two classes of patterns:
exact and noisy patterns. In the former, we assume that the
patterns appear in the data in an exact way (i.e. are preserved
in the data), while in the latter the patterns are corrupted by
noise.

• For exact patterns, we first present the state of the art tech-
niques for privacy preserving frequent pattern mining and de-
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scribe their limitations. Second, we illustrate the challenges
in mining frequent sequential patterns, and we describe our
two proposed algorithms to mine these patterns [4, 5].

• We propose a new definition of noisy patterns, and describe
possible scenarios where the mining of these patterns is cru-
cial. We explore the challenges in mining these patterns and
state possible future directions to address this new mining
problem. To the best of our knowledge, we are the first to
study the mining of noisy patterns in a privacy preserving
setting.

The rest of the paper is organized as follows. In Section 2, we de-
scribe the privacy model used. In Section 3, we study the problem
of mining exact patterns, and we illustrate our solutions for mining
sequential exact patterns in a privacy preserving way. In Section 4,
we introduce the concept of noisy patterns and we present possible
scenario as well as new challenges in this setting. At the end of
that section, we present possible future research directions in de-
signing algorithmic solutions for mining noisy patterns. Finally,
we conclude our paper in Section 5.

2. PRIVACY MODEL
Differential privacy [8] aims to protect the disclosure of sensi-

tive individual information when statistical data are released. The
differential privacy mechanism guarantees that the computation re-
turned by a randomized algorithm is insensitive to the change in
any particular individual record in the input data.

DEFINITION 1 (DIFFERENTIAL PRIVACY [8]). A non inter-
active privacy mechanism M achieves ε-differential privacy if for
any two input sets (databases) DA and DB with symmetric differ-
ence of one (neighboring databases), and for any set of outcomes
S ⊆ Range(M), the following holds

Pr[M(DA) ∈ S] ≤ exp(ε)× Pr[M(DB) ∈ S] (1)

ε is the privacy parameter (also known as privacy budget) which
defines the privacy level of the mechanism. Higher values of ε
lead to lower level of privacy, while smaller values pose a stronger
privacy guarantee. In literature, there are two well established tech-
niques to achieve differential privacy: Laplace Mechanism [9] and
Exponential Mechanism [18]. Both these strategies are based on
the concept of global sensitivity [9] of the function to compute.

DEFINITION 2 (GLOBAL SENSITIVITY [9]). For any two neigh-
boring databases DA and DB , the global sensitivity for any func-
tion f : D → Rn is defined as:

GS(f) = max
DA,DB

‖f(DA)− f(DB)‖1 (2)

The Laplace mechanism is used in our paper to construct differ-
entially private algorithms, so we briefly discuss it below. Let f be
a function, and ε be the privacy parameter, then by adding noise to
the result f(D) we obtain a differential privacy mechanism. The
noise is generated from a Laplace distribution with probability den-
sity function pdf(x|λ) = 1

2λ
e−|x|/λ, where the parameter λ is de-

termined by ε and GS(f).

3. EXACT PATTERN MINING
In this section, we state the definition for frequent pattern mining

problem and challenges. We provide an overview of the existing
work for mining frequent patterns with differential privacy and their
limitations. Finally, we describe the problem of mining sequential
patterns and our proposed solutions to address the challenges in this
setting.

3.1 Problem Definition and Challenges
In this work, we start by considering patterns that appear in the

data in an exact way. We call these patterns exact patterns since
they preserve their structure in the data and they can be directly
mined without requiring external information (e.g. noise level, sim-
ilarity measure etc.). Mining frequent patterns is a central problem
in the data mining field. This problem often occurs in the form of
mining frequent itemsets, where a pattern p is a subset of a given set
of items I. The mining process for these patterns is based on the
concept of support, that for an itemset p is defined as the number
of transactions containing p. Therefore the frequent itemset mining
problem requires to report all the itemsets whose support is greater
than a given threshold.

