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ABSTRACT
Social contagion depicts a process of information (e.g., fads, opin-
ions, news) diffusion in the online social networks. A recent study
reports that in a social contagion process the probability of conta-
gion is tightly controlled by the number of connected components
in an individual’s neighborhood. Such a number is termed struc-
tural diversity of an individual and it is shown to be a key predictor
in the social contagion process. Based on this, a fundamental issue
in a social network is to find top-k users with the highest structural
diversities. In this paper, we, for the first time, study the top-k
structural diversity search problem in a large network. Specifi-
cally, we develop an effective upper bound of structural diversity
for pruning the search space. The upper bound can be incremen-
tally refined in the search process. Based on such upper bound,
we propose an efficient framework for top-k structural diversity
search. To further speed up the structural diversity evaluation in
the search process, several carefully devised heuristic search strate-
gies are proposed. Extensive experimental studies are conducted
in 13 real-world large networks, and the results demonstrate the
efficiency and effectiveness of the proposed methods.

1. INTRODUCTION
Recently, online social networks such as Facebook, Twitter and

LinkedIn have attracted growing attention in both industry and re-
search communities. Online social networks are becoming more
and more important medias for users to communicate with each
other and to spread information in the real world [14]. In an online
social network, the phenomenon of information diffusion, such as
diffusion of fads, political opinions, and the adoption of new tech-
niques, has been termed social contagion [22], which is a similar
process as epidemic diseases.

Traditionally, the models of social contagion are based on analo-
gies with biological contagion, where the probability that a user is
influenced by the contagion grows monotonically with the num-
ber of his or her friends who have been affected already [9, 3,
24]. However, such models have recently been challenged [19,
22], as the social contagion process is typically more complex and
the social decision can depend more subtly on the network struc-
ture. Ugander et al. [22] study two social contagion processes in
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Figure 1: A running example

Facebook: the process that a user joins Facebook in response to an
invitation email from an existing Facebook user, and the process
that a user becomes an engaged user after joining. They find that
the probability of contagion is tightly controlled by the number of
connected components in a user’s neighborhood, rather than by the
number of friends in the neighborhood. A connected component
represents a distinct social context of a user, and the multiplicity of
social contexts is termed structural diversity. A user is much more
likely to join Facebook if he or she has a larger structural diversity,
i.e., a larger number of distinct social contexts. This finding re-
veals that the structural diversity of a user is an important factor in
the social contagion process. As suggested in [22], the analysis of
structural diversity in a social network can be beneficial to a wide
range of application domains, for example, political campaign, the
promotion of health practices, marketing, and so on.

Among all of these applications, a fundamental problem is to
find the individuals in a social network with high structural diver-
sity. Given a social network, we study a problem of finding top-k
individuals with the highest structural diversity in this paper. Fol-
lowing the definition in [22], the structural diversity of a node u
is the number of connected components in a subgraph induced by
u’s immediate neighbors. Take the network in Figure 1 (a) as an
example. The structural diversity of vertex f is 2, as the induced
subgraph by f ’s neighbors shown in Figure 1 (b) has two connected
components.

To find the top-k vertices with the highest structural diversity,
a naive method is to compute the structural diversity for all the
vertices and then return the top-k vertices. Clearly, such a naive
method is too expensive. To efficiently find the top-k vertices, the
idea of traditional top-k query processing techniques [12] can be
used, which finds the top-k answers according to some heuristic
search order, and prunes the search space based on some upper
bound score. Following this framework, in our problem, we have
to address two key issues: (1) how to develop an effective upper
bound for the structural diversity of a vertex, and (2) how to devise
a heuristic search order in the computation.

In this paper, we propose several efficient and effective tech-
niques to address these issues. We find that for two vertices con-
nected by an edge, some structural information of them can be
shared. For example, in Figure 1 (b), vertex e forms a compo-
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nent of size 1 in f ’s neighborhood. From this fact, we can infer
that vertex f also forms a component of size 1 in e’s neighbor-
hood. Based on this important observation, the structural diversity
computation for different vertices can also be possibly shared. To
achieve this, we design a Union-Find-Isolate data structure to keep
track of the known structural information of a vertex so as to avoid
the computation of structural diversity for every vertex. A novel
upper bound of the structural diversity is developed for pruning un-
promising vertices effectively. Interestingly, the upper bound can
be incrementally refined in the search process to become increas-
ingly tighter. The main contributions are summarized as follows.

• We develop a novel Top-k-search framework to tackle the
top-k structural diversity search problem. We design a Union-
Find-Isolate data structure to keep track of the known struc-
tural information during the computation, and an effective
upper bound for pruning.

• We devise a heuristic search order to traverse the components
in a vertex’s neighborhood. According to this search order,
we propose a novel A∗-search-based algorithm to compute
the structural diversity of a vertex.

• We also design efficient techniques to handle frequent up-
dates in dynamic networks and maintain the top-k results.
We use the Union-Find-Isolate structure and a spanning tree
structure to efficiently handle edge insertions and deletions
respectively.

• We conduct extensive experimental studies on large real net-
works to show the efficiency of our proposed methods.

The rest of this paper is organized as follows. We formulate the
top-k structural diversity search problem in Section 2. We present a
simple degree-based algorithm in Section 3. A novel Top-k-search
framework is proposed in Section 4. We design two heuristic search
strategies in Section 5 and discuss update in dynamic networks in
Section 6. Extensive experimental results are reported in Section 7.
We discuss related work in Section 8 and conclude this paper in
Section 9.

2. PROBLEM STATEMENT
Consider an undirected and un-weighted graph G = (V, E) with

n = |V | vertices and m = |E| edges. Denote by N(v) the set of
neighbors of a vertex v, i.e., N(v) = {u ∈ V : (v, u) ∈ E},
and by d(v) = |N(v)| the degree of v. Let dmax be the maximum
degree of the vertices in G. Given a subset of vertices S ⊆ V ,
the induced subgraph of G by S is defined as GS = (VS , ES),
where VS = S and ES = {(v, u) : v, u ∈ S, (v, u) ∈ E}. The
neighborhood induced subgraph is defined as follows.

DEFINITION 1 (NEIGHBORHOOD INDUCED SUBGRAPH). For
a vertex v ∈ V , the neighborhood induced subgraph of v, denoted
by GN(v), is a subgraph of G induced by the vertex set N(v).

Consider a graph in Figure 1 (a). For vertex f , the set of neigh-
bors is N(f) = {a, e, g, i}. The neighborhood induced subgraph
of f is GN(f) = ({a, e, g, i}, {(a, g), (g, i)}), as shown in Figure
1 (b). We define the structural diversity of a vertex as follows.

DEFINITION 2 (STRUCTURAL DIVERSITY [22]). Given an in-
teger t where 1 ≤ t ≤ n, the structural diversity of vertex v ∈ V ,
denoted by score(v), is the number of connected components in
GN(v) whose size measured by the number of vertices is larger
than or equal to t. t is called the component size threshold.

GN(f) in Figure 1 (b) contains a size-1 connected component
{e} and a size-3 connected component {a, g, i}. If t = 1, then
score(f) = 2. Alternatively, if t = 2, score(f) = 1 as there

is only one component {a, g, i} whose size is no less than 2. We
define the top-k structural diversity search problem as follows.

Problem definition: Given a graph G and two integers k and t
where 1 ≤ k, t ≤ n, the goal of top-k structural diversity search is
to find a set of k vertices in G with the highest structural diversity
w.r.t. the component size threshold t.

Let us re-consider the example in Figure 1. Suppose that k = 1
and t = 1. Then, {e} is the answer, as e is the vertex with the high-
est structural diversity (score(e) = 3). It is important to note that
although we focus on the top-k structural diversity search, the pro-
posed techniques can also be easily extended to process the iceberg
query, which finds all vertices whose structural diversity is greater
than or equal to a pre-specified threshold. Unless otherwise spec-
ified, in the rest of this paper, we assume that a graph is stored in
the adjacency list representation. Each vertex is assigned a unique
ID. In addition, for convenience, we assume that m ∈ Ω(n), which
does not affect the complexity analysis of the proposed algorithms.
Similar assumption has been made in [15].

3. A SIMPLE DEGREE-BASED APPROACH
In this section, we present a simple degree-based algorithm for

top-k structural diversity search. We use a procedure bfs-search
to compute the structural diversity score(v) for a given vertex v.
It performs a breadth-first search in GN(v) to find connected com-
ponents and returns the number of components whose sizes are no
less than t. For brevity, the pseudocode of bfs-search is omitted.

