
Multi-Tuple Deletion Propagation:
Approximations and Complexity

Benny Kimelfeld
IBM Research–Almaden

San Jose, CA 95120, USA
kimelfeld@us.ibm.com

Jan Vondrák
IBM Research–Almaden

San Jose, CA 95120, USA
jvondrak@us.ibm.com

David P. Woodruff
IBM Research–Almaden

San Jose, CA 95120, USA
dpwoodru@us.ibm.com

ABSTRACT
This paper studies the computational complexity of the clas-
sic problem of deletion propagation in a relational database,
where tuples are deleted from the base relations in order
to realize a desired deletion of tuples from the view. Such
an operation may result in a (sometimes unavoidable) side
effect: deletion of additional tuples from the view, besides
the intentionally deleted ones. The goal is to minimize the
side effect. The complexity of this problem has been well
studied in the case where only a single tuple is deleted from
the view. However, only little is known within the more re-
alistic scenario of multi-tuple deletion, which is the topic of
this paper. The class of conjunctive queries (CQs) is among
the most well studied in the literature, and we focus here on
views defined by CQs that are self-join free (sjf-CQs).

Our main result is a trichotomy in complexity, classifying
all sjf-CQs into three categories: those for which the prob-
lem is in polynomial time, those for which the problem is
NP-hard but polynomial-time approximable (by a constant-
factor), and those for which even an approximation (by any
factor) is NP-hard to obtain. A corollary of this trichotomy
is a dichotomy in the complexity of deciding whether a side-
effect-free solution exists, in the multi-tuple case. We further
extend the full classification to accommodate the presence
of a constant upper bound on the number of view tuples
to delete, and the presence of functional dependencies. Fi-
nally, we establish (positive and negative) complexity results
on approximability for the dual problem of maximizing the
number of view tuples surviving (rather than minimizing the
side effect incurred in) the deletion propagation.

1. INTRODUCTION
The practical need to allow for, and sometimes restrict

to, database accesses through views gives rise to the view
update problem: properly translate an update operation on
the view to an update of the source relations. The core
problem is that of underspecification—an update (e.g., tuple
deletion) on the view can be realized by multiple, possibly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 13
Copyright 2013 VLDB Endowment 2150-8097/13/13... $ 10.00.

very different, updates on the source relations. Therefore,
a great deal of research has been devoted to designing syn-
tax, semantics and restrictions to enable database systems
to expose interfaces for updates through views. For exam-
ple, Keller [15] defines a collection of (five) criteria qualifying
the coherence of update translators, notions of complement
views have been proposed for specifying update disambigua-
tion and inversion [2,8], and the relational lenses [3,4] have
been proposed as a language where view definitions include
clear update policies to begin with.

The work reported in this paper is in another line of re-
search within the view-update problem: underspecification
is allowed, and the goal is to translate the update with as
little as possible side effect [5–7, 9, 13, 16, 17]. A motivat-
ing scenario is in the context of database debugging: the
user points out wrong tuples (false positives) or missing tu-
ples (false negatives) in the result, and the proposed up-
dated database serves as a suggestion of eliminating the er-
rors while minimizing the side effect (e.g., on other results).
Kimelfeld et al. [17] describe a use case of this motivation
in the context of in information extraction.

Our focus here is on the special case of deletion propaga-
tion. There, we are given undesired tuples in the view, which
is defined by a monotonic query, and the goal is to delete
tuples (facts) from the base relations, so that the undesired
tuples are no longer in the view. The resulting database is
called a solution. The side effect is the set of view tuples
that are not among the undesired ones, and yet, are also
deleted due to the deletion from the base relations. If there
is no side effect (i.e., only the undesired tuples are deleted
from the view), then the solution is side-effect free. How-
ever, it is possible that no side-effect-free solution exists.
Hence, the task is relaxed to that of minimizing the side
effect [5–7,17]: delete tuples from the base relations so that
the undesired tuples disappear from the view and the side
effect is of minimal cardinality. Such a solution is said to
be optimal. Note that the measure of quality we adopt, the
view side effect, is different from the source side effect [5–7],
where an optimal solution is one with a minimal number of
missing facts.

This paper continues the research on the theoretical com-
putational complexity of deletion propagation for views de-
fined by conjunctive queries [5–7,16,17]. The ultimate goal
is, naturally, to gain the insights needed for designing effi-
cient solutions with quality guarantees. With the exception
of Cong et al. [6], the past research has been restricted to
the special case where only a single tuple is deleted from
the view. Only a little is known about the computational

1558

complexity in the (usually more realistic) case of multi-tuple
deletion, which is the topic of this paper. We first shortly
review the work on the single-tuple case. Later in this sec-
tion, we relate the work here to the results of Cong et al. [6]
on multi-tuple deletion.

Buneman et al. [5] showed NP-completeness of deciding
on the existence of a side-effect-free solution (hence, NP-
hardness of finding an optimal or approximately optimal
solution) when the view is defined by the following self-join-
free conjunctive query (abbrev. sjf-CQ here).

Q?
2(y1, y2) :− R1(x, y1), R2(x, y2) (1)

Kimelfeld et al. [17] explore the space of all views defined by
sjf-CQs and prove a dichotomy in the (data) complexity of
single-tuple deletion propagation for views defined in that
space. They do so by defining the property of head domina-
tion of a CQ, and show that this property fully characterizes
the views with a tractable deletion propagation. More pre-
cisely, they prove the following dichotomy in complexity for
the case where the view is defined by an sjf-CQ Q. If Q
has head domination, then finding an optimal solution is in
polynomial time; otherwise, it is NP-hard to find an opti-
mal solution, and in fact any (finite) approximation thereof.
Cong et al. [6] considered the complexity of the problem in
the case of key preserving views. Later, Kimelfeld [16] gen-
eralized the results of Cong et al. [6], in the case of sjf-CQs,
to a dichotomy in complexity that takes general functional
dependencies into account.

We now proceed to describing the results we establish in
this paper. We first show that the previously established di-
chotomy results for the single-tuple deletion [16,17] no longer
hold in the multi-tuple case. Instead, we prove a trichotomy
in complexity. More precisely, we show a classification of
the sjf-CQs into the following three categories.

1. Those where finding an optimal solution is in polyno-
mial time.

2. Those where an optimal solution is NP-hard to obtain,
but for some constant k, a k-optimal solution (i.e., the
side effect is at most k times the minimum) can be
found in polynomial time.

3. Those where finding an α-optimal solution is NP-hard
for all positive constants/functions α (since deciding
on the existence of a side-effect-free solution is already
NP-hard).

Although the dichotomy of [17] no longer holds in the
multi-tuple case, our results do imply that, in some strong
sense, the notion of head domination is robust enough to
carry over to the general case. In particular, we parameter-
ize their head domination into level-k head domination, for
an integer k ≥ 1 (exact definitions are in Section 2). We then
show that when k = 1, we are in Case 1 above. And when
k > 1, we are in Case 2. Consequently, Case 3 captures ex-
actly those sjf-CQs that are hard (to approximate) already
in the single-tuple case (namely, no head domination).

As part of our proof of the trichotomy, we define a gen-
eralization of the minimal hitting-set problem, the focused
hitting-set problem, where the goal is to hit all the sets in one
collection while hitting as few as possible sets in another col-
lection. We show how to reduce deletion propagation with
level-k head domination to that problem, where each set
has k elements. We present a k-approximation algorithm

for that variant of focused hitting set, through rounded lin-
ear programming.

Cong et al. [6] studied complexity aspects of multi-tuple
deletion. Their variant of deletion propagation is different
from ours—they aim at minimizing the side effect, and at
the same time, do so using the minimal number of deleted
source tuples. They show that the problem is NP-hard under
combined (query-and-data) complexity when the view is de-
fined by a CQ, even if the CQ preserves keys (i.e., the head
variables include a key for each relation symbol involved in
the query). Our results here show that finding an optimal
solution can be NP-hard already under data complexity, and
even if we do not impose any requirement on the source side
effect. In fact, as mentioned earlier, our results show pre-
cisely for which sjf-CQs the problem is in polynomial time,
hard but approximable, and inapproximable.

In addition to the above trichotomy in complexity, we
study additional variants of the problem. In particular, we
consider the bounded deletion variant of our problem, where
the number of deleted tuples is bounded by some constant.
We show that, unlike the unbounded case, the dichotomy of
Kimelfeld et al. [17] continues to hold. We also generalize the
results described thus far to take functional dependencies
into account.

The negative part of our results indicates that, quite of-
ten, reducing the side effect in deletion propagation is the-
oretically intractable if we desire approximation guarantees
w.r.t. the smallest possible side effect. A natural question is
then whether there are efficient algorithms for other types of
quality guarantees. For that, we consider the maximization
variant of our problem, where the goal is to maximize the
remaining view rather than to minimize the side effect. The
two versions, side-effect minimization and view maximiza-
tion, are the same if only optimal solutions are considered.
However, the two imply different notions of approximation
guarantees, and consequently, involve different complexities.
A known polynomial-time approximation for sjf-CQs guar-
antees the factor h, which is the minimal number of atoms
that cover all the head variables. In fact, there is always
a solution (obtainable through a simple algorithm due to
Buneman et al. [5]) that retains at least 1/h of the non-
deleted tuples [17]. In contrast, here we show that in the
case of multi-tuple deletion, such a solution does not neces-
sarily exist. We further show that for unbounded deletion,
a very general condition implies that no polynomial-time
approximation algorithm guarantees any constant approxi-
mation factor, under a reasonable (yet sub-standard) com-
plexity assumption made by Ambühl et al. [1]. Nevertheless,
we establish positive results for maximization in the case of
bounded deletion.