In this proposal, we are interested in mining sequential patterns
that are in the form of a sequence rather than a subset of items.
Therefore, a pattern of length n in our case is a sequence of sym-
bols p = a0a1 . . . an−1 where each symbol ai belongs to a finite
alphabet Σ. Later in the paper, we will refer to these type of pat-
terns and transactions also as strings. We denote with |p| the length
of the pattern p. Furthermore, we say that a pattern p occurs at
position i in a string x = x0x1 . . . xm−1 if there exists an integer
0 ≤ i ≤ m − n such that xi+j = aj for j = 0, . . . , n − 1. For
any pattern p we denote by fx(p) the number of occurrences of the
pattern p in x. When a set of N strings D = {x0, x1, . . . , xN−1}
is given as a input, we define by FD(p) :=

∑N−1
i=0 fxi(p) the fre-

quency of the pattern p in D. Using this notation, the frequent
pattern mining problem that we consider is defined as follows.

PROBLEM 1 (FREQUENT PATTERN MINING). Given a posi-
tive integer k, report the list Fk of the top-k most frequent patterns
in the input set D.

To protect the individual privacy, in this section we describe two
mining algorithms which return a list Fk that satisfies the rigorous
privacy model of differential privacy.

Challenges. Two major challenges arise in mining frequent exact
patterns in our setting. First, classical itemsets mining algorithms
consider mining patterns that are unordered. Therefore, in that set-
ting the number of possible distinct patterns of length n is

(|I|
n

)
,

where |I| the size of the universe of items. On the other hand, in
our approach the patterns considered are substrings which are or-
dered. Hence in our model, the number of possible distinct patterns
of length n is |Σ|n which could result in a larger output size space.
Second, the global sensitivity for counting the occurrences of a pat-
terns is very large. For instance, the deletion or insertion of a string
y in the dataset D could change the count of a pattern up to O(|y|)
since the pattern may occur multiple times within the same string.
Therefore from the differential privacy prospective, the presence of
long strings in the dataset could lead to a large amount of noise in-
jected resulting in overall poor utility performance. To overcome
these challenges we describe two strategies. The first approach has
been proposed in [5] and it uses a prefix tree structure to parti-
tion the data and estimate the frequency of the patterns using the
frequency of the prefixes. The second strategy is a two-phase ap-
proach [4] that first generates a candidate set of frequent patterns
and successively it refines their count on a transformed version of
the dataset where the sensitivity of the count query can be properly
reduced.

3.1.1 Existing works for frequent itemset mining
The frequent itemset problem is well studied in literature but

only recently the privacy concerns have drawn the attention of the
scientific community to this problem with new challenges. Starting
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from the work of Bhaskar et al. [3], which first proposed a differen-
tial privacy preserving solution for this problem several techniques
have been developed. The PrivBasis approach proposed in [16] in-
troduces a new mining technique based on the concept of basis set
which allows to efficiently and effectively construct the set of fre-
quent itemsets from a small set of short patterns. Recently, Zeng
et al. [25] pointed out the hardness of the differentially private
frequent itemsets mining problem by investigating the trade-off be-
tween privacy and utility. As a negative result the authors showed
that in order to achieve certain level of utility and privacy guarantee
we could incur an extremely high privacy cost due to the presence
of long transactions that increase the sensitivity of the count query
for the itemsets. Motivated by this observation, the authors pro-
posed a novel technique based on the idea of carefully truncating
the transactions to mitigate the effect of the noise while providing
high utility results.

Limitation of existing approaches. The classical notion of fre-
quent pattern is based on the concept of support. In this way the
task of counting frequency of a pattern is relaxed into counting the
number of strings in the input dataset where the pattern appears.
However, in some settings, for example time-series and genomic
data, the notion of support is unable to capture patterns that have
repetitive occurrences within the same string. Therefore, in order
to report those repetitive patterns as frequent we use the notion of
occurrence rather than support. Another important aspect related
to the classical notion of patterns is the fact that the itemsets do
not preserve the order of the symbols. This could be a consider-
able drawback in scenarios where the sequence of symbols may
represent interest events in reality. Furthermore from the privacy
prospective, these approaches require to know the value k as a in-
put parameter since the privacy mechanism depends on this value.
This means that any change in this parameter requires additional
privacy cost.