Next we introduce a useful lemma which leads to a pruning strat-
egy in the degree-based algorithm.

LEMMA 1. For any vertex v in G, score(v) ≤ b d(v)
t c holds.

PROOF. We prove this lemma by contradiction. Suppose to the
contrary that score(v) > b d(v)

t c. By the definition of structural
diversity, GN(v) has b d(v)

t c + 1 or more components whose size
is greater than or equal to t. Then, the total number of vertices in
these components is ≥ (b d(v)

t c + 1) · t > d(v)
t
· t = d(v), which

contradicts to the fact that the number of vertices in GN(v) is d(v).
Hence, the lemma is established.

We denote b d(v)
t c by bound(v). Equipped with Lemma 1 and

the bfs-search procedure, we present the degree-based approach in
Algorithm 1, which computes the structural diversity of the vertices
in descending order of their degree. After initialization (lines 1-2),
Algorithm 1 sorts the vertices in descending order of their degree
(line 3). Then it iteratively finds the unvisited vertex v∗ with the
maximum degree, and calculates bound(v∗) (lines 5-6). If the an-
swer set S has k vertices and bound(v∗) ≤ minv∈S score(v), the
algorithm terminates (lines 7-8). The rationale is as follows. By
Lemma 1, we have score(v∗) ≤ bound(v∗) ≤ minv∈S score(v).
For any vertex w ∈ V with a smaller degree, we have score(w) ≤
bound(w) ≤ bound(v∗) ≤ minv∈S score(v). Therefore, we can
safely prune the remaining vertices and terminate. On the other
hand, if such conditions are not satisfied, then the algorithm com-
putes score(v∗) by invoking bfs-search, and checks whether v∗

should be added into the answer set S (lines 10-13). Finally, the
algorithm outputs S . The following example illustrates how Algo-
rithm 1 works.

EXAMPLE 1. Consider the graph in Figure 1 (a). Suppose that
k = 1 and t = 1. The running process on this graph is illustrated
in Figure 2. The sorted vertex list is c, a, b, f, h, i, d, e, g in de-
scending order of their degree. The algorithm computes the struc-
tural diversity of these vertices in turn, and terminates before com-
puting score(g). This is because minv∈S score(v) = score(e) =
3 and bound(g) = 3 ≤ minv∈S score(v). Therefore, Algorithm 1
can save one structural diversity computation.
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Algorithm 1 degree (G, k, t)
Input: G = (V, E), the top-k value k, the component size threshold t.
Output: Top-k search result S.

1: S ← ∅;
2: for v ∈ V do score(v) ← −1;
3: sort all vertices in the descending order of their degree;
4: while ∃v ∈ V s.t. score(v) = −1
5: v∗ ← arg maxv∈V, score(v)=−1 d(v);

6: bound(v∗) ← b d(v∗)
t
c;

7: if |S| = k and bound(v∗) ≤ minv∈S score(v) then
8: break;
9: score(v∗) ← bfs-search (G, t, v∗);

10: if |S| < k then S ← S ∪ {v∗};
11: else if score(v∗) > minv∈S score(v) then
12: u ← arg minv∈S score(v);
13: S ← (S − {u}) ∪ {v∗};
14: return S;
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Figure 2: Illustration of the degree algorithm

THEOREM 1. For 1 ≤ k ≤ n and 1 ≤ t ≤ n, Algorithm
1 performs top-k structural diversity search in O(

∑
v∈V (d(v))2)

time and O(m) space.

PROOF. The algorithm first sorts all vertices in O(n) time using
the bin-sort algorithm [8]. It has to calculate the structural diver-
sity for every vertex to answer a top-k query in the worst case.
Consider a vertex v. When the algorithm computes score(u) for
each neighbor u ∈ N(v), it has to scan the adjacency list of v in
O(d(v)) time. Since there are |N(v)| = d(v) neighbors, the total
cost for scanning v’s adjacency list is O((d(v))2). Thus, it takes
O(

∑
v∈V (d(v))2) time to calculate the structural diversities for all

vertices. In addition, one can maintain the top-k results in O(n)
time and O(n) space using a variant of bin-sort list. Put it all to-
gether, the time complexity of Algorithm 1 is O(

∑
v∈V (d(v))2).

For the space complexity, the graph storage takes O(n+m) space,
and S takes O(n) space. Thus, the space complexity of Algorithm
1 is O(n + m) ⊆ O(m).

REMARK 1. The worst-case time complexity of Algorithm 1 is
bounded by O(

∑
v∈V d(v) · dmax) = O(mdmax) ⊆ O(mn).

4. A NOVEL TOP-K SEARCH FRAMEWORK
The degree algorithm is not very efficient for top-k search be-

cause the degree-based upper bound in Lemma 1 is loose. To
improve the efficiency, the key issue is to develop a tighter upper
bound. To this end, in this section, we propose a novel framework
with a tighter pruning bound and a new algorithm called bound-
search to compute the structural diversity score. Before introduc-
ing the framework, we present two structural properties in a graph,
which are very useful for developing the new bound.

4.1 Two Structural Properties
PROPERTY 1. For any vertex v ∈ V , if a vertex u ∈ N(v) and

u forms a size-1 component in GN(v), then v also forms a size-1
component in GN(u).

PROOF. We prove it by contradiction. Suppose that in GN(u),
v is connected with another vertex w in a component. Then we can

infer that w ∈ N(u) and w ∈ N(v). As u and w are connected
and both are in N(v), u and w form a size-2 component in GN(v),
which contradicts to the fact that u forms a size-1 component in
GN(v). This completes the proof.

As an example, in Figure 1 (b), vertex e forms a size-1 component
in GN(f). Symmetrically, vertex f also forms a size-1 component
in GN(e).

PROPERTY 2. If three vertices u, v, w form a triangle in G,
then we have the sets {u, v}, {v, w}, and {u, w} belong to the
same component in GN(w), GN(u), and GN(v) respectively.

PROOF. This property can be easily derived by definition, thus
we omit the proof for brevity.

For instance, in Figure 1 (a), vertices a, f, g form a triangle in G.
We can observe that {a, g} belong to a connected component in
GN(f) in Figure 1 (b). Similarly, {a, f} ({f, g}) belong to a con-
nected component in GN(g) (GN(a)).

Based on these two properties, we can save a lot of computa-
tional costs in computing the structural diversity scores. For exam-
ple, if we find that vertex u forms a size-1 component in GN(v),
then we know that v also forms a size-1 component in GN(u) by
Property 1. Thus, when we compute score(u), we do not need to
perform a breadth-first search from v, because we already know v
forms a size-1 component in GN(u). If we can efficiently record
such structural information of v’s neighbors when we compute
score(v), we can save a lot of computational costs. More impor-
tantly, such structural information can help us to get a tighter upper
bound of the structural diversity. In the following subsection, we
shall introduce a modified disjoint-set forest data structure to main-
tain such structural information efficiently.

4.2 Disjoint-Set Forest Data Structure
We modify the classical disjoint-set forest data structure and the

Union-Find algorithm [8] to maintain the structural information for
each vertex efficiently. The modified structure consists of four op-
erations: Make-Forest, Find-Set, Union, and Isolate. Compared
to the classical disjoint-set forest data structure, the new structure
includes an additional operation Isolate which is used to record the
structural information described in Property 1, i.e., a vertex forms
a size-1 component. Thus the modified structure is called Union-
Find-Isolate. Algorithm 2 describes the four operations.

Make-Forest : For each vertex v ∈ V , we create a disjoint-set
forest structure, denoted as g[v], for its neighbors N(v) using the
Make-Forest (v) procedure in Algorithm 2. Specifically, For each
u ∈ N(v), we build a single-node tree T [u] with three fields: par-
ent, rank and count. The parent is initialized to be u itself, the rank
is set to 0 and the count is set to 1, as there is only one vertex u
in the tree. In addition, we also create a virtual node T [0] which is
used to collect all size-1 components in GN(v). The parent of T [0]
is set to 0 and the count is set to 0 because there is no size-1 com-
ponent identified yet. For convenience, we refer to the operation
of creating a single-node tree (line 4) or a virtual node (line 5) as a
Make-Set operation.

Find-Set : Following [8], the Find-Set (x) procedure is to find
the root of T [x] using the path compression heuristic.