The paper is organized as follows. In Section 2 we give pre-
liminary definitions and background. The focused hitting-
set problem is introduced in Section 3, where we also give an
approximation algorithm. We define leveled head domina-
tion in Section 4. In Section 5 we give the complexity results
for minimizing the side effect. The maximization variant of
the problem and the incorporation of functional dependen-
cies are discussed in Section 6. Finally, we make concluding
remarks in Section 7.

2. FORMAL SETTING
In this section we present the formal setting we will build

upon throughout the paper.

1559

2.1 Schemas and Instances
We fix an infinite set Const of constants. We denote con-

stants by lowercase letters from the beginning of the Latin
alphabet (e.g., a, b and c). A schema is a finite sequence
R = 〈R1, . . . , Rm〉 of distinct relation symbols, where each
Ri has an arity ri > 0. An instance I (over R) is a se-
quence 〈RI

1, . . . , R
I
m〉, such that each RI

i is a finite relation
of arity ri over Const (i.e., RI

i is a finite subset of Constri).
If c ∈ Constri , then Ri(c) is called a fact, and it is a fact
of the instance I if c ∈ RI

i . Notationally, we view an in-
stance as the set of its facts. For example, we may write
R(c) ∈ I to say that c is in RI . As another example, J ⊆ I
means that J is a subinstance of I, that is, RJ

i ⊆ RI
i for all

i = 1, . . . ,m.

2.2 Conjunctive Queries
We fix an infinite set Var of variables. We assume that Var

and Const are disjoint sets. We denote variables by lowercase
letters from the end of the Latin alphabet (e.g., x, y and z).
We use the Datalog style for denoting a conjunctive query
(abbrev. CQ); that is, a CQ over a schema R is an expression
of the form Q(y) :− Ψ(x,y, c), where x and y are disjoint
tuples of variables (from Var), c is a tuple of constants (from
Const), and Ψ(x,y, c) is a conjunction of atomic formulas
ϕi(x,y, c) over R; an atomic formula is also called an atom.
We may write just Q(y), or even just Q, if Ψ(x,y, c) is
irrelevant. We denote by atoms(Q) the set of atoms of Q.
We usually write Ψ(x,y, c) by simply listing the atoms of
Q. We require every variable of y to occur at least once in
Ψ(x,y, c). The arity of Q, denoted arity(Q), is the length
of the tuple y.

When we mention a CQ Q, we usually avoid specifying the
underlying schema R, and rather assume that this schema
is the one that consists of the relation symbols that appear
in Q (and each symbol has the arity it takes in Q). When
we want to refer to that schema, we denote it by schema(Q).

Let Q(y) :− Ψ(x,y, c) be a CQ. A variable in x is called
an existential variable, and a variable in y is called a head
variable. We use Var∃(Q) and Varh(Q) to denote the sets of
existential variables and head variables of Q, respectively.
Similarly, if ϕ is an atom of Q, then Var∃(ϕ) and Varh(ϕ)
denote the sets of existential and head variables, respec-
tively, that occur in ϕ. We denote by Var(Q) and Var(ϕ)
the sets of all variables that occur in Q and ϕ, respectively
(that is, the unions Var∃(Q)∪Varh(Q) and Var∃(ϕ)∪Varh(ϕ),
respectively).

The focus of this paper is on CQs that are self-join free,
which means that each relation symbol occurs at most once
in the CQ. We use sjf-CQ as an abbreviation of self-join-
free CQ. If R is a relation symbol that occurs in the sjf-CQ
Q(y) :− Ψ(x,y, c), then the unique atom over R is denoted
by ϕR(x,y, c) or just ϕR. Similarly, Rϕ denotes the relation
symbol of the atom ϕ.

Example 2.1. We give here examples of sjf-CQs that we
later reference. First, consider the CQ Q?

2 in (1). The atoms
of Q?

2 are ϕ1 = R1(x, y1) and ϕ2 = R2(x, y2). In the exam-
ples of this article, Ri and Rj are assumed to be different
symbols when i 6= j. In particular, schema(Q?

2) consists of
two distinct binary relation symbols: R1 and R2. Hence, Q?

2

has no self joins (but it would have a self join if we replaced
the symbol R2 with R1). There is only one existential vari-
able in Q?

2, namely x, and the two head variables are y1 and

y2. Hence Var∃(Q) = {x} and Varh(Q) = {y1, y2}. Further-
more, Var∃(ϕ1) = {x} and Varh(ϕ1) = {y1}.

We will frequently refer to the following special sjf-CQ:

Q×2 (y1, y2) :− R1(y1), R2(y2) (2)

More generally, for a natural number k:

Q×k (y1, . . . , yk) :− R1(y1), . . . , Rk(yk) (3)

That is, Q×k is simply the Cartesian product of k distinct
unary relations. Observe that Q×k has no existential vari-
ables.

Finally, our running example for this section is the CQ
Q0, defined as follows.

Q0(y1, y2, y3, y4) :− R1(x1, y1), R2(x1, y2), (4)

R3(x2, y1, y2), R4(x3, y1, y2, y3), R5(x2, x3), R6(y3, y4)

The CQs in the examples of this paper do not have con-
stants. Nevertheless, all the definitions and results have no
restriction on constants.

Let Q(y) be a CQ. An assignment for Q is a mapping
µ : Var(Q) → Const. For an assignment µ for Q, the tuple
µ(y) is the one obtained from y by replacing every head
variable y with the constant µ(y). Similarly, for an atom ϕ
of Q, the fact µ(ϕ) is the one obtained from ϕ by replacing
every variable z with the constant µ(z). Let I be an instance
over schema(Q). A match for Q in I is an assignment µ
for Q, such that µ(ϕ) is a fact of I for all ϕ ∈ atoms(Q).
We denote by M(Q, I) the set of all matches for Q in I.
If µ ∈ M(Q, I), then µ(y) is called an answer (for Q in
I). The result of evaluating Q over I, denoted Q(I), is the
set of all the answers for Q in I; that is, Q(I) is the set
{µ(y) | µ ∈ M(Q, I)}. Let f be a fact in RI . We say
that f is (Q, I)-useful if µ(ϕR) = f for some µ ∈ M(Q, I).
We say that f is Q-consistent with a tuple a if there is
an assignment µ for Q, such that µ(y) = a and µ(ϕR) = f .
Note that (Q, I)-usefulness implies Q-consistency with some
a, but not vice versa.

2.3 Deletion Propagation
The focus of this paper is on (but not restricted to) the

problem of minimizing the view side effect [5] when prop-
agating the deletion of multiple answers (a.k.a. group dele-
tion [6]) back to the source relations. Formally, for a CQ Q
the problem MinVSE〈Q〉 is defined as follows. The input
consists of an instance I over schema(Q), and a set A ⊆ Q(I)
of answers. A solution (for I and A) is an instance J ⊆ I
such that Q(J) ∩ A = ∅. The side effect (of J), denoted
seff (J), is the set Q(I) \ (A ∪ Q(J)), that is, the set of
answers that are deleted in addition to A. (Note that the
notation seff (J) assumes that Q, I and A are known from
the context, which will be the case whenever we will use this
notation.) The goal is to find an optimal solution, which is
a solution J that minimizes the side effect; that is, J is such
that |seff (J)| ≤ |seff (K)| for all solutions K.

As we discuss later, finding an optimal solution for the
problem MinVSE〈Q〉may be intractable. Often, though, we
can settle for approximations, which are defined as follows.
For a number (or numeric function) α ≥ 1, a solution J
is said to be α-optimal if |seff (J)| ≤ α · |seff (K)| for all
solutions K.

1560

Set in C

Set in D

Hitting-set
member

0 31 32 33212223

11

12

13

Figure 1: An example of a FcsHit instance

Comment 2.2. It is important to note that in our pre-
vious work [16, 17], approximation is defined differently, as
that for a maximization problem, where the goal is to max-
imize the remaining view. Under that sense, an α-optimal
solution J is one that satisfies |Q(J)| ≥ |Q(J ′)|/α for all
solutions J ′. We study approximation under the maximiza-
tion notion in Section 6.1; but except for that section, we use
the minimization variant, which is the same as that used by
Buneman et al. [5].

We will also study a restriction of MinVSE〈Q〉 by impos-
ing the constraint of a fixed bound c on the size of the input
set A of tuples to delete. Formally, for a natural number c,
the problem MinVSEc〈Q〉 is the same as MinVSE〈Q〉, ex-
cept that |A| ≤ c is a restriction on the input. For example,
MinVSE1〈Q〉 is the previously studied problem of minimiz-
ing the side effect when deleting a single tuple [5,6,9,16,17].

An additional problem we consider is the decision prob-
lem FreeVSE〈Q〉, where the input is the same as that for
MinVSE〈Q〉, and the goal is to determine whether there ex-
ists a solution J that is side-effect free, that is, seff (J) = ∅.
The problem FreeVSEc〈Q〉 is defined similarly, except that
|A| ≤ c is imposed.