3.2 Prefix-Tree Approach
The first algorithm we describe is called PT miner, and it has re-

cently proposed in [5]. The idea behind our PT miner is based on
the fact that the frequency of a pattern p can be computed as the
sum of the frequencies of those prefixes having p as a suffix. In this
way the overall sensitivity is reduced to the sensitivity of counting
query for prefixes which is 1. To efficiently query the dataset in in-
put we partition the set of strings in a top-down fashion according
to their prefixes. Our mining technique is reported in Algorithm 1.
Starting from the root node with empty prefix which represents the
entire dataset, the length of the prefixes are progressively increased
at line 8 in the algorithm forming a new partition in the tree. The
frequency of each prefix is obtained by issuing a counting query on
the original dataset where we employ the Laplace Mechanism to
guarantee differential privacy. When the prefix is not frequent (i.e.
comparison against a threshold value, at line 11 of the algorithm)
the partitioning process on the node stops, this reduces the compu-
tational cost of our algorithm meanwhile it minimizes the loss on
the estimated count for the prefixes. To maximize the utility results
of our approach we develop several techniques to properly allocate
the privacy budget ε̄ which determines the noise injected for each
node in the tree. Finally, the tree is traversed and the list of the top-k
patterns is returned. We have shown in [5] that the entire tree sat-
isfies differential privacy. This represents a considerable advantage
with respect to the existing approaches since this structure can be
also used to perform other mining tasks (e.g. mining prefixes). Fur-
thermore, the construction process does not depends on the length
of the pattern required to be mined or on the value of k. Therefore,

Algorithm 1 Private Prefix-Tree Miner
1: procedure PT MINER(D, ε, k)

Input: dataset D; privacy parameter ε; k
Output: T private Prefix-Tree

2: T formed by the root
3: Use a queue Q
4: Q← root
5: while (Q is not empty) do
6: node← Q.remove
7: for (every symbol a in the alphabet Σ) do
8: create a node cur with prefix node.prefix+ a
9: allocate privacy budget ε̄

10: perturb the count with Lap(1/ε̄)
11: if (cur is not frequent) then
12: Attach cur as a child of node in T
13: Q← cur
14: end if
15: end for
16: end while
17: traverse T to return the list of top-k patterns
18: end procedure

any change in these parameters does not produce additional privacy
cost while the previous approaches suffer this limitation.

In the rest of the section, we describe how this mining algorithm
has been applied to effectively solve the problem of privacy pre-
serving record linkage for string records.

3.2.1 Privacy Preserving Record Linkage
Record linkage [22, 10] is the process of identifying records that

refer to the same real world entity across different sources. It is ex-
tensively used in many applications, for example, in linking medi-
cal data of the same patient across different hospitals in the country
or in collecting the credit history of users from several sources.
However, many of these data may contain sensitive personal infor-
mation that could disclose individual privacy. The objective is to
allow two parties to identify records that are close to each other
according to some distance functions, such that no additional in-
formation about the data records other than the result is disclosed
to either party. There are several techniques to solve this problem,
and they are grouped into tree major families: Secure Multiparty
Computation (SMC) [17, 24], secure transformation [2, 7, 19, 20],
and hybrid methods [12, 23, 13, 15]. While these techniques have
been shown to be effective in several scenarios the tradeoff between
privacy and utility (accuracy and computational cost) leaves open
many challenges.

Frequent Grams Embedding. In the privacy preserving setting,
we proposed in [5] a novel secure transformation technique that
embeds the original string records into vectors, where the match-
ing is performed by a third party (not necessary trusted). The key
idea consists in using a transformation that is based on the patterns
(grams) mined from the original datasets so that the structure of the
data is preserved. We compared our solution with the state of the art
secure transformation technique [19], and our proposed approach
provides better scalability and stronger privacy while achieves com-
parable utility results. In the rest of this section, we briefly illustrate
the key components in our approach.

In our approach, we adopt a three party model, where two parties
hold their data and a third party is in charge of the matching. Our
protocol proceeds as follows: each of data holder transforms the
original records into vectors that are sent to the third party which
performs the matching.
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Figure 1: Utility results with different bases. (Left) Base formed with
frequent variable length patterns, (Right) Base formed with random
patterns.