Union : Following [8], the Union(x, y) procedure applies the
union by rank heuristic to union two trees T [fx] and T [fy] which
x and y belong to respectively. fx and fy are the roots of these two
trees. If fx and fy have unequal rank, the one with a higher rank
is set to be the parent of the other with a lower rank. Otherwise, we
arbitrarily choose one of them as the parent and increase its rank by
1. For both cases, we update the count of the root of the new tree.
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Isolate : Procedure Isolate(x) unions a size-1 tree T [x] into the
virtual tree T [0]. It sets T [x].parent to 0, and increases T [0].count
by 1. Isolate(x) essentially labels x as a size-1 component if we
find x is not connected with any other node in a neighborhood in-
duced subgraph.

We can apply the disjoint-set forest structure to maintain the con-
nected components in GN(v). For any vertex v ∈ V , we create a
rooted tree for every neighbor u ∈ N(v) initially. If we find that u
and w are connected in GN(v), we process it by g[v].Union(u, w).
If we identify that u forms a size-1 component in GN(v), we pro-
cess it by g[v].Isolate(u). Take GN(f) in Figure 1 (b) as an ex-
ample again. First, we create g[f ] by Make-Forest (f) as shown
in Figure 3 (a). Since vertices a and g are connected, we invoke
g[f ].Union(a, g) and the resulted structure is shown in Figure 3
(b). The combined tree is rooted by g and has 2 vertices. Vertex e
forms a size-1 component, thus we invoke g[f ].Isolate(e) and the
result is shown in Figure 3 (c).

T[a] = {   a    ,  0    ,     1    }

parent rank count

T[e] = {   e    ,  0    ,     1    }

T[g] = {   g    ,  0    ,     1    }

T[0] = {   0    ,  0    ,     0    }

T[i] = {   i  ,      0 ,     1    }

T[a] = { g ,      0 ,     1    }

parent rank count

T[e] = {   e ,      0 ,     1    }

T[g] = {   g    , 1 , 2 }

T[0] = {   0 ,      0 ,     0    }

T[i] = {   i  ,      0 ,     1    }

T[a] = {   g ,      0 ,     1    }

parent rank count

T[e] = { 0 ,      0 ,     1    }

T[g] = {   g    ,      1 ,     2    }

T[0] = {   0    ,    0    ,     1 }

T[i] = {   i     ,   0    ,     1    }

(a) Make-Forest(f) (b) g[f].Union(a,g) (c) g[f].Isolate(e)

Figure 3: Disjoint-Set Forest Data Structure g[f]
The time complexity of the Union-Find-Isolate algorithm is an-

alyzed in the following lemma.

LEMMA 2. A sequence of M Make-Set, Union, Find-Set and
Isolate operations, N of which are Make-Set operations, can be
performed on a disjoint-set forest with “union by rank” and “path
compression” heuristics in worst-case time O(Mα(N)). α(N) is
the inverse Ackermann function, which is incredibly slowly grow-
ing and at most 4 in any conceivable application. Thus, the time
complexity of the Union-Find-Isolate algorithm can be regarded as
O(M).

PROOF. The proof is similar to that in [8], thus is omitted.

In the following, for simplicity, we treat α(N) as a constant in
the complexity analysis.

4.3 A Tighter Upper Bound
With the disjoint-set forest data structure g[v], we can keep track

of the structural information of the connected components in GN(v)

and derive a tighter upper bound of score(v) than the degree-based
bound in Lemma 1. Before introducing the upper bound, we give a
definition of the identified size-1 set as follows.

DEFINITION 3. In the disjoint-set forest structure g[v], if u ∈
N(v) and T [u].parent = 0, we denote Su = {u} as an identified
size-1 set, and |Su| = 1. If u ∈ N(v), T [u].parent = u, we
denote Su = {w ∈ N(v) : Find-Set(w) = u} as an unidentified
set, and |Su| = T [u].count.

By Definition 3, we know that each identified size-1 set is re-
sulted from an Isolate operation, and the total number of the iden-
tified size-1 sets is T [0].count. According to Property 1, all these
sets do not union with other sets. On the other hand, unidenti-
fied sets may further union with other sets or become an identified
size-1 set. Consider the example in Figure 3 (c). Se = {e} is an
identified size-1 set and T [0].count = 1. Both Sg = {a, g} and
Si = {i} are unidentified sets.

Let S = {Su : u ∈ N(v), T [u].parent = u or T [u].parent =
0} denote all disjoint sets in g[v], excluding the virtual set T [0]. Af-
ter traversing all the vertices and edges in GN(v), S contains all ac-
tual sets corresponding to the connected components in GN(v), and

Algorithm 2 Union-Find-Isolate

1: procedure Make-Forest (v)
2: g[v] = {T [u] : u ∈ N(v)} ∪ {T [0]};
3: for u ∈ N(v) do
4: T [u].(parent, rank, count) ← (u, 0, 1);
5: T [0].(parent, rank, count) ← (0, 0, 0);

6: procedure Find-Set (x)
7: if x 6= T [x].parent then
8: T [x].parent ← Find-Set (T [x].parent);
9: return T [x].parent;

10: procedure Union (x, y)
11: fx ←Find-Set (x); fy ←Find-Set (y);
12: if fx 6= fy then
13: if T [fx].rank > T [fy].rank then
14: T [fy].parent ← fx;
15: T [fx].count ← T [fx].count + T [fy].count;
16: else
17: T [fx].parent ← fy;
18: T [fy].count ← T [fx].count + T [fy].count;
19: if T [fx].rank = T [fy].rank then
20: T [fy].rank ← T [fy].rank + 1;

21: procedure Isolate (x)
22: T [x].parent ← 0;
23: T [0].count ← T [0].count + 1;

we have score(v) = |{Su : Su ∈ S, |Su| ≥ t }|. However, be-
fore traversing the neighborhood induced subgraph GN(v), S may
not contain all the actual sets corresponding to the connected com-
ponents, but includes some intermediate results. Even with such
intermediate results maintained in S, we can still use them to de-
rive an upper bound. Specifically, we have the following lemma.

LEMMA 3. Let S = {S1, . . . , Sl} be the disjoint sets of g[v],
a be the number of identified size-1 sets, b be the number of sets
whose sizes are larger than or equal to t, and c be the total size of
these b sets. Then, we have an upper bound of score(v) as follows.
If t = 1, bound(v) = b; if t > 1, bound(v) = b + b d(v)−c−a

t
c.

PROOF. First, it is important to note that the current disjoint
sets in S are not final, if we have not traversed all vertices and
edges of GN(v). That is, some of them may be further combined
by the Union operation and the number of sets may be reduced.
Second, we consider the following two cases. If t = 1, we have
bound(v) = b, as the current number of sets whose sizes are
greater than or equal to 1 is b and this number can only be re-
duced with the Union operation. If t > 1, the current number
of sets whose sizes are greater than or equal to t is b and this
number can only be reduced with the Union operation. In addi-
tion, besides a identified size-1 sets and c vertices from the above
b sets, there are still d(v) − c − a vertices which may form sets
whose sizes are greater than or equal to t. The maximum number
of such potential sets is b d(v)−c−a

t
c. Thus we have bound(v) =

b + b d(v)−c−a
t c.

For any vertex v ∈ V , at the initialization stage, each neighbor
vertex u ∈ N(v) forms a size-1 component. Thus bound(v) =

0 + b d(v)−0−0
t

c = b d(v)
t
c, the same as the bound in Lemma 1.

As the disjoint sets are gradually combined, bound(v) is refined
towards score(v) and becomes tighter. For example, in Figure 3
(c), suppose t = 2, we obtain S = {Se, Sg, Si} and the three
parameters in Lemma 3 are a = 1, b = 1 and c = 2. It follows that
bound(f) = 1 + b 4−2−1

2
c = 1, which is equal to score(f) = 1.

This bound based on the disjoint-set forest is obviously tighter than
the degree-based bound b 4

2
c = 2 derived in Lemma 1.
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Algorithm 3 Top-k-search
Input: G = (V, E), the top-k value k, the component size threshold t,
gradient ratio θ ≥ 1.
Output: Top-k search result S.

1: H ← ∅; S ← ∅;
2: for v ∈ V do
3: score(v) ← −1;
4: Make-Forest (v);
5: H.push((v, b d(v)

t
c));

6: while H 6= ∅
7: (v∗, topbound) ←H.pop();
8: compute bound(v∗) according to Lemma 3;
9: if θ · bound(v∗) < topbound then

10: if |S| < k or bound(v∗) > minv∈S score(v) then
11: H.push((v∗, bound(v∗)));
12: continue;
13: if |S| = k and topbound ≤ minv∈S score(v) then
14: break;
15: score(v∗) ← bound-search (G, t, v∗);
16: if |S| < k then S ← S ∪ {v∗};
17: else if score(v∗) > minv∈S score(v) then
18: u ← arg minv∈S score(v);
19: S ← (S − {u}) ∪ {v∗};
20: return S;

4.4 Top-K Search Framework
Based on the disjoint-set forest data structure and the tighter up-

per bound, we propose an advanced search framework in Algorithm
3 for top-k structural diversity search.