3. FOCUSED HITTING SET
To establish our results, we introduce and analyze a com-

binatorial problem that we call focused hitting set, which
generalizes the classic minimal hitting set.

The minimal hitting set problem, denoted here as MinHit,
is the following: given a collection C of subsets of a ground
set X , find a hitting set of a minimal cardinality. Recall that
a hitting set is a subset H of X , such that H hits (i.e., has
a nonempty intersection with) every set in C. For a number
α ≥ 1, a hitting set H is α-optimal if |H| ≤ α|H ′| for all
hitting sets H ′.

The focused hitting-set problem, denoted FcsHit, is the
following: given two collections C and D of subsets of a
ground set X , find a hitting set (of any size) for C that hits
as few as possible of the sets in D. We use H uD to denote
the set of all s ∈ D satisfying s ∩ H 6= ∅. For a number
(or numeric function) α ≥ 1, a hitting set H is α-optimal if
|H u D| ≤ α|H ′ u D| for all hitting sets H ′ for C.

Example 3.1. Figure 1 illustrates the example involving
the following sets:

• X = {0, 11, 12, 13, 21, 22, 23, 31, 32, 33}

• C = {{0, 11, 12, 13}, {0, 21, 22, 23}, {0, 31, 32, 33}}

• D = {{0}, {0, 11, 21, 31}, {0, 11, 21, 31, 12, 22, 32}, {0, 11
12, 13, 21, 22, 23, 31, 32, 33}}

A smallest hitting set for C is {0}, but this set hits all 4 sets
in D. A most focused hitting set is {13, 23, 33} (marked by
the grey circles in Figure 1), which hits only one set in D.
Finally, {12, 22, 32} is a 2-optimal hitting set, as it hits (no
more than) twice the minimum number of sets in D.

Note that FcsHit generalizes MinHit through the fol-
lowing approximation-preserving reduction: from the input
(X , C) for MinHit generate the input (X , C,D) for FcsHit
with D being the set of all singletons {x} where x ∈ X .

Let k be a natural number. The problems MinHit〈k〉 and
FcsHit〈k〉 are similar to MinHit and FcsHit, respectively,
except that now we assume that the size of each set in C or
D is at most k.

A special case of MinHit〈k〉 is vertex cover in a k-uniform
k-partite hypergraph: this is a vertex cover problem where
the vertex set X is partitioned into k pairwise-disjoint sets
s1, . . . , sk such that each set (hyperedge) in C has exactly
one element from each si. The focused version of this prob-
lem is similarly a special case of FcsHit〈k〉 where, again,
each set in C ∪D has exactly one element from each si. We
denote these problems by MinUVC〈k〉 and FcsUVC〈k〉, re-
spectively.

3.1 Approximation Algorithm
As well known, MinHit〈k〉 can be k-approximated in poly-

nomial time. Such an approximation is achieved by greed-
ily selecting pairwise-disjoint sets from C until the union of
these sets is a hitting set, which is taken as the solution.
This simple greedy approach fails when the sets of C are
weighted. Moreover, there does not seem to be any corre-
sponding greedy approach to k-approximate FcsHit〈k〉; one
explanation of that is in the fact that focused hitting set can
encode weighted hitting set. So, in the proof of the following
lemma we adopt an approach that works for weighted ver-
tex cover (which is a special case of weighted hitting set),
namely linear programming with rounding [25]. As a re-
sult, we get that FcsHit〈k〉 can also be k-approximated in
polynomial time.

Lemma 3.2. For FcsHit〈k〉, a k-optimal hitting set can
be found in polynomial time.

Proof. Consider the input (C,D) for FcsHit〈k〉. We
define the following linear program, with a variable ys for
each s ∈ D and xe for each e ∈ ∪(C ∪ D).

Minimize
∑
s∈D

ys s.t.

∀s ∈ C
∑
e∈s

xe ≥ 1 (5)

∀s ∈ D, e ∈ s ys ≥ xe (6)

∀e ∈ ∪(C ∪ D) xe ≥ 0 (7)

Given a solution x,y, we use the following rounding to
construct a hitting set H.

H
def
= {e ∈ ∪C | xe ≥ 1/k}

Note that conditions (5) and (7), along with the fact that
each s ∈ C satisfies |s| = k, implies that H is indeed a hitting
set (that is, for each s ∈ C there is e ∈ ∪C with xe ≥ 1/k).

1561

P2

R6(y3, y4)R3(x2, y1, y2)

R4(x3, y1, y2, y3)R2(x1, y2)

R1(x1, y1)

P1

R5(x2, x3)

P3

Figure 2: The graph G∃(Q0) for the CQ Q0 of (4)

Let Hopt be an optimal hitting set (i.e., a hitting set for C
that hits as few as possible members of D).

If H ′ is a hitting set for C, then let x′,y′ be the solution
for the linear program assigning x′e one if e ∈ H ′ or zero
otherwise, and y′s = 1 if s is hit by H ′ or zero otherwise. It
is easy to see that x′,y′ is legal solution, and that |H ′uD| =∑

s∈D y
′
s. It follows that

∑
s∈D ys ≤ |Hopt u D|. Let ŷ be

the solution obtained by replacing every ys with 1 in case s
is hit by H. Observe that, due to (6) we have that ŷs ≤ kys
for all s ∈ D. Hence, we get the following:

|H u D| ≤
∑
s∈D

ŷs ≤
∑
s∈D

k · ys = k
∑
s∈D

ys ≤ k|Hopt u D|

Hence, our solution H is k-optimal, as claimed.

4. LEVELED HEAD DOMINATION
In this section, we introduce the notion of level-k head

domination (where k is a natural number). But first, we
recall the definition of (ordinary) head domination [17].

Let Q be a CQ. The existential-connectivity graph of Q,
denoted G∃(Q), is the undirected graph that has atoms(Q)
as the set of nodes, and that has an edge {ϕ1, ϕ2} whenever
ϕ1 and ϕ2 have at least one existential variable in common
(that is, Var∃(ϕ1) ∩ Var∃(ϕ2) 6= ∅). If P is a connected
component of G∃(Q), then we denote by Varh(P) the set of
all the head variables that occur in the atoms of P .

Example 4.1. Figure 2 shows the graph G∃(Q0) for the
CQ Q0 in (4). Note that R3(x2, y1, y2) and R4(x3, y1, y2, y3)
do not share an edge, since they do not share existential vari-
ables (they share only head variables). The graph has three
connected components (surrounded by dashed-edge poly-
gons): P1, P2 and P3. Observe that Varh(P1) = {y1, y2},
Varh(P2) = {y1, y2, y3} and Varh(P3) = {y3, y4}.

Following is the definition of the head-domination prop-
erty of a CQ [17].

Definition 4.2. (Head Domination) A CQQ has head
domination if there is a subset Φ of atoms(Q), such that for
every connected component P of G∃(Q) there is an atom
ϕ ∈ Φ with Varh(P) ⊆ Var(ϕ); in that case, we say that Q
is head dominated by Φ.

Note that in the definition, the atom ϕ, which satisfies
Varh(P) ⊆ Var(ϕ), is not required to be in P .

Example 4.3. Consider again the graph G∃(Q0) in Fig-
ure 2. Recall that the connected components of G∃(Q0)
are P1, P2 and P3. It holds that Varh(P1) ⊆ Var(ϕR3),
Varh(P2) ⊆ Var(ϕR4) and Varh(P3) ⊆ Var(ϕR6). (Recall that
ϕR denotes the atom with the relation symbol R.) There-
fore, Q has head domination, and is head dominated by
Φ′ = {ϕR3 , ϕR4 , ϕR6}. Observe that Q is also head domi-
nated by Φ = {ϕR4 , ϕR6}.

An example of a CQ without head domination is Q?
2 that

we defined in (1). Indeed, G∃(Q?
2) has exactly one connected

component, its head variables are y1 and y2, and no atom
of Q contains both y1 and y2.

The next definition parameterizes head domination by the
minimal number atoms needed for domination.

Definition 4.4. (Level-k Head Domination) Let k
be a natural number. A CQ Q with head domination has
level-k head domination if k is the minimal cardinality of a
set that head dominates Q.

Example 4.5. Continuing Example 4.3, the CQ Q0 is
head dominated by Φ, which has two atoms. Since Q0 is
not head dominated by any single atom, we get that Q0 has
level-2 head domination.

Kimelfeld et al. [17] proved the following dichotomy in the
complexity of the problems MinVSE1〈Q〉 and FreeVSE1〈Q〉
(where the goal is to delete a single tuple). In the theorem
we use “c” as the placeholder of “1” since we later refer to
this theorem with an arbitrary c.

Theorem 4.6. [17] Let Q be an sjf-CQ. The following
hold for c = 1.

1. If Q has head domination, then MinVSEc〈Q〉 (hence,
FreeVSEc〈Q〉) can be solved in polynomial time.

2. If Q has no head domination, then FreeVSEc〈Q〉 is
NP-complete; therefore, it is NP-hard to approximate
MinVSEc〈Q〉 by any finite factor.

Comment 4.7. Theorem 4.6 is weaker than the main the-
orem of Kimelfeld et al. [17]. Their theorem adds the fol-
lowing. In Case 1, the problem is solvable by an extremely
simple algorithm (called “trivial” there) that was originally
proposed by Buneman et al. [5]. In Case 2, the ability to ap-
proximate is limited (or more formally the problem is APX-
hard) even when using the maximization notion of approxi-
mation that we mentioned in Comment 2.2 (and use in Sec-
tion 6.1).

