
Fast Cartography for Data Explorers

Thibault Sellam
CWI

thibault.sellam@cwi.nl
Supervised by: Martin Kersten

ABSTRACT
Exploration is the act of investigating unknown regions. An
analyst exploring a database cannot, by definition, compose
the right query or use the appropriate data mining algo-
rithm. However, current data management tools cannot op-
erate without well defined instructions. Therefore, browsing
an unknown database can be a very tedious process. Our
project, Atlas, is an attempt to circumvent this problem.
Atlas is an active DBMS front-end, designed for database
exploration. It generates and ranks several data maps from
a user query. A data map is a small set of database queries
(less than a dozen), in which each query describes an in-
teresting region of the database. The user can pick one
and submit it for further exploration. In order to support
interaction, the system should operate in quasi-real time,
possibly at the cost of precision, and require as little input
parameters as possible. We draft a framework to generate
such data maps, and introduce several short- to long-terms
research problems.

1. ANSWERING QUERIES WITH QUERIES
In business as well as in science, the volume and complex-

ity of the data to be handled has been rapidly expanding.
This has led to a massive research effort, in at least two
directions. On one hand, database scientists have been fo-
cussing on the storage and retrieval of this data. This led
to scalable, robust, and now well established data manage-
ment systems. On the other hand, data miners have been
trying to make sense of this data by exploiting statistical
regularities. In both directions, many of the research chal-
lenges set several decades ago have been successfully tack-
led. It is now possible to detect dubious credit card transac-
tions among Terabytes of transactions, or detect interesting
target populations for marketing with acceptable latency
and precision. Indeed, coupling massive data repositories
and smart data mining algorithms allows solving many of
the data analyst’s problems. That is, when the problem is
clearly defined. However, what if a user wants to explore the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 12
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

DBMS X Atlas

Query Tuples

View

Query

View

Query

View

Query

Map

Query

Figure 1: Answering queries with queries

data? A database can only give a precise answer to a precise
query. Similarly, the type of “knowledge” to be extracted by
current data mining software must be clearly defined (clas-
sifiers, item sets, clusters...) and parameterized. In both
cases, the user must already have a good understanding of
his data and his goal.

Suppose a user has access to a large dataset stored in a
SQL-based DBMS. All he knows about the data is the se-
mantics of the columns. He may just want a preliminary
“feel” for the data, or he is looking for facts with only a
vague idea of how to reach them. In other terms, he is
browsing. In the file system world, file managers offer a
simple way to conduct such explorations. In the database
world, we believe that the query-tuple paradigm lacks lots of
flexibility. More precisely, most database front-ends fail to
fulfill three requirements. First, a database interface should
not require any complex query or statistical model specifi-
cations. Instead, it should present simple exploration op-
tions among which the user can choose. Second, the query
latency should be close to zero even with large sets. Fi-
nally, it should favour intuition over accuracy: exploration
requires rough impressions of the data, not lists of tuples or
full statistical reports.

In this direction, I will dedicate my PhD to a novel data
exploration scheme: answering queries with queries. Our
system, Atlas sits on top of a traditional DBMS. The DBMS
takes a query as input and returns a list of tuples. The
idea behind Atlas is to analyze these tuples, and summarize
them with a few queries. We call such a summary a data
map. Each query describes a region. The user can do two
things. He can refine his exploration by submitting one of
the queries for further analysis. The region will then be
itself broken down. Otherwise, if he is not satisfied, he can
request a new map. This is illustrated in Figure 1.

1456

Education: 'MSc'
Salary: {'>50k'}

Education: 'BSc'
Salary: {'>50k'}

Education: 'BSc'
Salary: {'<50k'}

Age: [17, 37]
Sex: {'Male'}

Age: [38, 90]
Sex: {'Female'}

Age: [17, 37]
Sex: {'Female'}

Age: [38, 90]
Sex: {'Male'}

Education: 'MSc'
Salary: {'<50k'}

Figure 2: Two maps of the same data

Figure 2 gives an example. Consider a survey dataset. We
issue a simple conjunctive query:

Sex: any

Salary: any

Age: [17, 90]

Eye color: {’Blue’,’Green’,’Brown’}

Education: {’Bsc’, ’Msc’}

Instead of returning a long list of tuples, Atlas clusters the
results and describes the subsequent groups with queries.
This can be done with the attributes “Age” and “Sex”, as
depicted on the left side. Alternatively, the attributes “Edu-
cation” or “Salary” may also be used, as shown on the right
side. Actually, Atlas generates several possible ways to de-
scribe the data (more than two), and ranks them by interest.
The aim of my PhD is to develop methods to generate such
views over any relational database, in real time.