Advanced Top-k framework: For each vertex v ∈ V , the algo-
rithm initializes the disjoint-set forest data structure g[v] by invok-
ing Make-Forest (line 4). It also pushes each vertex v with the
initial bound b d(v)

t
c intoH which is a variant of bin-sort list. Then

the algorithm iteratively finds the top-k results (lines 6-19). It first
pops the vertex with the largest upper bound value from H. Such a
vertex and its bound are denoted as v∗ and topbound respectively
(line 7). The algorithm re-evaluates bound(v∗) from g[v∗] based
on Lemma 3, as the component information in g[v∗] may have been
updated. And then, it compares the refined bound bound(v∗) with
the old bound topbound. In order to avoid frequently calculating
the upper bounds and updating H, we introduce a new parameter
θ ≥ 1, and compare θ · bound(v∗) with topbound.

If θ ·bound(v∗) < topbound, it suggests that bound(v∗) is sub-
stantially smaller than topbound. That is, the old bound topbound
is too loose. Under this condition, if |S| < k or bound(v∗) >
minv∈S score(v), the algorithm pushes v∗ back to H with the re-
fined bound bound(v∗) (lines 10-11). Otherwise, the algorithm
can safely prune v∗. In both cases, the algorithm continues to pop
the next vertex from H (lines 9-12).

If θ · bound(v∗) ≥ topbound, it means that bound(v∗) is not
substantially smaller than topbound. In other words, the old bound
is a relatively tight estimation. Then the algorithm moves to lines 13-
14 to check the termination condition. If |S| = k and topbound ≤
minv∈S score(v), the algorithm can safely prune all the remain-
ing vertices in H and terminate, because the upper bound of those
vertices is smaller than topbound.

If the early termination condition is not satisfied, the algorithm
invokes bound-search (Algorithm 4) to compute score(v∗). Af-
ter computing score(v∗), the algorithm uses the same process to
update the set S by v∗ as the degree algorithm does (lines 16-19).

Bound-Search: Algorithm 4 shows the bound-search procedure
to compute score(v). Based on the disjoint-set forest g[v], we

Algorithm 4 bound-search (G, t, v)
Input: G = (V, E), the component size threshold t, vertex v.
Output: score(v).

1: R ← ∅;
2: for u ∈ N(v) and T [u].parent 6= 0 do R ← R ∪ {u};
3: for u ∈ R do bound-bfs (u);
4: return count-components (g[v], t);

5: procedure bound-bfs (u)
6: Q ← ∅; UnionF lag ← false;
7: Q.EnQueue(u); R ← R− {u};
8: while Q 6= ∅
9: u ← Q.DeQueue();

10: for w ∈ N(u) do
11: if w ∈ R then
12: Q.EnQueue(w); R ← R− {w};
13: g[v].Union (u, w); UnionF lag ← true;
14: if score(u) = −1 then g[u].Union (v, w);
15: if score(w) = −1 then g[w].Union (v, u);
16: if UnionF lag = false then
17: g[v].Isolate (u);
18: if score(u) = −1 then g[u].Isolate (v);

19: procedure count-components (g[v], t)
20: score ← 0;
21: for u ∈ N(v) do
22: if T [u].parent = u and T [u].count ≥ t then
23: score ← score + 1;
24: if t = 1 then score ← score + T [0].count;
25: return score;

know that any vertex u ∈ N(v) with T [u].parent = 0 corre-
sponds to an identified size-1 component resulted from an Isolate
operation. So bound-search does not need to search them again. It
only adds the vertices whose parent 6= 0 into an unvisited vertex
hashtable R (lines 1-2). This is an improvement from bfs-search,
as bound-search avoids scanning the identified size-1 components.
For each vertex u ∈ R, the algorithm invokes the procedure bound-
bfs (lines 5-18) to search u’s neighborhood in a breadth-first search
manner. For u’s neighbor vertex w, if w ∈ R, i.e., w ∈ N(v),
the algorithm unions u and w into one set in g[v]. According to
Property 2, we also union v and w into one set in g[u], and union
v and u into one set in g[w] (lines 11-15). If u does not union
with any other vertex, the algorithm invokes an Isolate operation
on u to mark that u forms a size-1 component in g[v] (lines 16-18).
Symmetrically, by Property 1, the algorithm invokes an Isolate op-
eration on v to mark that v forms a size-1 component in g[u] too.
After the BFS search, the algorithm can compute score(v) using
the procedure count-components (lines 19-25) to count the num-
ber of sets in g[v] whose sizes are at least t. The following example
illustrates how the Top-k-search framework (Algorithm 3) works.

EXAMPLE 2. Consider the graph shown in Figure 1 (a). Sup-
pose that t = 1 and k = 1. We apply the Top-k-search algorithm
with θ = 1 and the running steps are depicted in Figure 4. First, we
push each vertex v with the upper bound b d(v)

t
c intoH, as shown in

Figure 4 (a). Second, we pop vertex c from H with topbound = 5.
We calculate bound(c) = 5 according to Lemma 3. Then, we
compute score(c) by bound-search. In GN(c), there is a single
path connecting all vertices a, b, d, h, i in N(c), so score(c) = 1.
When the algorithm traverses the edge (a, b), we perform two op-
erations g[a].Union (c, b) and g[b].Union (c, a) in g[a] and g[b]
respectively according to Property 2. Third, we push vertex c into
S , as shown in Figure 4 (b). In the next iteration, we pop vertex
a from H with topbound = 4. Then, we update bound(a) = 3
as we know that vertices b and c are in the same set in g[a]. Since
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Figure 4: Illustration of Top-k-search with bound-search run-
ning on the graph in Figure 1 (a). k = 1, t = 1, and θ = 1.

θ · bound(a) < topbound and bound(a) > minv∈S score(v),
we push (a, 3) into H again, as shown in Figure 4 (c). When
the algorithm goes to process vertex f , we have θ · bound(f) =
topbound = 4 and topbound > minv∈S score(v). And then we
compute score(f) = 2 and replace vertex c in S with f , as shown
in Figure 4 (d). After that, we pop vertices h, i, d from H in turn.
One can easily check that none of them satisfies the condition in
line 10 of Algorithm 3. Thus, we do not push h, i, d back into H
again, as shown in Figure 4 (e). Next we pop vertex e, compute
score(e) = 3 and update S by e, as shown in Figure 4 (f). Since
topbound inH is no greater than score(e) = 3, we can safely ter-
minate. In this process, we only invoke bound-search three times to
calculate the structural diversity scores, while the previous degree
algorithm performs eight computations of structural diversity score
which is clearly more expensive.

4.5 Complexity Analysis
LEMMA 4. The upper bound bound(v) defined in Lemma 3 for

any vertex v ∈ V can be computed in O(1) time in Algorithm 3.

PROOF. We need to maintain a, b and c in g[v] to compute
bound(v). Obviously, a = T [0].count, and b, c can be easily
maintained in the Union operation of g[v] without increasing the
time complexity. Thus bound(v) can be computed in O(1) time.

LEMMA 5. The total time to compute bound for all vertices in
Algorithm 3 is O(m

t
).

PROOF. According to Lemma 4, bound(v) for a vertex v can
be computed in O(1) time. The initial upper bound of v is b d(v)

t
c,

and bound(v) is updated in non-increasing order. In line 9 of Algo-
rithm 3, we compare θ · bound(v) and topbound to check whether
v should be pushed into H. Since topbound ≤ b d(v)

t
c, bound(v)

can be updated for at most b d(v)
t
c times. Thus the total time cost is

O(
∑

v∈V
d(v)

t
) = O(m

t
).

LEMMA 6. In Top-k-search, H can be maintained in O(m
t

+
n) time using O(n) space.