In the next section we extend Theorem 4.6 to the deletion
of multiple tuples, by studying the complexity of MinVSE〈Q〉
and FreeVSE〈Q〉. We will also investigate the complexity
of MinVSEc〈Q〉 and FreeVSEc〈Q〉 for an arbitrary c.

5. COMPLEXITY RESULTS
In this section we give our main complexity results for the

problems MinVSE〈Q〉 and FreeVSE〈Q〉. We begin with
upper bounds.

5.1 Upper Bounds
To obtain positive complexity results (upper bounds), we

will show how MinVSE〈Q〉 reduces to focused hitting set
when Q has head domination. Later, we will give complexity
results based on this reduction.

Let Q be an sjf-CQ with level-k head domination. We now
show how MinVSE〈Q〉 reduces to FcsUVC〈k〉. We begin
with a specific sjf-CQ Q, namely Q×k (specified in (3)), where
this reduction is straightforward. Given an instance I over
schema(Q×k) and a set A of answers to delete, the reduction
is as follows. The ground set X is (the set of all facts of) I.

1562

Algorithm ToFcsHit〈Q〉(I, A)

1: Let Φ = {ϕ1, . . . , ϕk} head dominate Q
2: for i = 1, . . . , k do
3: si ← {µh[ϕi] | µ ∈M(Q, I)}
4: C ← {µh[Φ] | µ ∈M(Q, I) ∧ µ(y) ∈ A}
5: D ← {µh[Φ] | µ ∈M(Q, I) ∧ µ(y) /∈ A}
6: H ← FcsUVC(s1, . . . , sk, C,D)
7: J ← I
8: for all µh[ϕ] ∈ H do
9: Delete from RJ

ϕ every fact consistent with µh[ϕ]
10: return J

Figure 3: Reducing MinVSE〈Q〉, for an sjf-CQ Q with
level-k head domination, to FcsUVC〈k〉

The pairwise-disjoint sets s1, . . . , sk are simply the relations
(i.e., fact sets) RI

1, . . . , R
I
k, respectively. We then define:

C def
={{R1(a1), . . . , Rk(ak)} | (a1, . . . , ak) ∈ A}

D def
={{R1(b1), . . . , Rk(bk)} | (b1, . . . , bk) ∈ Qk(I) \A}

It is then easy to see that from a hitting set H for C we
obtain a solution J by deleting from I every fact in H; con-
versely, from a solution J we obtain a hitting set for C by
taking H = I \ J . Most importantly, H and J have the
same “quality”: |H u D| = |seff (J)|. Hence, we get an
approximation-preserving reduction.

The sjf-CQ Q = Q×k gives an extremely simple case of
reducing MinVSE〈Q〉 to FcsUVC〈k〉. In the remainder of
this section, we show that a reduction with similar guaran-
tees exists for every sjf-CQ with level-k head domination.

We begin with some notation. Let Q(y) be a CQ, let I
be an instance of schema(Q), and let µ be a match for Q
in I. If ϕ ∈ atoms(Q), then µh[ϕ] denotes the restriction of
µ to the head variables of ϕ. If Φ is a subset of atoms(Q),
then µh[Φ] denotes the set {µh[ϕ] | ϕ ∈ Φ}. A fact f over
the relation symbol Rϕ is consistent with µh[ϕ] if f can be
obtained from ϕ by (1) replacing each existential variable
with some constant, and (2) replacing each head variable y
with µh[ϕ](y).

Let Q be an sjf-CQ with level-k head domination, and
suppose that Q is head dominated by Φ = {ϕ1, . . . , ϕk}.
The reduction is depicted in Figure 3 as an algorithm named
ToFcsHit〈Q〉. The ground set X consists of all mappings
µh[ϕi] where µ ∈ M(Q, I) and 1 ≤ i ≤ k. The pairwise-
disjoint sets s1, . . . , sk are defined by taking as si the set of
all µh[ϕi]. Note that the si are indeed pairwise disjoint, since
different ϕi have different sets of head variables (otherwise,
Q does not have level-k head domination). The collection C
consists of all the sets µh[Φ] where µ ∈M(Q, I) and µ(y) ∈
A, and the collection D consists of all the sets µh[Φ] where
µ ∈ M(Q, I) and µ(y) /∈ A. A solution (hitting set) H for
the instance (s1, . . . , sk, C,D) of FcsUVC〈k〉 is constructed
in line 6. From H the reduction constructs a solution J
for MinVSE〈Q〉, as follows. Starting with J = I, for each
mapping µh[ϕi] ∈ H the algorithm deletes from J every fact
f over ϕi such that f is consistent with µh[ϕ].

Next, we prove the correctness ToFcsHit〈Q〉(I, A). For
that, we need the following lemma, which is proved sim-
ilarly to the optimality of the “unirelation” algorithm for
MinVSE1〈Q〉 in the case of head domination [17].

Lemma 5.1. Let Q be an m-ary sjf-CQ that is head dom-
inated by a set Φ ⊆ atoms(Q). Let J be an instance over
schema(Q) and a ∈ Constm. The following are equivalent.

• a ∈ Q(J)

• For all ϕ ∈ Φ there is a fact fϕ over Rϕ, such that fϕ
is both (Q, J)-useful and Q-consistent with a.

Next, we prove the following theorem.

Theorem 5.2. Let Q be an sjf-CQ with level-k head dom-
ination. Consider an execution of ToFcsHit〈Q〉(I, A). If
FcsUVC(s1, . . . , sk, C,D) returns an α-optimal hitting set,
then the returned instance J is an α-optimal solution for
I and A.

Proof. Observe that every tuple a ∈ Q(I) corresponds
to a unique set in C ∪ D; we denote this set by sa. Sup-
pose, w.l.o.g., that every fact in I is (Q, I)-useful (since we
can delete every fact that is not (Q, I)-useful without affect-
ing the problem). With that assumption, the following are
equivalent for a fact fϕ over a relation symbol Rϕ (where
ϕ ∈ atoms(Q)) and a ∈ Q(I).

• fϕ is Q-consistent with a.

• fϕ is consistent with µh[ϕ] for some µ ∈M(Q, I) that
satisfies µ(y) = a.

Then, Lemma 5.1 implies that for a tuple a ∈ Q(I), we have
a ∈ Q(J) if and only if for all i = 1, . . . , k there is a match
µ ∈M(Q, J) such that µh[ϕi] agrees with a. In other words,
a ∈ Q(J) if and only if we can find in M(Q, J) matches to
cover every member of sa. This immediately implies that
J is indeed a solution for I and A, since by hitting C the
algorithm eliminates at least one such match for each a ∈ A.
By the same arguments we get that the solution J is such
that |H u D| = |seff (J)|.

We complete the proof by showing that for every solution
J for I and A there is a hitting set H such |H u D| =
|seff (J)|. By using Lemma 5.1, we obtain the hitting set H
by taking every mapping µh[ϕi] (where µ ∈ M(Q, I)) that
is consistent with none of the tuples in Q(J). Then H hits
exactly those sets s that correspond to tuples in Q(I)\Q(J),
which implies both that H is a hitting set and that |HuD| =
|seff (J)|, as claimed.

Next, we draw immediate corollaries from Lemma 3.2,
in combination with Theorem 5.2. The first one states that
MinVSE〈Q〉 is k-approximable whenever Q has level-k head
domination.

Corollary 5.3. If Q is an sjf-CQ with level-k head dom-
ination, then MinVSE〈Q〉 is k-approximable in polynomial
time.

As described above, Corollary 5.3 is obtained by reducing
MinVSE〈Q〉 to FcsUVC〈k〉. Recall that our solution for
FcsHit〈k〉 (which generalizes FcsUVC〈k〉) is through the
linear program we described in the proof of Lemma 3.2. In
that program, each variable ys corresponds to a unique tuple

1563

in Q(I) \ A, and vice versa. An important observation is
that we could associate preferences to the tuples in Q(I)\A
(stating that survival of some tuples is more important than
those of others) by associating with each ys a weight ws,
thereby setting the goal of minimizing

∑
s∈D wsys. Hence,

we get a natural extension of the space of supported quality
measures for solutions.

Corollary 5.3 gives, as a special case, a class of sjf-CQs
for which MinVSE〈Q〉 is solvable in polynomial time—those
with level-1 head domination (i.e., at least one atom contains
all the head variables). Note that this upper bound could
also be obtained through a straightforward argument that
does not require Corollary 5.3.

Corollary 5.4. If Q is an sjf-CQ with level-1 head dom-
ination, then MinVSE〈Q〉 is in polynomial time.

We later give a complementary lower bound, showing that
the class of sjf-CQs with level-1 head domination is precisely
that of sjf-CQs for which MinVSE〈Q〉 is solvable in polyno-
mial time (assuming P 6= NP).

An algorithm for MinVSE〈Q〉, with any upper-bound guar-
antee on the approximation ratio, can be used for solving
FreeVSE〈Q〉: if there is a side-effect-free solution, the al-
gorithm will necessarily find one. Hence, we get the follow-
ing corollary, generalizing the corresponding part of Theo-
rem 4.6 from MinVSE1〈Q〉 to MinVSE〈Q〉.