2. INFORMATIVE DATA MAPS
We want to create data maps to support database explo-

ration. These maps should be informative: they should be
representative (they “make sense”) and convenient. This is
what we describe in this section.

As stated previously, a map is a set of queries over a
dataset. These queries describe a subset of items with a
subset of attributes. We consider that a query is represen-
tative if two requirements are fulfilled. First, its attributes
should be semantically related. Consider the introductory
example. It seems more natural to group “Education” with
“Salary” rather than with “Eye color”. A simple way to
detect this relation is to group variables that are statisti-
cally dependent. Second, the items covered by each query
should be similar. This means that they should be close in
the space defined by the chosen attributes.

In order to enable an intuitive exploration, the maps should
be convenient. Instead of returning one exhaustive solution
as most clustering algorithms would (for instance, a den-
dogram), Atlas should return several easily understandable
maps. Inside these maps, the number of regions should be
kept as low as possible. As a rule of thumb, we consider
that a map with more than 8 regions is hard to read. Also,
the queries should be simple, with very few predicates (we
target less than 3). Finally, the order in which we display
the maps matters. The system should rank them, displaying
the most interesting options first.

It is now possible to formulate our research problem. From
a user query, we generate a ranked list of partitionings. Each
of these partionings should group similar items on a set of
mutually dependent attributes. The number of partitions
and attributes should be kept low. The algorithm should

Age: [20, 90]
Sex: {'M', 'F'}

Age: [20, 90]
Sex: {'F'}
Age: [20, 90]

Cut on Sex

Sex: {'M'}
Age: [20, 55] Age: [55, 90]

Cut on Age

Sex: {'M','F'} Sex: {'M','F'}

User query

Figure 3: The CUT operation

work on any data type present in a DBMS, with a small
latency and few input parameters.

In data mining terms, Atlas may be seen as a “lazy”
projective clustering system, designed for interactive explo-
ration. A more detailed comparison between clustering and
our approach is given in Section 6.

3. MAP GENERATION FRAMEWORK
In this section, we present the “skeleton” of an algorithm

which, we believe, is a good first step in this direction. The
algorithm is based on four steps. First, we generate several
simple maps from the data, each based on a single attribute.
This is the candidate set. Second, we cluster this set into
groups of dependent maps. The intuition is that if two maps
are statistically dependent (and therefore in the same clus-
ter), then they describe the same aspect of the data. The
third step is to merge the maps in each cluster; thus we form
the result set. In the last step, we rank this set and present
it to the user.
The algorithm is not yet finalized: for each of these steps,
we discuss several alternatives. We introduce the following
notations:

• Pk : attk ∈ Sk is a predicate, with k in [1, N]
• Q = P1∧. . .∧PN is a conjunctive query which describes

a region.
• C(Q) is the cover of a query: the number of items

described by a query divided by the total number of
tuples in the database
• M = {Q0, . . . , QM} is a map

3.1 Candidate maps
The aim of this step is to create several simple maps,

which will be combined later to form more complex ones.
These maps are obtained by successively breaking down each
predicate of the user query. This is the CUTk primitive. It
takes a query as input, and splits the range covered by the
kth variable.

Definition 1. Consider the query Q = P1 ∧ . . . ∧ (attk ∈
Sk) ∧ . . . ∧ PN . The primitive CUTk creates a map of M
regions as follows:

CUTk(Q) =
{
P1 ∧ . . . ∧ (attk ∈ Sj

k) ∧ . . . ∧ PN

}
j∈[1,M]

with
M⋃
j=1

Sj
k = Sk, and Si

k ∩ Sj
k = ∅ for any i,j in [1,M]

1457

The CUT operation may be seen as one-dimension clus-
tering. Its simplest form splits each predicate in two. Con-
sider the example pictured in Figure 3. The user provides a
query based on Age and Sex. We decompose this query on
each of these attributes. In this case, we cut the attribute
Age around the value 55, and separate males from females.
Two questions immediately follow: how should we partition
the predicate ranges Sk, and how many partitions should we
create?

Cutting method
There are many different ways to split the value range of
an attribute into “interesting” portions. Consider an ordi-
nal attribute (e.g. date, integer). We consider two options.
First we could use equi-width binning. This gives fast and
intuitive results. However, this does not tell much about
the shape of the underlying distribution. An alternative is
to split the data such that the intra-cluster distance is max-
imized within each partition (as in K-means [5]). This tells
much more about the data but requires more calculations.
For categorical attributes, creating homogeneous partitions
is harder because there is no natural order. We could how-
ever consider the values in the order in which the user gives
them. If the user does not provide such information, we
could use the frequency of occurrence of each value. Alter-
natively, if the data has a high cardinality (name, codes),
we can use a simple alphabetic order.