PROOF. H can be implemented by a variant of bin-sort list which
supports a push operation in constant time and l pop operations in
O(l + n) time (illustrated in Figure 4). Each time, estimating the
upper bound bound in line 8 causes at most one push operation
(line 11) in H. By Lemma 5, we know that for each vertex v ∈ V ,
there are at most b d(v)

t
c bound refinements. Thus, there are at most∑

v∈V b d(v)
t
c bound refinements in total for all vertices. In addi-

tion, there are n initial push operations. Therefore, the algorithm
uses O(

∑
v∈V

d(v)
t

+n) = O(m
t

+n) time for all the push opera-
tions. The number of pop operations is no larger than the number of
push operations. Put it all together, the time complexity to maintain
H is O(m

t
+ n). The space complexity of H is O(n).

Algorithm 5 fast-bound-search (G, t, v)
Input: G = (V, E), the component size threshold t, vertex v.
Output: score(v).

1: R ← ∅;
2: for u ∈ N(v) and T [u].parent 6= 0 do R ← R ∪ {u};
3: for u ∈ R do fast-bound-bfs (u);
4: return count-components (g[v], t);

5: procedure fast-bound-bfs (u)
6: Q ← ∅; UnionF lag ← false;
7: Q.EnQueue(u); R ← R− {u};
8: while Q 6= ∅
9: u ← Q.DeQueue();

10: if d(u) > d(v) then MinAdjL ← N(v);
11: else MinAdjL ← N(u);
12: for w ∈ MinAdjL do
13: if (w, u) ∈ E and w ∈ R then
14: Q.EnQueue(w); R ← R− {w};
15: g[v].Union (u, w); UnionF lag ← true;
16: if score(u) = −1 then g[u].Union (v, w);
17: if score(w) = −1 then g[w].Union (v, u);
18: if UnionF lag = false then
19: g[v].Isolate (u);
20: if score(u) = −1 then g[u].Isolate (v);

THEOREM 2. Algorithm 3 takes O (
∑

v∈V (d(v))2) time and
O(m) space.

PROOF. Since the time to access the adjacency lists in bound-
search is O(

∑
v∈V (d(v))2), and all Union operations are in the

loop of accessing adjacency lists (lines 13-15 of Algorithm 4), the
number of Union operations is O(

∑
v∈V (d(v))2). The algorithm

invokes n Make-Forest operations (line 4 of Algorithm 3), which
includes

∑
v∈V (d(v)+ 1) = 2m + n Make-Set operations. Next,

all Isolate operations are in the procedure bound-bfs (lines 17-18
of Algorithm 4). The number is no greater than

∑
v∈V 2d(v) =

4m. No Find-Set operation is directly invoked. Thus, Union-Find-
Isolate includes O(

∑
v∈V (d(v))2) Make-Set, Union, Find-Set,

Isolate operations, 2m + n of which are Make-Set. By Lemma 2,
the time complexity of Union-Find-Isolate is O(

∑
v∈V (d(v))2).

By Lemma 6,H takes O(m
t

+n) time. S maintains the top-k re-
sults using O(n) time. By Lemma 5, computing the upper bounds
for all vertices takes O(m

t
) time. Therefore, the time complexity

of Algorithm 3 is O (
∑

v∈V (d(v))2).
Next, we analyze the space complexity. For v ∈ V , g[v] contains

d(v) + 1 initial disjoint singleton trees, in which each node takes
constant space. Hence, the disjoint-set forest structure takes O(m)
space for all vertices. S and H both consume O(n) space. In
summary, the space complexity of Algorithm 3 is O(m).

Hence, Theorem 2 is established.

5. FAST COMPUTATION OF STRUCTURAL
DIVERSITY SCORE

In this section, on top of the Top-k-search framework, we pro-
pose two methods for fast computing the structural diversity score
for a vertex. The first method is fast-bound-search which improves
bound-search and achieves a better time complexity using the same
space. The second is an A∗-based search method which uses a new
search order and a new termination condition.

5.1 Fast Bound-Search
We present fast-bound-search in Algorithm 5, which is built on

bound-search. The major difference is in procedure fast-bound-
bfs for traversing a connected component. When accessing the ad-
jacency list of vertex u having d(u) > d(v), we will access the

1623



adjacency list of v instead (lines 10-13), i.e., we always select the
vertex with a smaller degree to access. Checking whether (w, u) ∈
E in line 13 can be done efficiently by keeping all edges in a
hashtable. Moreover, R can also be implemented by a hashtable.
Thus line 13 can be done in expected constant time by hashing.

r
d(q)=100d(p)=1

p q

Figure 5: GN(r) has two vertices p and q with degree 1 and 100

To show the effectiveness of this improvement, we consider an
example GN(r) in Figure 5. Suppose that r has two neighbors p
and q with degree 1 and 100 respectively. To compute score(r),
bound-search needs to access the adjacency lists of p and q, and
check |N(p)| + |N(q)| = 101 vertices. In contrast, fast-bound-
search accesses N(r) instead of N(q) because d(q) > d(r), thus
the number of visited vertices is reduced to |N(p)|+ |N(r)| = 3.

Complexity Analysis: Using fast-bound-search to compute struc-
tural diversity scores, we achieve a better time complexity of the
Top-k-search framework shown in the following theorem.

THEOREM 3. The Top-k-search framework using fast-bound-
search takes O(

∑
(u,v)∈E min{d(u), d(v)}) time and O(m) space.

PROOF. For a vertex v, the time cost of accessing the adjacency
lists is

∑
u∈N(v) min{d(u), d(v)} for computing score(v). To

compute scores for all vertices, accessing the adjacency lists con-
sumes O(

∑
v∈V

∑
u∈N(v) min{d(u), d(v)}) = O(

∑
(u,v)∈E

min{d(u), d(v)}).
Since the number of Union operations is bounded by the num-

ber of accessing adjacency lists, the number of Union operations
is O(

∑
(u,v)∈E min{d(u), d(v)}). Moreover, there are 2m +

n Make-Set operations, O(m) Isolate operations and no direct
Find-Set operation invoked by the algorithm. By Lemma 2, Union-
Find-Isolate takes O(

∑
(u,v)∈E min{d(u), d(v)}) time in total.

The other steps in the loop of accessing adjacency list take con-
stant time. Therefore, it takes O(

∑
(u,v)∈E min{d(u), d(v)})

time to calculate all vertices’ structural diversity scores using the
fast-bound-search algorithm.

By Lemma 5, the total time of estimating upper bound is O(m
t
) ⊆

O(m), and by Lemma 6, the total time to maintain H is O(m
t

+
n) ⊆ O(m).

Compared with bound-search, fast-bound-bfs needs extra O(m)
space for storing the edge hashtable. Thus, the space consumption
is still O(m).

Hence, Theorem 3 is established.

REMARK 2. According to [6], O(
∑

(u,v)∈E min{d(u), d(v)})
⊆ O(ρm) where ρ is the arboricity of a graph G and ρ ≤ min
{d√m e, dmax} for any graph G. Thus the worst-case time com-
plexity of the Top-k-search framework using fast-bound-search is
bounded by O(

∑
(u,v)∈E min{d(u), d(v)}) ⊆ O(ρm) ⊆ O(m1.5).

5.2 A*-Based Bound-Search
In this subsection we design a new search order and a new termi-

nation condition to compute the structural diversity score for a ver-
tex. Take Figure 6 as an example which shows the neighborhood in-
duced subgraph of r. Suppose that before examining GN(r), the al-
gorithm has computed the structural diversity scores for r’s neigh-
bors p1, . . . , p4. Then, by Property 2, the vertices p1, . . . , p4 are
combined into one component P in GN(r). There is another com-
ponent Q in GN(r) with only one vertex q. To compute score(r),
the algorithm needs to further check whether the components P

p3

p1 p2

p4

r q

Figure 6: GN(r) containing two components P and Q

and Q are connected or not. If the algorithm first checks vertex q in
the component Q, then it will go through q’s adjacency list N(q)
to verify whether q connects with any vertices in p1, . . . , p4. If q is
not connected with any one of them, we can conclude that Q forms
a size-1 component and P forms a size-4 component in GN(r).
Thus, the algorithm does not need to traverse the adjacency lists of
p1, . . . , p4, and it can terminate early. In contrast, if the algorithm
first checks the component P , then it needs to go through the ad-
jacency lists of vertices p1, . . . , p4 to verify whether they connect
with q or not. This is clearly more expensive than starting from
the component Q. Motivated by this observation, we propose an
A∗-based heuristic search method to efficiently compute the struc-
tural diversity in the neighborhood induced subgraph of a vertex.
Below, we first give the definition of component cost which is used
as a heuristic function to determine the component visiting order in
the A∗ search process.

DEFINITION 4. Given a component S in a neighborhood in-
duced subgraph, the component cost of S is the sum of degree of the
unvisited vertices in S, denoted as cost(S) =

∑
unvisited v∈S d(v).