Corollary 5.5. If Q is an sjf-CQ with head domination,
then FreeVSE〈Q〉 is in polynomial time.

5.2 Lower Bounds
Theorem 4.6 implies that if Q has no head domination,

then it is NP-hard to solve MinVSE〈Q〉 optimally. The
following lemma states that this is also the case whenever
Q has level-k head domination with k > 1.

Lemma 5.6. If Q is an sjf-CQ with level-k head domina-
tion for k > 1, then MinVSE〈Q〉 is NP-hard.

Lemma 5.6 is a actually special case of a more general
result that accounts for functional dependencies, which we
discuss in Section 6.2.

Recall from Corollary 5.3 that for an sjf-CQ Q with level-
k head domination, the problem MinVSE〈Q〉 can be k-
approximated in polynomial time. Whether this bound is
tight for every Q is an open problem. However, we can
show an infinite series of such Q where the lower bound is
tight up to a constant factor (that does not depend on k).
More specifically, based on a recent result by Guruswami
and Saket [14], the following theorem states that for k >
4, the CQ Q×k is such that it is NP-hard to approximate
MinVSE〈Q×k 〉 within some ratio linear in k.

Theorem 5.7. Let k > 4 be a natural number and let
ε > 0 be a number. It is NP-hard to (k/4 − ε)-approximate
MinVSE〈Q×k 〉.

Proof. The proof is by a reduction from MinUVC〈k〉
(defined in Section 3). Guruswami and Saket [14] showed
that for all ε > 0, it is NP-hard to obtain a (k/4 − ε)-
optimal hitting set. So consider an instance (s1, . . . , sk, C)
of this problem. We define an instance I over schema(Q×k)
as follows. Each relation Ri contains all the values of si (as
unary tuples) and, in addition, a set of N fresh (distinct)

constants. (Note that each fresh constant occurs exactly
once.) The value N will be determined later. The set A of
answers to delete is obtained from C by straightforwardly
translating each s ∈ C into a tuple of the Cartesian product
×k

i=1si that comprises the elements in s.
Let Hopt be a minimal hitting set for (s1, . . . , sk, C). Let

Jo be the solution that is obtained from Hopt by deleting
every element of Hopt (from the proper relation). Let J be
any solution for I and A (obtained through some algorithm).
From J we obtain a hitting set HJ by selecting all the values
of the si that are missing (i.e., have been deleted) from J .
We will show that if J is a good approximation w.r.t. Jo,
then HJ is a good approximation w.r.t. Hopt. More pre-
cisely, we will prove the following for the right choice of N
and some δ > 0 that depends only on ε.

|seff (J)|
|seff (Jo)| <

k

4
− δ ⇒ |HJ |

|Hopt|
<
k

4
− ε (8)

We first estimate the size of seff (J). DefineM =
∏k

i=1 |si|.
Then seff (J) is the disjoint union of two sets:

• Tuples t that contain precisely one element in ∪k
i=1si.

There are precisely |HJ | ·Nk−1 such tuples.

• Tuples t that contain at least two elements in ∪k
i=1si.

There are at mostMNk−2 such tuples (sinceM bounds
the number of choices of the elements from ∪k

i=1si).

We conclude the following:

|HJ | ·Nk−1 ≤ |seff (J)| ≤ |HJ | ·Nk−1 +MNk−2

And similarly (since J is arbitrary):

|Hopt| ·Nk−1 ≤ |seff (Jo)| ≤ |Hopt| ·Nk−1 +MNk−2

So we get the following argument.

k

4
− δ > |seff (J)|

|seff (Jo)| ≥
|HJ |

|Hopt|+M/N
=

|HJ |
|Hopt|

· 1

1 +M/(N |Hopt|)
≥ |HJ |
|Hopt|

· 1

1 +M/N

⇒ |HJ |
|Hopt|

<
k

4
− δ +

k − 4δ

4N/M
<
k

4
− δ +

kM

4N

So we obtain (8) by choosing δ = 2ε and N = 4kM/ε.

5.3 Trichotomy in Complexity
The main result of this paper is the following theorem,

stating a trichotomy in complexity for MinVSE〈Q〉 over the
sjf-CQs Q. The theorem is obtained by combining Theo-
rem 4.6, Corollaries 5.3, 5.4 and 5.5, and Lemma 5.6.

Theorem 5.8 (Trichotomy). Let Q be an sjf-CQ.

• If Q has level-1 head domination, then MinVSE〈Q〉 is
solvable in polynomial time.

• If Q has level-k head domination with k > 1, then
MinVSE〈Q〉 is NP-hard but k-approximable in poly-
nomial time; moreover in that case FreeVSE〈Q〉 is
in polynomial time.

• If Q has no head domination, then FreeVSE1〈Q〉 is
NP-complete (and approximating MinVSE1〈Q〉 by any
finite factor is NP-hard).

1564

Table 1: The complexity of MinVSE〈Q〉 and
FreeVSE〈Q〉, and their bounded-deletion variants

Problem Level-1 h. d.
Level-k h. d.
for k > 1

No h. d.

MinVSE〈Q〉
(optimal)

PTime NP-hard NP-hard

MinVSE〈Q〉
(approx.)

PTime PTime NP-hard

FreeVSE〈Q〉 PTime PTime
NP-

complete

MinVSEc〈Q〉
(optimal)

PTime PTime NP-hard

MinVSEc〈Q〉
(approx.)

PTime PTime NP-hard

FreeVSEc〈Q〉 PTime PTime
NP-

complete

Example 5.9. Consider the following three sjf-CQs.

Q1(y1, y2, y3) :−R(y1, y2), S(y2, y3), T (y1, y2, y3)

Q2(y1, y2, y3) :−R(y1, y2), S(x, y3), T (y1, x, y3)

Q3(y1, y2, y3) :−R(y1, y2), S(x, y3), T (y1, y2, x)

Observe that Q1 has level-1 head domination, Q2 has level-
2 head domination, and Q3 has no head domination. From
Theorem 5.8 we then conclude the following. First, the prob-
lem MinVSE〈Q1〉 is solvable in polynomial time. Second,
MinVSE〈Q2〉 is NP-hard but 2-approximable in polynomial
time; moreover, FreeVSE〈Q2〉 is solvable in polynomial
time. Third, the problem FreeVSE〈Q3〉 is NP-complete,
and hence, MinVSE〈Q3〉 cannot be approximated in poly-
nomial time for any finite factor, unless P = NP; more-
over, these results hold already for the single-tuple variants:
FreeVSE1〈Q3〉 and MinVSE1〈Q3〉.

5.4 Bounded Deletion
We now consider the complexity of MinVSEc〈Q〉, and

give an immediate corollary of Theorem 5.2: in the case
of head domination, MinVSEc〈Q〉 is solvable in polynomial
time, and is even FPT for the parameter c. Recall that FPT
stands for fixed-parameter tractability [12], which means that
when a parameter c is involved, the running time is bounded
by a function of the form f(c) · p(n), where f is a function
and p is a polynomial over the size n of the input. Hence,
this corollary extends the positive result of Theorem 4.6 for
MinVSEc〈Q〉 from c = 1 to an arbitrary c.

Corollary 5.10. If Q is an sjf-CQ with head domina-
tion and c is a natural number, then MinVSEc〈Q〉 is solv-
able (optimally) in polynomial time, and is even FPT for
the parameter c.

Proof. When calling ToFcsHit〈Q〉(I, A) with |A| = c,
the generated instance of FcsUVC〈k〉 has a set C with |C| ≤
c, where each member s ∈ C is of a constant size (i.e.,
k if Q has level-k head domination). But this instance
of FcsUVC〈k〉 has a straightforward polynomial-time so-
lution: consider every possible set H ′ obtained by selecting
one member of each set in C, compute each |H ′ u D|, and
then select as H the H ′ with a minimal |H ′ u D|. Observe
that, since k is fixed, the number of considered sets H ′ is
bounded by a function of c (regardless of I and A), and
hence, we get that the problem is FPT.

Combining Theorem 4.6 and Corollary 5.10, we get the
following.

Theorem 5.11. Theorem 4.6 holds true for every c ∈ N
(not just c = 1).

Table 1 summarizes the complexity results of Theorems 5.8
and 5.11. Each entry corresponds to a problem (row) and
a class of sjf-CQs (column). In the second and fifth rows,
“PTime” refers to k-approximation, while “NP-hard” refers
to every finite (constant or function) approximation.

6. EXTENSIONS
In this section we discuss two extensions of our complexity

results. In the first extension we study the maximization
variants of our problems, and in the second we consider the
effect of functional dependencies.

6.1 Maximizing the View
In this section, we consider a deletion-propagation prob-

lem dual to MinVSE〈Q〉, namely, maximizing the remain-
ing view Q(J) rather than minimizing the side effect. Of
course, in terms of seeking optimal solutions these problems
are identical. However, in the case of a single-tuple dele-
tion, the two problems have different complexities in terms
of approximation [17].

Formally, we consider the problem MaxView〈Q〉 that has
the same input as MinVSE〈Q〉, namely I and A, except
that the goal is to find a solution J (i.e., J ⊆ I satisfying
Q(J) ∩ A = ∅) with a maximal |Q(J)|. In particular, given
a number (or numeric function) α ≥ 1, a solution J is α-
optimal if |Q(J)| ≥ |Q(K)|/α for all solutions K. For a
natural number c, the problem MaxViewc〈Q〉 is the same as
MaxView〈Q〉, except that the input is restricted to |A| ≤ c.