Figure 2: Algorithm overview
The transformation of the data is crucial both for the privacy,

security and as well as for the utility. To perform the embedding
the data holders have to agree on the information necessary for ap-
plying the map. Our intuition is that this information should be
data-dependent so that the structure of the data could be well pre-
served in the transformation. In our approach, we use a common
set of frequent patterns (grams) of variable length, called base, that
are determined by the data holders before applying the transforma-
tion. This choice is motivated by the fact that a data-dependent
base better represents the data with respect to a random base that
at the contrary does not reflect the data changes. Figure 1 illus-
trates the benefits of using a base formed with frequent patterns.
For different values of threshold in the embedded space, we report
the F1 score for matching records with several values of edit op-
erations ed allowed in the matching. From these results, we can
see that the use of frequent patterns as components in the base pro-
vides a considerable improvement in representing the data in the
embedded space over a set of random patterns. Although the use of
a base of frequent grams provides good utility results, sharing di-
rectly this information between the data holders may incur privacy
leakages for individual records. In order to use the base formed
by the frequent patterns without compromising the individual pri-
vacy we employ the PT miner algorithm illustrated in the previous
section. Each party sets the privacy parameter ε, and it constructs
the prefix tree. Then the tree is traversed and the list of frequent
variable length patterns is reported for each party. This set of fre-
quent patterns is shared among the two parties and a common base
of k frequent patterns is computed. When the base is decided, each
party embeds its own records into vectors, where each vector is a
projection of the original string on the base. These vectors are then
sent to the third party which computes the matching pairs by using
the Euclidean distance.

3.3 A Two-Phase Approach
The second approach we describe is a two-phase algorithm that

we proposed in [4]. This approach significantly improves our previ-
ous solution for mining frequent patterns while it allows to preserve
the information about the frequent prefixes. In fact, the prefix tree
approach may turn out to be not very effective when the frequent
patterns are not well captured by the prefixes. A possible solution
to this problem consists in mining the patterns in apriori fashion
directly from the original dataset. Although this strategy looks ap-
pealing, it incurs a large amount of noise due to the high sensitivity
of the count query for the patterns. To address this problem we use
a two-phase algorithm as reported in Figure 2. In the first phase, we

use an enhanced prefix tree miner to release an ε1-differentially
private prefix tree. We will use this tree to first directly mine prefix
patterns, and second to generate a set of candidate patterns to use
in the second phase. In this second step, we use a transformation
and refinement procedure to first construct a sketch of the dataset
and second refine the count of the candidate patterns. We use the
remaining ε2 privacy budget to query the transformed dataset and
estimate the final counts.

Our strategy presents several advantages. First, the prefix tree in
the first phase allows us to achieve high utility in mining frequent
prefixes. Second, using a set of candidate patterns helps us to limit
the number of possible frequent patterns to examine in the second
phase. In fact, rather than considering the entire universe of pat-
terns, we focus only on k′ candidates. Third, we refine the count
of the mined patterns in the top-k′ by issuing counting queries on
a transformed version of the dataset. In this way, we show that
the sensitivity of the counting query can be reduced leading to a
smaller amount of perturbation noise to be injected, thus the final
top-k patterns are more accurate. In the rest of the section, we
briefly describe the two phases separately.

3.3.1 Prefix Tree Miner
We use an enhanced prefix tree mining algorithm to mine the

prefixes and the candidate set of frequent substrings. Our mining
procedure makes use of statistical properties of the data to maxi-
mize the quality of the counts in the nodes of the tree. In fact we
use the information from a statistical model to calibrate the noise
injected with the Laplace Mechanism in the tree, so that we mini-
mize the effect of the perturbation noise on the overall utility. For
the tree construction procedure we proposed two algorithms. The
first one uses a static sample of the data that is given in input as
background knowledge. The second approach instead handles the
case where this a priori information is not available, and it takes ad-
vantages of the partially constructed noisy tree to define a dynamic
statistical model which is used to calibrate the noise.

3.3.2 Transformation & Refinement
In this phase, we refine the count of the candidate patterns gen-

erated in the first phase by issuing a counting query. However due
to its high sensitivity we could incur a large perturbation noise if
it is applied on the original dataset directly. Therefore, our idea
consists in introducing a new representation of the original dataset
where we can control the sensitivity of the count query and at the
same time preserve the frequent patterns. This transformation pro-
cess consists in representing the original strings using vectors that
summarize the contribution of each string to the counts of the can-
didate patterns. The final counts of the patterns can be easily deter-
minate with this representation. However to reduce the sensitivity
for the count query, the strings that are too long are carefully trans-
formed by keeping only the part that has maximum impact on the
final counts. Under this representation, the counts of the candidate
patterns are refined by querying the transformed dataset and the fi-
nal frequent patterns are reported. For the details of this technique,
we point the interested readers to [4].