Suppose that in Figure 6 all vertices in N(r) are unvisited. The
component costs are cost(P ) = 16 and cost(Q) = 1. The com-
ponent cost measures the cost of accessing the adjacency lists of
a component. If we check the low-cost components first and the
high-cost components later, we can potentially save more compu-
tation. Thus in A∗ search, we always pick a component T [x] in
GN(v) which has the least cost to traverse.

To record the cost, we add the component cost as a field in
the Union-Find-Isolate data structure. Specifically, for a vertex
u, when we create a single-node component T [u], we initialize
T [u].cost = d(u). When we union two components T [u] and
T [v], we add up their costs, i.e., T [u].cost + T [v].cost.

The Algorithm: A∗-bound-search uses the component cost for
determining a heuristic search order to traverse the components in
GN(v) until there is only one unvisited component left. In travers-
ing a component, the algorithm accesses the adjacency lists of the
unvisited vertices in increasing order of their degrees until the com-
ponent is connected with other components or traversed.

Algorithm 6 shows A∗-bound-search. For a vertex v, the algo-
rithm uses a minimum heap T C to maintain all the unidentified
components in GN(v) ordered by their component costs. For a
component rooted by a vertex u, the algorithm makes use of a min-
imum heap C[u] to maintain all vertices in this component ordered
by their degree. Initially, for each vertex u whose parent is not
0, the algorithm pushes u with cost d(u) into the minimum heap
C[T [u].parent], and adds u into the hashtable R which stores all
the unvisited vertices (line 5). Moreover, if u is the root of T [u],
the algorithm pushes the component of u and its component cost
T [u].cost into the heap T C (lines 6-7).

Let us consider an example. Figure 7 (a) shows the neighborhood
induced subgraph GN(r), and Figure 7 (b) shows the degree and
the parent in T [.] for each vertex in N(r). We know that p1, p2, p3

are in a component rooted by p1, and q1, q2 are in a component
rooted by q1, and s is in a component rooted by s itself. After
initialization, the minimum heaps T C, C[s], C[p1], C[q1] and the
hashtable R are illustrated in Figure 7 (c).
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Algorithm 6 A∗-bound-search (G, t, v)
Input: G = (V, E), the component size threshold t, vertex v.
Output: score(v).

1: R ← ∅; T C ← ∅;
2: for u ∈ N(v) do C[u] ← ∅;
3: for u ∈ N(v) do
4: if Find-Set (u) 6= 0 then
5: C[T [u].parent].push((u, d(u))); R ← R ∪ {u};
6: if T [u].parent = u then
7: T C.push((u, T [u].cost));
8: while T C 6= ∅
9: (x, tcostx) ← T C.pop(); UnionF lag ← false;

10: if x 6=Find-Set (x) then continue;
11: if tcostx 6= T [x].cost then
12: T C.push((x, T [x].cost)); continue;
13: if |R| = |C[x]| then goto Step 33;
14: while C[x] 6= ∅ and UnionF lag = false
15: (u, costu) ← C[x].pop(); R ← R− {u};
16: T [x].cost ← T [x].cost− costu;
17: w.l.o.g, we assume d(u) < d(v);
18: for w ∈ N(u) do
19: if (w, v) ∈ E and w ∈ R then
20: fu ←Find-Set (u); fw ←Find-Set (w);
21: if fu 6= fw then
22: Q ← Heap Merge(C[fu], C[fw]);
23: g[v].Union (u, w);
24: C[Find-Set (x)] ← Q; UnionF lag ←true;
25: if score(u) = −1 then g[u].Union (v, w);
26: if score(w) = −1 then g[w].Union (v, u);
27: if UnionF lag = true and Find-Set (x) = x then
28: T C.push((x, T [x].cost));
29: if UnionF lag = false and C[x] = ∅ then
30: if T [x].count = 1 then
31: g[v].Isolate (x);
32: if score(x) = −1 then g[x].Isolate (v);
33: return count-components (g[v], t);

The algorithm iteratively pops a component with the minimum
cost from T C, denoted as x with cost tcostx (line 9). If the compo-
nent is rooted by vertex x and tcostx = T [x].cost, the algorithm
will examine the vertices in the component of x. Otherwise, if
the component is no longer rooted by x or tcostx 6= T [x].cost,
it means that the component of x has been combined with another
component in the previous iteration. Then, the algorithm pops the
next component from T C. If |R| = |C(x)| holds, then all the un-
visited nodes in R are from the same component rooted by x, and
this component is the last to be traversed in GN(v) (line 13). By
the early termination condition, the algorithm does not need to tra-
verse this component and can directly go to count the number of
components in GN(v) (line 33).

For a popped component rooted by x, the algorithm iteratively
examines the vertices in the component in increasing order of their
degree (lines 14-26). For such a vertex u, we will access its adja-
cency list N(u) to find out those vertices denoted as w that are also
in N(v). Then we will union the components which contain u and
w respectively into one. This process is very similar to the previous
algorithms. So we omit the details for brevity.

Continuing with our example in Figure 7. After initialization,
we pop the first component (s, 8) from T C, as shown in step 1
(Figure 7 (d)). Then, we examine vertex s in this component and
find that it is not connected with other components in GN(r). Next,
we move to step 2 (Figure 7 (e)) to pop the component (p1, 12).
In this component, we first examine the adjacency list of p1, i.e.,
N(p1). We find that p1 is connected with q1, so we union the
components rooted by p1 and q1. Assume that the new component
is rooted by p1. Then we set T [q1].parent = p1 and merge C(q1)
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Figure 7: A∗-bound-search example for computing score(r)

into C(p1). We push the new component (p1, 24) into T C again. In
step 3 (Figure 7 (f)), we pop the component (q1, 15) and find that
T [q1].parent 6= q1, as the component of q1 has been combined
with that of p1 in step 2. In this step, there is only one component
in T C, which meets the early termination condition.

Complexity Analysis: In the component union process (line 22 of
Algorithm 6), we need to merge two heaps C[fw] and C[fu] into
one. We can implement C[.] by the mergeable heap such as leftist
heap or binomial heap [8], which can support the merge of two
heaps in O(log n) time and a push/pop operation in O(log n) time
for a heap with n elements.

LEMMA 7. In Algorithm 6, the operations for T C and all C[.]
take O(d(v) log d(v)) time and O(d(v)) space in total.

PROOF. Since the number of components in GN(v) is no greater
than d(v), we perform at most d(v) − 1 Union operations before
termination. Hence, there are at most d(v)− 1 new components to
be pushed into T C (lines 12 and 28). In addition, for initialization
|T C| ≤ d(v) holds, which indicates that |T C| ≤ 2d(v) always
holds. As there are at most 2d(v) push and pop operations respec-
tively, and each operation takes O(log d(v)) time, overall T C takes
O(d(v) log d(v)) time using O(d(v)) space.

For initialization, all C[.] heaps take d(v) push operations in to-
tal (line 5), and the time cost of each operation is O(log d(v)) as
the size of the largest heap is smaller than d(v). Hence, the initial-
ization time is O(d(v) log d(v)). As analyzed above, there are at
most d(v) − 1 heap merging operations and each operation costs
O(log d(v)), the total time cost in line 22 is O(d(v) log d(v)).
Moreover, there are at most d(v) pop operations in line 15, the
time cost of which is O(d(v) log d(v)). All C[.] heaps contain at
most d(v) vertices totally costing O(d(v)) space. As a result, all
C[.] heaps take O(d(v) log d(v)) time and O(d(v)) space.

THEOREM 4. The Top-k-search framework using A∗-bound-
search takes O(

∑
(u,v)∈E(min{d(u), d(v)}+log d(u))) time and

O(m) space.

PROOF. The proof is similar to the proof of Theorem 3. A dif-
ference is that we use the Find-Set operations in A∗-bound-search.
Since the Find-Set operations in lines 20 and 24 are in the loop
of accessing adjacency list, the total number of such operations is
O(

∑
(u,v)∈E min{d(u), d(v)}) for the whole process. Consider

the process of computing score(v) for a vertex v, we take d(v)
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Find-Set operations in line 4. Since lines 10 and 27 are both in
the outer while loop (line 8), and T C has at most 2d(v) pop op-
erations according to Lemma 7, the algorithm takes at most 2d(v)
Find-Set operations in lines 10 and 27 respectively. Hence, it takes
O(

∑
(u,v)∈E min{d(u), d(v)} +

∑
v∈V 5d(v)) = O(

∑
(u,v)∈E

min{d(u), d(v)}) Find-Set operations. By Lemma 2, Union-Find-
Isolate takes O(

∑
(u,v)∈E min{d(u), d(v)}) time in total.