Let Q be a CQ. For a natural number h, we say that Q
has h-coverage if Q has h atoms ϕ1, . . . , ϕh that cover all the
head variables, that is, Varh(Q) = ∪h

i=1Varh(ϕi). Kimelfled
et al. [17] proved the following.

Proposition 6.1. [17] If Q is an sjf-CQ with h-coverage,
then one can find in polynomial time a solution J such that
|Q(J)| ≥ (|Q(I)| − 1)/h. In particular, MaxView1〈Q〉 is
h-approximable in polynomial time.

The question we explore here is whether Proposition 6.1
extends to MaxView〈Q〉 and to MaxViewc〈Q〉. In the
reminder of this section we address the complexity aspect
this question and show the following.

• Under a fairly general assumption on the sjf-CQ Q (in
addition to a reasonable complexity assumption), it is
intractable to approximate MaxView〈Q〉 within any
constant factor (Section 6.1.1).

• If Q is an sjf-CQ with h-coverage, then MaxViewc〈Q〉
is (almost) h-approximable in polynomial time (Sec-
tion 6.1.2).

But first, a complexity-independent question is whether
there always exists a solution that retains at least 1/h of
the non-deleted answers, or even any constant factor thereof.
The following example shows a negative answer.

Example 6.2. Consider the CQ Q×2 defined in (2), and
let I× be an instance over schema(Q×2), such that each of

1565

the relations R1 and R2 contains the tuples consisting of
the constants 1, . . . , n. Then Q×2 (I×) is the set {1, . . . , n}×
{1, . . . , n}. Now suppose that A is the set of all pairs (i, j) ∈
Q×2 (I×) such that i 6= j. Then there are n2 − n answers to
delete and n remaining answers. Now, let J be a solution.
Then J cannot contain any R1(i) and R2(j) with i 6= j, and
hence, Q×2 (J) contains at most one answer. In particular,
at most 1/n of the non-deleted answers can survive in any
solution.

6.1.1 Hardness of Approximation
The next theorem states a general condition (though not a

dichotomy) on an sjf-CQ Q, such that MaxView〈Q〉 (with-
out any restriction on |A|) does not have a constant-factor
approximation in polynomial time, under reasonable (yet
somewhat non-standard) complexity assumptions. The con-
dition is that Q has two head variables that are not atomic
neighbors, where two variables y1 and y2 are atomic neigh-
bors if some atom of Q contains both y1 and y2. The com-
plexity assumptions are due to Ambühl et al. [1] whose result
we use to prove our theorem.

Theorem 6.3. Let Q be an sjf-CQ with a pair of head
variables that are not atomic neighbors. Moreover, assume
that for some ε > 0, SAT does not have a probabilistic algo-
rithm that decides in O(2nε) time whether a given instance
of size n is satisfiable. Then no (randomized) polynomial-
time algorithm approximates MaxView〈Q〉 within any con-
stant factor.

Next, we prove Theorem 6.3. The simplest example of
an sjf-CQ with a pair of head variables that are not atomic
neighbors is Q×2 , and we begin by proving the theorem for
that CQ.

Lemma 6.4. The following hold.

1. MaxView〈Q×2 〉 (hence, MinVSE〈Q×2 〉) is NP-hard.

2. Theorem 6.3 is true for Q = Q×2 .

Proof. We will show that MaxView〈Q×2 〉 is actually the
maximum edge biclique problem, which in turn is the fol-
lowing problem: given a bipartite graph G, find a complete
bipartite subgraph (biclique) of G with a maximal number
of edges. Note that in a biclique of the number of edges is
simply the product of the sizes of the two sides. We encode
this problem as MaxView〈Q×2 〉, as follows. Suppose that
the input consists of a bipartite graph G = (V1, V2, E). In
the instance I, the relations R1 and R2 contain the nodes of
V1 and V2 (as unary tuples), respectively. The set A contains
every non-edge (v1, v2) ∈ V1×V2. Observe that a solution J
necessarily induces a biclique BJ ; moreover, Q×2 (J) is pre-
cisely the set of edges in BJ . The other direction is also
true: every biclique B represents a solution JB such that
Q×2 (JB) consists of the edges of B.

Peeters [23] proved that maximum edge biclique is NP-
hard; hence, we get Part 1. Ambühl et al. [1] showed in-
approximability by any constant factor for maximum edge
biclique, under the complexity assumption of Theorem 6.3;
consequently, we get Part 2.

We can now prove Theorem 6.3.

Proof. (Theorem 6.3) We show a fairly straightforward
approximation-preserving reduction from MaxView〈Q×2 〉 to

MaxView〈Q〉. Let I× and A× be input for MaxView〈Q×2 〉.
We construct the input I and A for MaxView〈Q〉, as fol-
lows. Let y1 and y2 be head variables of Q that are not
atomic neighbors. For each pair (a1, a2) ∈ Q×2 (I×), we de-
fine the mapping λa1,a2 : Var(Q)→ Const, as follows.

λa1,a2(z) =


a1 if z = y1;

a2 if z = y2;

c otherwise.

Next, for each (a1, a2) ∈ Q×2 (I×) and atom ϕ of Q we add
to I every fact of the form λa1,a2(ϕ). We also add to A the
tuple that is obtained from y by applying λa1,a2 . This com-
pletes the reduction, and it is straightforward to show that
this reduction is indeed approximation preserving (building
on the fact that y1 and y2 are not atomic neighbors). In
particular, for each solution J× for I× and A× we can con-
struct a solution J for I and A with |Q(J)| = |Q×2 (J×)| and
vice versa.

Theorem 5.8 states that MaxView〈Q〉 is NP-hard if Q
has no level-1 head domination. It is known that a constant
lower bound (in addition to a constant upper bound) exists
on the polynomial-time approximability of MaxView1〈Q〉
in case Q has no head domination (see Comment 2.2). But it
remains open whether MaxView〈Q〉 has a constant-factor
approximation for any sjf-CQs Q without level-1 head dom-
ination, such that Q is not among those of Theorem 6.3.

6.1.2 Approximation for Bounded Deletion
In this section we consider the complexity of approximat-

ing MaxViewc〈Q〉. In that case, one can delete the unde-
sired answers one by one and, by applying Proposition 6.1,
still get a constant-factor approximation. Hence, we get the
following corollary.

Corollary 6.5. If Q is an sjf-CQ with h-coverage, then
MaxViewc〈Q〉 is hc-approximable in polynomial time.

In the remainder of this section, we reduce the approxi-
mation factor hc of Corollary 6.5 to almost h (specifically,
h + ε for all ε > 0) by using further insights into the prob-
lem MaxViewc〈Q〉. We begin by describing a particularly
naive algorithm for MaxView〈Q〉, which we call the unire-
lation algorithm, and which extends the algorithm originally
proposed by Buneman et al. [5].

Consider an sjf-CQ Q(y), and let I and A be input for
MaxView〈Q〉. For each atom ϕ of Q, the solution Jϕ for I
and A is obtained by removing from the relation RI

ϕ every
fact that is Q-consistent with at least one of the tuples in
A. Recall that a fact f of RI

ϕ is Q-consistent with a tu-
ple a ∈ A if there is some mapping µ for Var(Q), where µ
is not necessarily a match for Q in I, such that µ(ϕ) = f
and µ(y) = a. The unirelation algorithm simply constructs
the solution Jϕ for each ϕ ∈ atoms(Q), and returns the
best Jϕ, that is, the one with the maximal |Q(Jϕ)|. Observe
that the unirelation algorithm is indeed highly naive, since it
does not even consider simultaneous deletions of facts from
different relations. Moreover, this algorithm does not guar-
antee any multiplicative-factor approximation; as evidence,
observe that the solution J it returns for the input I× and
A of MaxView〈Q×2 〉 that we defined in Example 6.2 is such
that Q×2 (J) = ∅. However, this algorithm does provide an
approximation guarantee that we will use for analyzing the

1566

complexity of approximating MaxViewc〈Q〉. This guaran-
tee is stated by the following lemma.

Lemma 6.6. Let Q be an sjf-CQ with h-coverage. Let I
and A be input for MaxView〈Q〉. The unirelation algorithm
returns a solution J with

|Q(J)| ≥ |Q(I)|/h− |A|h .
Proof. Suppose that the atoms ϕ1, . . . , ϕh cover the head

variables of Q. For i = 1, . . . , h, let Ci be the set of tu-
ples b in Q(I) such that for some a ∈ A, the projection
of b to Varh(ϕi) is the same as that of a. Let C be the
set C1 ∩ · · · ∩ Ch. An easy observation is that |C| ≤ |A|h,
since ϕ1, . . . , ϕh cover Varh(Q). By definition, each tuple
a ∈ Q(I) \ C is excluded from some Ci. Now, a simple
counting argument implies that there is some j such that
Cj excludes at least |Q(I) \C|/h answers. The solution Jϕj
is such that Q(Jϕj) contains all those excluded answers, and

hence, |Q(J)| ≥ |Q(I)|/h− |A|h. So, we get the correctness
of the lemma, since Jϕj is of the solutions considered by the
unirelation algorithm.

The next lemma implies that MaxView〈Q〉 can be solved
optimally, in polynomial time, when Q(I) is of a bounded
cardinality.