Number of splits
Clearly, the more partitions per attribute we create, the
more the subsequent calculations will be accurate: the algo-
rithm will have a smaller chance of error when it will identify
the map dependencies in the next step. However, this comes
at the cost of more expensive computations. As we value
performance to accuracy, we choose to restrict the number
of partitions per attribute to two.

3.2 Clustering
In this step, we cluster all the maps that are related, that

is, all the maps which describe the same aspect of the data.
To do so, we need a distance function and a clustering algo-
rithm.

Distance
We need a distance function d that quantifies how related
two maps are. We propose to use a metric based on sta-
tistical dependency. First, we need to associate a random
variable to each map.

Definition 2. Consider a dataset, described by a mapM.
We take a random tuple in this set. X is the variable which
describes its partition inM. We call it the underlying vari-
able of M.
The possible outcomes of X are the queries of M, and its
distribution is determined by the cover of the associated ar-
eas.

IfM1 andM2 are two maps, we need a distance function
such that the more X1 and X2 are mutually dependent, the
lower d(M1,M2) gets. There are many such functions in the
statistics literature. One approach would be to use a metric
based on the mutual information [3]. Intuitively, the mutual
information measures how much knowing the value of one

age, income, edu.

Map 1

Map 2

size, weight

Candidate set

User query

Cut on education

income

age

size

weight

Figure 4: Agglomerative map clustering

variable reduces the uncertainty about the other. Although
it can be quantified, it is not a metric in the mathemati-
cal sense (the triangle inequality does not hold). However,
the literature offers several variations with better properties.
For instance, the Variation of Information [10] seems to be a
good candidate, as it is well established and relatively sim-
ple.

Algorithm
Now that we defined the distance between two maps, we
have to choose a clustering algorithm. The literature pro-
vides many suitable candidates. We favour agglomerative
hierarchical methods such as SLINK [14]. These methods
start with one cluster per map, then progressively merge
pairs of similar clusters. We believe this is the best choice
for two reasons. First, we do not know a priori the numbers
of clusters to form. This discards all centroid-based meth-
ods such as K-Means. Second, recall that we set a limit on
the complexity of the maps that we wish to generate. A
hierarchical algorithm allows us to control the size of the
clusters, and thus the number of areas in the result. Figure
4 gives an example of such an algorithm. In total, three
merge operations are performed.
As the clusters grow, the maps they contain are less and less
dependent. There should be a point after which two maps
are too far away to be aggregated. However, it is not yet
clear how to set this parameter.

3.3 Merging
During this step, we combine all the candidates of the

same cluster into a representative map. We propose two
methods, illustrated in Figure 5.

3.3.1 Product
This is the simplest way to merge maps. We create the

product of two maps by intersecting each region of the first
with each region of the second.

1458

size < 150 size > 150

weight < 55

weight > 55

weight < 55

weight > 55

size < 150 size > 150

weight < 45

weight > 45

weight < 65

weight > 65

M1

size < 150

size > 150

M2

weight < 55

weight > 55

 Product(M1 M2), M1 M2Compose(),

Figure 5: Product and composition of two maps

Definition 3. Consider M1 = {Q1
0, . . . , Q

1
K} and

M2 = {Q2
0, . . . , Q

2
L}. We define the product operator ×:

M1 ×M2 = {Q1
i ∧Q2

j | (i, j) ∈ [0,K]× [0, L]}

As this operation is associative and commutative, it can
be trivially extended to any number of maps. The main
advantage of this method is that it gives fairly “natural”
partitionings of the space, especially if we apply equi-width
splitting in the first part of the algorithm. However, if there
are any clusters in the data, it is unlikely that they will
appear on the map.

3.3.2 Composition
The idea behind composition is to cut the queries of one

map on the attributes of the other.

Definition 4. Consider M1 = {Q1
0, . . . , Q

1
K} and

M2 = {Q2
0, . . . , Q

2
L}. Suppose that the queries M2 are

based on the set of attributes att1, att2,. . ., attN . We define
the composition operator ◦:

M1 ◦M2 =

K⋃
k=1

CUT1

(
CUT2

(
. . . CUTN

(
Q1

k

)
. . .
))

Consider by example Figure 5. The queries ofM1 are based
on size, those of M2 on weight. We compose these two
maps by splitting the queries of M1 on weight.
If we use the intra-cluster distance as a cutting criteria for
the CUT operation, then this method has a higher chance
of revealing the clusters in the data. This chance depends
on the distribution of the data: this is to be evaluated em-
pirically or theoretically in future works.