Another difference is that we maintain two types of heaps T C
and C[.]. By Lemma 7, the total time of T C and C[.] are O (

∑
u∈V

d(u) log d(u)) = O(
∑

u∈V

∑
v∈N(u) log d(u)) = O(

∑
(u,v)∈E

log d(u)). The additional space overhead is O(m).
Hence, Theorem 4 is established.

REMARK 3. The worst-case time complexity of the Top-k-search
framework using A∗-bound-search is bounded by O(

∑
(u,v)∈E(

min{d(u), d(v)}+ log d(u)))⊆O((ρ + log dmax)m) ⊆ O(m1.5),
where ρ is the arboricity of the graph as mentioned in Remark 2.

Complexity Comparison: We compare the time complexity of al-
gorithms degree and Top-k-search.

According to Theorem 1, degree takes O(
∑

v∈V (d(v))2) time,
which can be equivalently rewritten as O(

∑
v∈V

∑
u∈N(v) d(u))

= O (
∑

(u,v)∈E(d(u)+d(v))) = O(
∑

(u,v)∈E (max{d(u), d(v)}
+ min{d(u), d(v)})) = O(

∑
(u,v)∈E max{d(u), d(v)}).

For Top-k-search using fast-bound-search, according to Theo-
rem 3, it takes O(

∑
(u,v)∈E min{d(u), d(v)}) time, which is obvi-

ously better than O(
∑

(u,v)∈E max{d(u), d(v)}), the time com-
plexity of degree, and

∑
(u,v)∈E min{d(u), d(v)} =

∑
(u,v)∈E

max{d(u), d(v)} only if all vertices in the graph have the same
degree. In a power-law graph such as a social network, the degrees
of vertices have a large variance, thus Top-k-search using fast-
bound-search is much better than degree in a social network. For
example, on a star graph with n nodes, Top-k-search using fast-
bound-search takes O(n) time while degree takes O(n2) time.

For Top-k-search using A∗-bound-search, according to Theo-
rem 4, its time O(

∑
(u,v)∈E(min{d(u), d(v)}+log d(u))) is also

better than O(
∑

(u,v)∈E max{d(u), d(v)}) of degree. The first
part O(

∑
(u,v)∈E min{d(u), d(v)}) is the same as Theorem 3,

and the second part O(
∑

(u,v)∈E log d(u)) is obviously better than
O(

∑
(u,v)∈E max{d(u), d(v)}) as log d(u)≤max{d(u), d(v)}.

6. UPDATE IN DYNAMIC NETWORKS
Many real-world networks undergo frequent updates. When the

network is updated, the top-k structural diversity results also need
to be updated. The challenge, however, is that inserting or delet-
ing a single edge (u, v) can trigger updates in a series of neigh-
borhood induced subgraphs including GN(u), GN(v) and GN(w)

where w ∈ N(u) ∩ N(v). This can be a costly operation be-
cause the corresponding structural diversity scores need to be re-
computed, and the top-k results need to be updated too.

In the following, we will show that our Top-k-search framework
can be easily extended to handle updates in dynamic graphs. We
consider two types of updates: edge insertion and edge deletion.
Vertex insertion/deletion can be regarded as a sequence of edge
insertions/deletions preceded/followed by the insertion/deletion of
an isolated vertex, while it is trivial to handle the insertion/deletion
of an isolated vertex.

6.1 Handling Edge Insertion
Consider the insertion of an edge (u, v). Let L = N(u)∩N(v)

denote the set of common neighbors of u and v. The insertion
of (u, v) causes the insertions of vertex v and a set of |L| edges
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Figure 8: Illustration of updates in a dynamic graph

{(v, w)|w ∈ L} into u’s neighborhood induced subgraph GN(u).
For each w ∈ L, we perform a Union operation g[u].Union(v, w)
to update the components and score(u). For vertex v, GN(v) is
updated in a similar way.

The insertion of (u, v) also affects GN(w) for each w ∈ L. We
check the disjoint-set forest structure g[w]. If u, v belong to the
same connected component before the edge insertion, then all com-
ponents remain unchanged and so does score(w). If u, v are in
different components before the edge insertion, we merge the two
components into one with a Union operation g[w].Union(u, v) and
update score(w) accordingly.

Consider the graph G in Figure 8 (a) as an example. Suppose that
t = 2 and the inserted edge is (r, q). L = N(r)∩N(q) = {s, p1}.
Figure 8 (c) shows the updated GN(r) with the edge insertion.
GN(r) has two new edges (p1, q) and (s, q), but score(r) = 1
remains unchanged. For vertex s ∈ L, vertices r, q are now con-
nected in the same component in GN(s) with the insertion of (r, q),
so we update score(s) from 0 to 1.

6.2 Handling Edge Deletion
Consider the deletion of an edge (u, v). To handle the edge dele-

tion, we maintain a spanning tree for each connected component in
the affected subgraphs GN(u), GN(v) and GN(w) where w ∈ L.
For example, consider the component P = {p1, . . . , p5} of GN(r)

in Figure 8 (b) and the corresponding spanning tree TP in Figure 8
(d). The edges in the spanning tree are called tree edges, and other
edges in the component are called non-tree edges, e.g., (p1, p2) is
a tree edge and (p1, p5) is a non-tree edge.

For each w ∈ L, we consider updating GN(w) with the deletion
of (u, v). We check whether (u, v) is a tree edge in the spanning
tree of the component. If (u, v) is a non-tree edge, score(w) re-
mains unchanged because vertices u, v are still in the same com-
ponent connected by the corresponding spanning tree. Continuing
with the example above, the deletion of the non-tree edge (p1, p5)
will not split the component P in GN(r), and p1, p5 are still in the
same component. If (u, v) is a tree edge, then the deletion of (u, v)
splits the spanning tree into two trees denoted as Tu and Tv . We
will search for a replacement edge so as to reconnect Tu and Tv .
If a replacement edge (u′, v′) exists, we insert (u′, v′) to connect
Tu, Tv into a new spanning tree. Then the original component is
still connected, and score(w) remains unchanged. If the replace-
ment edge does not exist, the deletion of (u, v) splits the original
connected component into two components, and the corresponding
spanning trees are Tu and Tv . So we update score(w) accordingly.
Maintaining the spanning tree can be implemented easily with the
Union operation by keeping track of the bridge edge between two
different components. In the example above, if a tree edge (p1, p2)
is deleted, we can find a replacement edge (p1, p4) to reconnect the
spanning tree in Figure 8 (d).
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The deletion of (u, v) also affects GN(u) and GN(v). Consider
u as an example. For all w ∈ L, we remove those non-tree edges
(v, w) from GN(u), and remove those tree edges (v, w) from the
spanning tree which is then split into multiple trees. Then we search
for replacement tree edges to reconnect the spanning tree. Finally,
we remove v from GN(u) and update score(u). Figures 8 (e) and
(f) show the updates of GN(r) and TP with the deletion of (r, p2).

The above techniques apply to updating both the actual score and
the upper bound in our Top-k-search framework given edge inser-
tions/deletions. In updating an upper bound bound(v) for vertex
v, given an edge deletion as a tree edge, we only split the original
spanning tree into two, but do not have to search for the replace-
ment edge. This will only relax bound(v) without affecting the
result correctness. This strategy can avoid the cost of finding the
replacement edge and achieve higher efficiency.

Summary: Handling edge insertion is trivial using our disjoint-set
forest structure, while handling deletion is more costly as it main-
tains the spanning tree. In the real-world networks, edge insertions
are usually more frequent than deletions. Our update techniques do
not increase the space complexity of Top-k-search.

7. EXPERIMENTS
We conduct extensive performance studies to evaluate the algo-

rithms proposed in this paper. All algorithms are implemented in
C++ and all the experiments are conducted on the Linux operating
system with 2.67GHz six-core CPU and 50GB main memory.
Comparison methods: To the best of our knowledge, we are the
first to study top-k structural diversity search. In the literature, no
algorithms have been proposed to address this problem yet. Thus,
we compare our algorithms with the degree-based approach (Algo-
rithm 1) which serves as a baseline. We evaluate four algorithms.

• Deg : The degree-based approach in Algorithm 1.
• Bou : Top-k-search equipped with bound-search (Algorithm

4) and θ = 1.
• FB : Top-k-search equipped with fast-bound-search (Algo-

rithm 5) and θ = (n
t
)

1√
m .