Lemma 6.7. Let Q be an sjf-CQ, and let d be a fixed num-
ber. Given the input I and A for MaxView〈Q〉, if we as-
sume that |Q(I) \ A| ≤ d, then MaxView〈Q〉 can be solved
in polynomial time.

Proof. Let D = Q(I) \ A. If J is any solution, then
Q(J) ⊆ D. For each a ∈ Q(J), fix an arbitrary match µa

for Q in J , such that µa(y) = a. Let J ′ be the subinstance
of J that consists of all the facts µa(ϕ) where a ∈ Q(J)
and ϕ ∈ atoms(Q). Note that Q(J) = Q(J ′). Moreover,
observe that |Q(J)| ≤ d · |atoms(Q)|. It thus suffices to
search for an optimal solution among all the subinstances of
I of a cardinality bounded by the fixed number d·|atoms(Q)|.
And of course, searching all those subinstances can be done
in polynomial time.

We can now prove our upper bound for approximating
MaxViewc〈Q〉.

Theorem 6.8. Let Q be an sjf-CQ with h-coverage, and
let ε > 0. The problem MaxViewc〈Q〉 is (h+ε)-approximable
in polynomial time.

Proof. Let I and A be input for MaxViewc〈Q〉. We fix
a numeric function f(h, c, ε) that we determine later. Note
that f(h, c, ε) does not depend on the input I and A. In
particular, if |Q(I) \ A| has at most f(h, c, ε) answers, then
we apply Lemma 6.7 to get an optimal solution in polyno-
mial time. So assume that |Q(I) \ A| ≥ f(h, c, ε). We will
define f(h, c, ε) to be such that Lemma 6.6 gives a (h + ε)-
approximation. Specifically, we need the following to hold.

(h+ ε)(|Q(I)|/h− |A|h) ≥ |Q(I) \A|

Hence, it suffices to require the following:

|Q(I)|
(
h+ ε

h
− 1

)
≥ |A|+ (h+ ε)|A|h

Then, using the assumption that |A| ≤ c we get that it
suffices to choose f(h, c, ε) as:

f(h, c, ε) = 2h(h+ ε)ch/ε

That completes the proof.

6.2 Functional Dependencies
In this section, we generalize the complexity results of

Section 5 to incorporate functional dependencies.

6.2.1 Notation
We begin with some notation. Recall that a schema is

a finite sequence R of relation symbols. We extend the
definition of a schema to include functional dependencies.
A functional dependency (over R), abbreviated fd, has the
form Ri : A→ B, where Ri ∈ R and A and B are subsets of
{1, . . . , arity(Ri)}. So, in this section a schema has the form
S = (R,∆), where ∆ is a set of functional dependencies.
An instance over S satisfies every fd in ∆, which means that
for every fd Ri : A → B in ∆ and tuples t and u in RI

i , if
t and u agree on (i.e., have the same values for) the indices
of A, then they also agree on the indices of B.

Let S = (R,∆) be a schema, and let Q be a CQ over S. If
µ is an assignment for Q and Z is a subset of Var(Q), then
µ[Z] denotes the restriction of µ to the variables in Z (i.e., Z
is the domain of µ[Z], and µ[Z](z) = µ(z) for all z ∈ Z). Let
Z1 and Z2 be subsets of Var(Q). We denote by Q : Z1 → Z2

the functional dependency stating that for every instance I
over S and matches µ, µ′ ∈M(Q, I) we have:

µ[Z1] = µ′[Z1]⇒ µ[Z2] = µ′[Z2]

Note that when ∆ is empty, Q : Z1 → Z2 is equivalent
to Z1 ⊇ Z2. We may write Q : Z → z instead of Q :
Z → {z}. The image of Z, denoted img(Z), is the set
of all the variables z ∈ Var(Q) with Q : Z → z. Note
that Z ⊆ img(Z). For ϕ ∈ atoms(Q), we use img(ϕ) as a
shorthand notation of img(Var(ϕ)).

Example 6.9. The schema S in our running example for
this section has 4 relation symbols, ternary R, binary S,
quaternary T and binary U , and the following fds:

R : 1→ 2 R : 2→ 3 T : 1→ 2 T : {2, 3} → 4

Let Q0 be the following sjf-CQ:

Q0(y1, y2, y3) :−R(x1, y1, x3), S(x1, x2),

T (x2, y2, x3, x4), U(x4, y3)

We have Q0 : {x1, x2} → y1 due to the fd R : 1 → 2. As
a result, we also have Q0 : {x1, x2} → x3 due to the fd
R : 2 → 3. Let ϕS be the atom S(x1, x2). The reader can
verify that img(ϕS) = {x1, x2, y1, x3, y2, x4}.

Functional head domination [16] is a generalization of head
domination that incorporates functional dependencies. Here
we refine that generalized definition with the corresponding
level-k parameterization.

Definition 6.10. (Functional Head Domination) A
CQ Q over a schema S has functional head-domination if
there is a subset Φ of atoms(Q) such that for every con-
nected component P of G∃(Q) there is ϕ ∈ Φ with Varh(P) ⊆
img(ϕ); in that case, Q has level-k functional head domina-
tion if k is the minimal cardinality of such a subset Φ.

Example 6.11. We continue our running example over
the schema S and sjf-CQ Q0 defined in Example 6.9. The
graph G∃(Q0) is shown in the top of Figure 4. Observe
that G∃(Q0) has one connected component, with the head

1567

G∃(Q+
0)

T (x2, y2, x3, x4)

U(x4, y3)

S(x1, x2)

R(x1, y1, x3)

U(x4, y3)

S(x1, x2)

R(x1, y1, x3)

T (x2, y2, x3, x4)G∃(Q0)

Figure 4: G∃(Q0) for the CQ Q0 of Example 6.9 (top),
and G∃(Q+

0) for the CQ Q+
0 of Example 6.12 (bottom)

variables y1, y2 and y3. The reader can verify that no atom
ϕ of Q0 satisfies {y1, y2, y3} ⊆ img(ϕ). Therefore, Q0 does
not have functional head domination.

For a CQ Q over a schema S, we denote by Q+ the
CQ that is obtained by appending to the head of Q (in
some order) all the existential variables that are function-
ally determined by the head variables; so, the set Varh(Q

+)
of head variables of Q+ is not Varh(Q), but rather the set
img(Varh(Q)).

Example 6.12. For the schema S and sjf-CQ Q0 of Ex-
ample 6.9, we have:

img({y1, y2, y3}) = {y1, y2, y3, x3, x4}

Therefore, the CQ Q+
0 is the same as Q0, except that the

head of Q+
0 is Q+

0 (y1, y2, y3, x3, x4). The graph G∃(Q+
0) is

shown in the middle part of Figure 4. Observe that there is
no edge between the atomsR(x1, y1, x3) and T (x2, y2, x3, x4)
since x3 is now a head variable. Similarly, there is no edge
between T (x2, y2, x3, x4) and U(x4, y3) since x4 is a head
variable. As shown in the figure, G∃(Q+

0) has two con-
nected components, one with the set of head variables Y1 =
{y1, y2, x3, x4}, and one with the set of head variables Y2 =
{x4, y3}. Let ϕS and ϕU be the atoms S(x1, x2) and U(x4, y3),
respectively. Then we have Y1 ⊆ img(ϕS) and Y2 ⊆ img(ϕU).
Therefore, Q+

0 has functional head domination. And since
Q+

0 does not have an atom ϕ with all the head variables
in img(ϕ) (hence Q+

0 does not have level-1 functional head
domination), we conclude that Q+

0 has level-2 functional
head domination.

6.2.2 Generalization
As we will see, functional dependencies affect the com-

plexity of the problems we discussed in Section 5. We pa-
rameterize these problems with the schema S and denote
them by MinVSE〈S, Q〉, MinVSEk〈S, Q〉, FreeVSE〈S, Q〉
and FreeVSEk〈S, Q〉. We may continue to avoid mention-
ing S in the case where there are no functional dependencies.
Kimelfeld [16] generalized Theorem 4.6 to incorporate func-
tional dependencies.

Theorem 6.13. [16] Let S be a schema, and let Q be an
sjf-CQ over S.

1. If Q+ has functional head domination, then the prob-
lem MinVSE1〈S, Q〉 (hence, FreeVSE1〈S, Q〉) can be
solved in polynomial time.

2. If Q+ does not have functional head domination, then
FreeVSEc〈S, Q〉 is NP-complete (and, hence, approx-
imating MinVSEc〈S, Q〉 is NP-hard).

Comment 6.14. Theorem 6.13 is a weakening of the main
result of [16], similarly to the way Theorem 4.6 is a weak-
ening of the main theorem of [17] (see Comment 4.7).

Example 6.15. We continue our running example with
the sjf-CQ Q0 of Example 6.9. Recall from Example 6.12
that Q+

0 has functional head domination. Therefore, Theo-
rem 6.13 states that MinVSE1〈S, Q0〉 is solvable (optimally)
in polynomial time.

Note that Theorem 6.13 generalizes Theorem 4.6 by re-
placing “head domination” with “functional head domina-
tion” and “Q” with “Q+.” The next theorem similarly gen-
eralizes Theorems 5.11 and 5.8, showing that Table 1 gen-
eralizes to account for functional dependencies (up to the
needed replacement of terms).