3.4 Ranking
In the previous step, we generated a result set of several

maps. We propose to rank them by decreasing order of en-
tropy. The maps with many queries will have a high score.
If two views have the same number of queries, then the en-
tropy favors the most balanced one. Thus, the maps with
many large areas will appear first, while the last ones will
tend to reveal small subsets of outliers.

4. ARCHITECTURE
Ultimately, this PhD project should lead to a real-life

system. Therefore, we are not only interested in the map
derivation algorithm, but also how we implement it.

Figure 6: Screenshot of Atlas’ GUI

We are currently developing a prototype for Atlas. It con-
sists of three layers. At the bottom, a DBMS serves the
dataset. Currently, Atlas is implemented on top of Mon-
etDB [9], using its native C driver (MAPI). Ideally, the sys-
tem, should be completely generic, and therefore support
standard APIs such as ODBC or JDBC. However this lim-
its the scope of the operations that can be pushed to the
database, as only SQL may be used. The second layer is
the actual mapping engine. This is where the main algo-
rithms reside. The user can directly interact with this layer
through a proprietary query language [13]. This language
is a restriction of SQL which can only express conjunction
of predicates. We consider that a well designed GUI is vi-
tal for such a an application: this is the third layer. As
demonstrated in Figure 6, it is currently designed as a Web
application. In a near future, we plan on using handheld
devices such as iPads.

5. DEVELOPMENTS
This section presents several mid-term research questions

that have to be tackled for the completion of this project.

5.1 Volume and time
Our approach is still too complex for large data sets. One

of the main challenges of this project is to bring query and
computational costs down. We propose three research di-
rections.

Algorithm optimization
All the steps of the algorithm can be accelerated with small
scale optimizations.
For instance, the primitive CUT is called many times. It
is therefore vital to make it run as fast as possible. We
remind that it takes a set of tuples as input, and splits one
of its column according to some criteria (currently, we use
the median). This could be approximated with one-pass
algorithms such as sketches [1].

Sampling and refinement
One way to reduce the cost of all the computations would
be to work on a sample of the full database. Nevertheless,
determining a priori a trade-off between accuracy is run-
ning time is far from trivial. Therefore, the ideal algorithm
would be an anytime variation of our framework [16]: the

1459

quality of the results would improve as computation time in-
creases. It would continually take small samples of the data
and update a set of approximate results. This way, the user
would have instant results and the system could interrupt
the exploration after a timeout.

Anticipative computations
The idea of this approach is to perform calculations offline,
by anticipating what the user will ask. There are two periods
during which this is possible: before the first query, and
during the idle time between each query. Deciding what to
compute is an open question.

5.2 Real life challenges

Real life databases
The type of datasets we are interested in is quite different
from the usual data mining sets: we would like to work di-
rectly on relational databases (e.g., the SDSS or TPC data).
This brings several issues.
First, the logical layout of the data is more complex than
one large table: we have to consider multiple tables with
foreign key relationships. The naive way to deal with this
would be to materialize the join into one large temporary
table. However, this operation may be very costly. It is nec-
essary to work on subsets only, or push some computations
down to individual tables. How to do this is not yet clear.
Second issue, some columns may have a very large cardinal-
ity and/or no semantics (codes, names, comments or keys).
A failure to detect this could lead to very long and useless
computations. Third issue, the raw data may be imprecise
or contain mistakes. We believe that more issues will appear
as the system is developed and tested.

Real life users
Our system targets human user. Therefore, the clarity of the
interface and the visualization is a crucial component of the
project. Representing the maps and the description of the
regions without cluttering the screen space is difficult, espe-
cially with high cardinality attributes such as names. In the
future, it could be interesting to describe the regions with
random or, if possible, representative examples. Even bet-
ter, one research direction would be to explain why a region
is interesting, by charting the attributes of the subset ver-
sus those of the whole database. Another direction would
be to propose personalized sessions, during which what is
proposed depends on the past behavior of the user or his
peers (as in collaborative filtering).
Finally, note our scheme is very well suited to mouse and
keyboard free devices, such as tablets. On a more user in-
terface perspective, this direction seems promising.