Compared with the state of the art of sequential pattern mining
[6], our approach provides comparable results for frequent sub-
string patterns, while achieving significantly superior results for
mining frequent prefixes at the same time.

4. NOISY PATTERN MINING
In real scenarios data is typically subject to noise and measure-

ment errors that may affect the frequent patterns. It is possible
that even a small amount of noise may compromise the set of the
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frequent patterns. To illustrate this phenomena we consider the fol-
lowing example.

EXAMPLE 1. Let D = {ccabbb, bbab, cabccab} be a dataset
in input containing three strings. The list of the top-3 frequent ex-
act patterns of length 2 is F3 = {(ab, 4), (bb, 3), (ca, 3)}. In the
list of the frequent patterns, in addition to report each pattern we
also display its frequency. However, if the first string is subject to
one error and it becomes “ccabab”, the new top-3 patterns will be
F3 = {(ab, 5), (ca, 3), (cc, 2)}, where the pattern “cc” replaces
the pattern “bb”.

In the example above, we saw how the presence of one error in
one of the data records made the pattern “bb” that originally was
reported in the top-k to become infrequent. In this scenario, it is
critical to design mining algorithms that take into account the pres-
ence of the noise, so that all the frequent patterns are captured. For
this reason, in this section we first extend the definition of exact
patterns with the presence of errors and second we investigate suit-
able applications where mining these patterns is crucial. We denote
these patterns as noisy patterns since their structure depends on the
noise presents in the original data.

4.1 New Problem Definition
To better understand the mining problem for these noisy patterns

and design algorithmic solutions we first consider a further distinc-
tion on the type of patterns that the noise can induce.

Pattern with mismatches. When the input dataset is corrupted by
noise or error multiple occurrences of a pattern could be lost. To
handle this problem, we make use of similarity measure between
strings, and we compute the frequency of a pattern p in the input set
as the number of occurrences where p appears in an approximate
way (i.e. the pattern occurs up to a maximum number of errors
allowed). We formalize this concept in the following definition.

DEFINITION 3 (θ-APPROXIMATE OCCURRENCE). Given a dis-
tance function between strings d(·, ·) and a threshold value θ, we
say that a pattern p has a θ-approximate occurrence at position i
in x if there exists a substring y of x, defined as y = xixi+1 . . . xm
such that d(p, y) ≤ θ.

Depending on the specific domain, several distance functions could
be chosen to better represent the type of noise. Some possible func-
tions that can be considered are the Hamming distance and the Edit
distance.

EXAMPLE 2. Let x = abcbaabcacb be a record in the input
dataset D and let d be the Hamming distance. The pattern “baa”
has two 1-approximate occurrences in x: one at position 6 (where
it appears with one mismatch), and one at position 3 (where it ap-
pears in an exact way).

Therefore, the mining problem in this case consists in mining the
top-k patterns where their θ-approximate occurrences are computed
with respect to a given θ value.

Pattern with gaps. In Example 1, we saw that the noise perturbs
the pattern by corrupting some of its symbols. In other cases, the
noise can introduce a gap so that the pattern is broken into parts
that co-occur in the dataset in input. In this scenario, we define the
gapped pattern p as a triplet in the form p = (m1,m2,∆), where
m1 and m2 are the two exact components of the pattern and ∆ is
the maximum distance allowed within them.

DEFINITION 4 (GAPPED PATTERN OCCURRENCE). A gapped
pattern p = (m1,m2,∆) has an occurrence at position i in the

string x if there exists two substrings of x denoted as y1 and y2
where y1 = xixi+1 · · ·xi+|m1|−1 and y2 = xjxj+1 · · ·xj+|m2|−1,
such that y1 and y2 are occurrences ofm1 andm2 respectively and
j − i− |m1|+ 1 ≤ ∆.