Theorem 6.16. Let S be a schema, and let Q be an sjf-
CQ over S, and let c be a fixed natural number.

1. If Q+ has level-1 functional head domination, then
MinVSE〈S, Q〉 is solvable in polynomial time.

2. If Q+ has level-k functional head domination for k >
1, then MinVSE〈S, Q〉 is NP-hard but k-approximable
in polynomial time; moreover, FreeVSE〈S, Q〉 and
MinVSEc〈S, Q〉 are then solvable in polynomial time.

3. If Q+ does not have functional head domination, then
FreeVSE1〈S, Q〉 is NP-complete; hence, it is NP-hard
to approximate MinVSE1〈S, Q〉 by any finite factor.

Example 6.17. To complete our running example, recall
from Example 6.15 that MinVSE1〈S, Q0〉 is solvable in poly-
nomial time. Recall from Example 6.12 that Q+

0 has level-2
functional head domination. Then Part 2 of Theorem 6.16
states that MinVSE〈S, Q〉 is NP-hard, but 2-approximable
in polynomial time. It also says that FreeVSE〈S, Q0〉 and
MinVSEc〈S, Q0〉 are both solvable in polynomial time (since
Q+

0 has functional head domination).

The proofs of parts 1 and 3 of Theorem 6.16 are simi-
lar to those we described for their correspondents in Theo-
rems 5.11 and 5.8. The more involved proof is for part 2,
and specifically the generalization of Lemma 5.6 to incorpo-
rate fds. That proof, which we do not provide here for lack
of space, will appear in the full version of this paper.

7. CONCLUSIONS AND DISCUSSION
We studied the computational complexity of deletion prop-

agation when the view is defined by an sjf-CQ, and multiple
tuples are to be deleted. In particular, we investigated the
problem MinVSE〈Q〉 and showed a trichotomy in complex-
ity, classifying the sjf-CQs into those where the problem is
in polynomial time, NP-hard but approximable, and inap-
proximable. We extended these results to MinVSEc〈Q〉,
where at most c tuples are deleted, and generalized them to
accommodate functional dependencies. We also studied the
problems MaxView〈Q〉 and MaxViewc〈Q〉, where the goal
is to approximate an optimal solution by aiming to maxi-
mize the remaining view (rather than to minimize the side
effect). There, we showed that known results on the approx-
imability of MaxView1〈Q〉 extend to MaxViewc〈Q〉, but
not to MaxView〈Q〉; the latter problem is inapproximable
by any constant factor (under the complexity assumption

1568

of Ambühl et al. [1]) whenever some pair of head variables
does not possess atomic neighboring.

Many questions regarding the complexity of deletion prop-
agation remain unanswered. Does any of the known di-
chotomy or trichotomy results, for bounded or unbounded
number of tuples, extend to CQs with self joins? It is known
that head domination is not a sufficient condition for the
tractability of finding an optimal solution if self joins are
allowed [17]. Can MaxViewc〈Q〉 be approximated better
than shown here? Can our established inapproximability
for MaxView〈Q〉 be generalized to a classification over the
entire class of (sjf-)CQs Q? How do our results extend to
handle multiple views (i.e., deleted tuples come from mul-
tiple views and/or the goal is to simultaneously minimize
multiple views); we note that our reduction to focused hit-
ting set extends to multiple views, but it not at all clear how
and whether the trichotomy so extends. Another question
relates to privacy: if the source relations contain sensitive
information that is hidden from the users of the view, how
do we avoid leaking that information through the side effect?

The work reported in this paper relates to the concept of
causality in databases that has lately gained interest in the
database research community [20,21,24]. In fact, the debug-
ging motivation from the beginning of the introduction can
be viewed as a special case thereof. In the work on causality,
the goal is to detect source facts that hold high responsibil-
ity for the membership of given answers in the view. The
facts deleted in an (approximately) optimal solution of our
setting could serve as candidates of such owners of respon-
sibility. Validity is according to the semantics of Meliou
et al. [20]—eliminating the facts causes the elimination of
the answers; but here, the extent of responsibility is based
on the focus on the answers. As an example, suppose that
“Alin lives in USA” is the result of joining two facts: “Alin
lives in CA” and “CA is in USA.” The former fact would be
assigned a higher responsibility, since eliminating the latter
would incur a larger side effect. This notion of causality is
different from the one of Meliou et al. [20] that, interestingly,
corresponds to deletion propagation with a minimal source
side effect (and, in particular, assigns the same responsibility
to both facts in the above example).

Our complexity results in this paper add to the dichotomy
results established by the theoretical database research. Be-
sides the ones on deletion propagation we referenced in the
body of this paper, various dichotomies in the complex-
ity of operations involving CQs (and sjf-CQs) have been
proved. Dalvi and Suciu [10,11] studied query evaluation on
probabilistic databases with independent tuples, and classi-
fied the CQs into those that can be evaluated in polyno-
mial time and those that are #P-hard. Meliou et al. [22]
showed a dichotomy (polynomial time vs. NP-completeness)
in the complexity of computing the degree of responsibil-
ity of source facts to the tuples of an sjf-CQ. Kolaitis and
Pema [18] proved a dichotomy (polynomial time vs. coNP-
hardness) in the complexity of computing the consistent an-
swers of a Boolean sjf-CQ with exactly two atoms. Finally,
Maslowski and Wijsen [19] showed a dichotomy (polyno-
mial time vs. #P-hardness) in the complexity of counting
the database repairs that satisfy a Boolean sjf-CQ.

8. REFERENCES
[1] C. Ambühl, M. Mastrolilli, and O. Svensson. Inapproximability

results for maximum edge biclique, minimum linear
arrangement, and sparsest cut. SIAM J. Comput.,
40(2):567–596, 2011.

[2] F. Bancilhon and N. Spyratos. Update semantics of relational
views. ACM Trans. Database Syst., 6(4):557–575, 1981.

[3] D. M. J. Barbosa, J. Cretin, N. Foster, M. Greenberg, and
B. C. Pierce. Matching lenses: alignment and view update. In
ICFP, pages 193–204. ACM, 2010.

[4] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational
lenses: a language for updatable views. In PODS, pages
338–347. ACM, 2006.

[5] P. Buneman, S. Khanna, and W. C. Tan. On propagation of
deletions and annotations through views. In PODS, pages
150–158, 2002.

[6] G. Cong, W. Fan, and F. Geerts. Annotation propagation
revisited for key preserving views. In CIKM, pages 632–641,
2006.

[7] G. Cong, W. Fan, F. Geerts, J. Li, and J. Luo. On the
complexity of view update analysis and its application to
annotation propagation. IEEE Trans. Knowl. Data Eng.,
24(3):506–519, 2012.

[8] S. S. Cosmadakis and C. H. Papadimitriou. Updates of
relational views. J. ACM, 31(4):742–760, 1984.

[9] Y. Cui and J. Widom. Run-time translation of view tuple
deletions using data lineage. Technical report, Stanford
University, 2001.
http://dbpubs.stanford.edu:8090/pub/2001-24.

[10] N. N. Dalvi, K. Schnaitter, and D. Suciu. Computing query
probability with incidence algebras. In PODS, pages 203–214,
2010.

[11] N. N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. VLDB J., 16(4):523–544, 2007.

[12] R. G. Downey and M. R. Fellows. Parameterized Complexity.
Monographs in Computer Science. Springer, 1999.

[13] R. Fagin, J. D. Ullman, and M. Y. Vardi. On the semantics of
updates in databases. In PODS, pages 352–365. ACM, 1983.

[14] V. Guruswami and R. Saket. On the inapproximability of
vertex cover on k-partite k-uniform hypergraphs. In ICALP
(1), volume 6198 of Lecture Notes in Computer Science, pages
360–371. Springer, 2010.

[15] A. M. Keller. Algorithms for translating view updates to
database updates for views involving selections, projections,
and joins. In PODS, pages 154–163. ACM, 1985.

[16] B. Kimelfeld. A dichotomy in the complexity of deletion
propagation with functional dependencies. In PODS, pages
191–202. ACM, 2012.

[17] B. Kimelfeld, J. Vondrák, and R. Williams. Maximizing
conjunctive views in deletion propagation. ACM Trans.
Database Syst., 37(4):24, 2012.

[18] P. G. Kolaitis and E. Pema. A dichotomy in the complexity of
consistent query answering for queries with two atoms. In
press, 2011.

[19] D. Maslowski and J. Wijsen. On counting database repairs. In
LID, pages 15–22, 2011.

[20] A. Meliou, W. Gatterbauer, J. Y. Halpern, C. Koch, K. F.
Moore, and D. Suciu. Causality in databases. IEEE Data Eng.
Bull., 33(3):59–67, 2010.

[21] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The
complexity of causality and responsibility for query answers
and non-answers. PVLDB, 4(1):34–45, 2010.

[22] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The
complexity of causality and responsibility for query answers
and non-answers. PVLDB, 4(1):34–45, 2010.

[23] R. Peeters. The maximum edge biclique problem is
np-complete. Discrete Applied Mathematics, 131(3):651–654,
2003.

[24] B. Qin, S. Wang, and X. Du. Efficient responsibility analysis
for query answers. In Database Systems for Advanced
Applications, volume 7825 of LNCS, pages 239–253. Springer,
2013.

[25] V. V. Vazirani. Approximation Algorithms. Springer, 2003.

1569