6. RELATED WORK

Clustering
Our work may be seen as a form of cluster analysis. More
precisely, it is a variant of subspace clustering [8]: we detect
groups of similar items in the subspaces of the dataset. Our
system differs from existing projects on two points. First,
the goal is different. We do not aim at finding all the clusters
in the data, we want to support data exploration. There-
fore, our requirements concerning statistical accuracy are

lower but we target high speed and ease of use. Second,
our method explores the data space lazily : after each iter-
ation, we propose several several “embryo” of search direc-
tions among which the user chooses. It seems that all other
approaches return one exhaustive list of clusters/subspaces.
Another research directions in the clustering literature re-
sembles this project: some GUIs for clustering propose in-
teractive hierarchical interfaces. For instance, gCluto [11]
gathers many clustering tools under one graphical applica-
tion, and has this feature. However, we believe that these
interfaces require too many “knobs” and tuning to allow
database browsing.

Visual mining
Visual data mining is a vast and growing field of research.
Several concise representations of multivariate data have
been proposed [6]. Also, several systems have gained com-
mercial success, such as Tableau [15]. We believe that our
approach is a nice complement to these techniques, but in
no way an overlap.

Visual querying
Visual querying has been an open research topic for many
years. For instance, one of the oldest and most famous sys-
tems is Query By Example [17]. In a sense, faceted search
[4] serves a similar purpose. There is to our knowledge no
other system that uses the clustering of the data to suggest
queries.

Query suggestion
Several authors have proposed query recommendation algo-
rithms. We divide their work in two groups. The first group
uses the query log of the database [2] [7], drawing inspi-
ration from collaborative filtering systems proposed on the
Web. As our algorithm does not use the query log, we can
drop the assumption that several experts have been indepen-
dently using the same database for the exact same purpose.
The second group is closest to us: the algorithms use statis-
tics over the data. For instance, the system of Sarawagi et
al. [12] detects abnormal behaviors in data cubes. There is
to our knowledge no other work which uses the clusters in
the data to suggest queries.

7. CONCLUSION
Current data management algorithms excel at solving spe-

cific problems. Nevertheless, the act of exploration is by def-
inition empirical and imprecise. We believe that the ideas
presented in this proposal will help building more flexible,
intuitive and eventually inspiring systems.

8. ACKNOWLEDGMENTS
This work was supported by the Dutch national program

COMMIT.

9. REFERENCES
[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and

J. Widom. Models and issues in data stream systems.
In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 1–16, 2002.

1460

[2] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis.
Query recommendations for interactive database
exploration. In Scientific and Statistical Database
Management, pages 3–18, 2009.

[3] T. Cover, J. Thomas, J. Wiley, et al. Elements of
information theory. Wiley Online Library, 1991.

[4] J. English, M. Hearst, R. Sinha, K. Swearingen, and
K. Lee. Flexible search and navigation using faceted
metadata. Technical report, University of Berkeley,
2002.

[5] G. Gan, C. Ma, and J. Wu. Data clustering. SIAM,
2007.

[6] D. Keim and H.-P. Kriegel. Visualization techniques
for mining large databases: a comparison. IEEE
Transactions on Knowledge and Data Engineering,
pages 923–938, 1996.

[7] N. Khoussainova, Y. Kwon, M. Balazinska, and
D. Suciu. Snipsuggest: context-aware autocompletion
for sql. Proceedings of the VLDB Endowment, pages
22–33, 2010.

[8] H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering
high-dimensional data: A survey on subspace
clustering, pattern-based clustering, and correlation
clustering. ACM Transactions on Knowledge
Discovery from Data (TKDD), pages 1–58, 2009.

[9] S. Manegold, M. Kersten, and P. Boncz. Database
architecture evolution: mammals flourished long

before dinosaurs became extinct. Proceedings of the
VLDB Endowment, pages 1648–1653, 2009.

[10] M. Meilă. Comparing clusterings – an information
based distance. Journal of Multivariate Analysis,
pages 873–895, 2007.

[11] M. Rasmussen and G. Karypis. gcluto - an interactive
clustering, visualization, and analysis system.
Technical report, University of Minnesota, 2004.

[12] S. Sarawagi, R. Agrawal, and N. Megiddo.
Discovery-driven exploration of olap data cubes. In
Advances in Database Technology – EDBT’98, pages
168–182, 1998.

[13] T. Sellam and M. Kersten. Meet charles, big data
query advisor. CIDR, 2013.

[14] R. Sibson. Slink: an optimally efficient algorithm for
the single-link cluster method. The Computer Journal,
pages 30–34, 1973.

[15] C. Stolte, D. Tang, and P. Hanrahan. Polaris: a
system for query, analysis, and visualization of
multidimensional relational databases. IEEE
Transactions on Visualization and Computer
Graphics, pages 52–65, 2002.

[16] S. Zilberstein. Using anytime algorithms in intelligent
systems. AI magazine, page 73, 1996.

[17] M. M. Zloof. QBE/OBE: a language for office and
business automation. Computer, pages 13–22, 1981.

1461