In our case, we measure the distance ∆ between the components as
the number of symbols between the tail of the first component to the
head of the second one; however other measures can be adopted.

EXAMPLE 3. Let x = abcbaabcacb be a record in the input
dataset D. The gapped pattern (ab, cb, 2) occurs twice in x. It
appears at position 0 of the string x where the gap between com-
ponent is 0, and at position 5 where the gap is 2.

Furthermore, the previous definition can be extended allowing the
two components m1 and m2 to occur with some errors. Notice
that, in general cases the pattern p could have more than two com-
ponents; however it can always be decomposed as a set of gapped
patterns with two components.

4.2 Potential Application Studies
A first possible scenario for mining these noisy patterns falls in

the computational biology field. Indeed, the information conserved
in biological structures (e.g. DNA, RNA, proteins) can be easily
represented in terms of sequences of symbols, and this fact makes
the search and discovery of patterns extensively used in Biology.
One example of these informative patterns are the transcription fac-
tor binding sites (TFBSs) that are generally represented as gapped
patterns. The discovery/mining of these sites is very challenging
both biologically and computationally. In fact, TFBSs play an im-
portant role in the regulation of the gene expression and their pre-
diction and location make it possible to understand the presence of
inheritance diseases in the organism. The discovery of these sites
is very hard due to the length of the biological sequence involved
and the presence of noise intervened in the course of the evolution.

A second possible scenario where mining noisy patterns plays an
important role is in monitoring time-series. Time-series data gen-
erally appear in the form of noisy numeric values that often can be
discretized into symbols. For example, we can take the time se-
ries representing the blood pressure of a patient and convert it into
a sequence of symbols on the alphabet Σ = {H,N,L}, where
each symbol represents a high, normal and low level of blood pres-
sure respectively. When the discretized sequence is constructed we
perform the mining of noisy patterns to study the relationships be-
tween the presence of repetitive noisy patterns and the condition
of the patient. In this way, we can use these patterns as features
to diagnose the patient so that doctors can rapidly intervene with
adequate medical treatments.

4.3 Challenges and Future Directions
The presence of noise in the data rises new challenges in min-

ing patterns. First of all, when a pattern is allowed to occur with
some errors the process for counting its occurrences is not trivial.
For example, for a string x of n symbols the number of exact pat-
terns of length l that can occur in x is O(n). On the contrary, for
noisy patterns given a maximum number of errors allowed θ there
can be O(lθ|Σ|θn) patterns occurring in x. This explosion in the
number of patterns is due to the presence of noise that allows to
a large amount of patterns that are not present in the original data
to be mined from the data. Another challenge is related to the pri-
vacy model. Although differential privacy is the state of the art for
data privacy techniques, it is not clear how to translate the privacy
needs that rise in biological scenarios into this privacy model. For
example, in the case of DNA sequences we could think to construct
privacy mechanisms that allow to perform analysis and data mining
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tasks while at the same time it protects the user (DNA owner) to be
identified.

In mining noisy patterns we plan to consider two potential solu-
tions. First, for mining gapped patterns in the form (m1,m2,∆) a
future direction consists in equipping our prefix tree with backward
links of length ∆, so that when the component m2 is mined from
the suffix of a node in the tree we can use the link to quickly iden-
tify the component m1 of the gapped pattern. Second, in mining
pattern with mismatches we plan to investigate how to keep track
of the threshold value θ while the prefix tree is traversed. In this
way, we are able to estimate the θ-approximate occurrences of the
noisy patterns in the data.

5. CONCLUSIONS
In this paper, we described the problem of mining frequent pat-

terns in a privacy preserving scenario. We compared the concept of
sequential pattern with the classical itemset pattern and made a dis-
tinction of patterns into exact and noisy. For exact patterns, we pre-
sented the state of the art for privacy preserving mining algorithms
and described our mining techniques for sequential patterns. For
noisy patterns, we proposed two definitions to capture the effects
of the noise in the data. We pointed out possible scenarios where
the mining of these patterns is central as well as the challenges
in developing efficient mining algorithms. Future works include
the extension of our privacy preserving prefix tree to mine noisy
patterns, and developing privacy preserving techniques to handle
genomic data.

6. REFERENCES
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