• A∗-B : Top-k-search equipped with A∗-bound-search (Al-

gorithm 6) and θ = (n
t
)

1√
m .

In our experiments, we find that θ = (n
t
)

1√
m which is close to 1

always yields a good performance in the Top-k-search framework.
For FB and A∗-B, their performances are not very sensitive to the
value of θ as long as θ ∈ (1.001, 1.05) on all datasets. Due to the
lack of space, we do not show the curves by varying θ, and simply

set θ = (n
t
)

1√
m for both FB and A∗-B.

Evaluation metrics: We use the running time and the number
of vertices whose structural diversity scores are computed in the
search process as two metrics. The latter evaluates the number of
vertices that are pruned by the algorithm.
Datasets: We use 13 publicly available real-world networks cover-
ing social, communication, collaboration networks, and webgraphs.
The network statistics are shown in Table 1. Except for Epinions,
Digg and KDDTrack11 which are from their respective websites,
the other 10 networks are downloaded from the Stanford Network
Analysis Project (snap.stanford.edu). We treat all the net-
works as undirected.

7.1 Efficiency Comparison
In this experiment, we compare the efficiency of different meth-

ods over all networks. We set k = 100 and t = 2. Similar results
can be observed for other k and t values. Table 2 reports the results.
1https://www.kddcup2012.org

Table 1: Network statistics (K = 103 and M = 106)
Name |VG| |EG| dmax Description

WikiVote 5K 104K 1065
Epinions 76K 509K 3044
Slashdot 82K 948K 2552 Social
Gowalla 196K 1.9M 14730 networks

Digg 771K 7.3M 17643
KDDTrack1 1.9M 100.2M 456907
EmailEnron 37K 368K 1383

CommunicationEmailEuAll 265K 420K 7636
WikiTalk 2.4M 5.0M 100029 networks
HepPh 12K 237K 491 Collaboration

AstroPh 19K 396K 504 networks
NotreDame 326K 1.5M 10721 Web graph

Flickr 80K 11.8M 5706 Flickr

We can see that A∗-B is the most efficient, followed by FB, Bou,
and Deg. Notice that the performance of A∗-B, FB, and Bou which
adopt the Top-k-search framework is substantially better than that
of the degree-based algorithm Deg. The speedup ratio between
Deg and A∗-B defined as Rs = tDeg/tA∗−B is between 2.1 and
69.1 (column 6 in Table 2). The result conforms with the com-
plexity analysis in Section 5. In addition, we define the pruning
ratio between Deg and A∗-B as Rp = SDeg/SA∗−B, where SDeg

and SA∗−B denote the number of vertices whose structural diver-
sity scores are computed by the respective methods. The pruning
ratio is between 2.1 and 11.1 over all networks (column 11 in Ta-
ble 2). This result suggests that the upper bound derived in Lemma
3 is indeed tighter than the degree-based upper bound in Lemma 1.

When we compare Bou and Deg, the reduction of running time
and search space by Bou demonstrates the effectiveness of the tighter
upper bound in Lemma 3 and the Union-Find-Isolate data struc-
ture. When we compare Bou and FB, the reduction of running time
by FB shows the effectiveness of the fast-bound-search method.
Finally we observe that A∗-B is more efficient than FB, which
proves the effectiveness of the A∗ search order.

7.2 Performance Evaluation by Varying k
In this experiment, we evaluate the performance of all the meth-

ods by varying the parameter k. We set t = 2 and focus on six net-
works Digg, WikiTalk, AstroPh, Gowalla, NotreDame and Flickr.
Similar results can be observed for other t values and on other net-
works. Figures 9 (a)-(f) depict the running time of different algo-
rithms. Again, we can see that A∗-B is the most efficient and Deg
is the least efficient in most networks. The running time of A∗-B is
very stable as k increases.

Figures 10 (a)-(f) show the number of vertices whose structural
diversity scores are computed by different methods in the six net-
works. A∗-B is the clear winner by pruning the largest number of
vertices, and Deg performs worst. In addition, we find that FB and
Bou achieve very similar performance in terms of the number of

vertices that are pruned. This is because θ = (n
t
)

1√
m in FB is

very close to 1 (as listed in the last column of Table 2), and θ in
Bou is set to 1 in our experiment. Thus, the pruning condition in
FB and Bou is very similar. But on the other hand, FB runs much
faster than Bou as shown in Figure 9, which conforms with the time
complexity analysis in Theorems 2 and 3.

7.3 Performance Evaluation by Varying t
We evaluate the performance of all methods by varying the pa-

rameter t. In this experiment, we set k = 100 and similar results
can be observed for other k values. Figures 11 (a)-(f) show the run-
ning time of different algorithms. Once again, A∗-B is the most
efficient algorithm, and Deg is the least efficient one. We also ob-
serve that in many cases, the running time of all methods increases
with increasing t at first, but it may drop slightly when t further in-
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Table 2: Comparison of running time (wall-clock time in seconds) and search space (the number of vertices whose structural diversity
score are computed in search process) of different algorithms. Here k = 100 and t = 2.

Network Running Time Number of Computed Vertices
θ = ( n

t )
1√
m

Deg Bou FB A∗-B Rs Deg Bou FB A∗-B Rp

WikiVote 9.3 8.7 6.6 3.1 3.0 3362 2110 2111 1612 2.1 1.027
Epinions 37.6 35.9 24.9 10.4 3.6 11546 6349 6314 4875 2.4 1.017
Slashdot 31.4 26.9 19.7 11.5 2.7 12278 6459 6459 5968 2.1 1.015
Gowalla 83.8 60.3 28.3 17.3 4.9 36192 17883 17883 12777 2.8 1.012
Digg 2090.6 1670.1 1075.9 253.0 8.3 66403 30221 31866 23465 2.8 1.005
KDDTrack1 155087.0 7661.3 4370.0 2244.1 69.1 59163 7689 7668 5333 11.1 1.002
EmailEnron 10.6 10.1 6.9 3.6 3.0 6365 3031 3032 1545 4.1 1.023
EmailEuAll 12.5 11.1 7.9 5.9 2.1 4426 2045 2045 1774 2.5 1.020
WikiTalk 1153.7 642.1 331.0 102.1 11.3 44476 16156 16064 14592 3.0 1.007
HepPh 14.4 13.9 12.5 2.3 6.3 3988 2480 2480 1394 2.9 1.026
AstroPh 9.1 8.2 7.2 3.9 2.4 8439 4613 4613 2352 3.6 1.021
NotreDame 86.6 66.9 34.9 16.0 5.4 28347 16421 16417 8976 3.2 1.012
Flickr 3254.6 3136.9 2451.6 270.1 12.0 62814 38475 38460 21544 2.9 1.004
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Figure 12: Number of vertices whose structural diversity scores are computed versus parameter t

creases. A possible reason is that when t is large, the number of the
qualified components (i.e., the components whose sizes are no less
than t) reduces. Thus, by the estimated upper bound, the search
space can be quickly pruned.

Figures 12 (a)-(f) show the number of vertices whose structural
diversity scores are computed in different networks by varying t.
We observe that A∗-B prunes the most number of vertices, and Deg
prunes the least number of vertices.

7.4 Handling Update in Dynamic Networks
In this experiment, we evaluate the time for incrementally main-

taining the top-k results when the input network is updated. For
each network, we randomly insert/delete 1K edges, and update the
top-k results after every edge insertion/deletion. The average up-

date time per edge insertion/deletion is reported in Table 3. In
addition, we report the batch update time for the 1K edge inser-
tions/deletions. We repeat this experiment for 50 times and report
the average performance. For comparison, we also report the time
for computing the top-k results from scratch when the network is
updated with an edge insertion/deletion.

The result in Table 3 shows that handling edge insertions is highly
efficient. The update time per edge insertion is 0.01 or 0.02 mil-
lisecond on most networks, and the batch update time for 1K edge
insertions is within 10 milliseconds on most networks. Handling
edge deletions is more costly, because an edge deletion may trig-
ger to check whether the two endpoints of the deleted edge are still
in the same component or not in a number of neighborhood in-
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Table 3: Update Time (wall-clock time in milliseconds). Here
k = 100 and t = 2.

Network Insertion Insertion Deletion Deletion Computing
Per Edge 1K Edges Per Edge 1K Edges from scratch

WikiVote 0.02 11.5 0.77 576 3100
Epinions 0.01 9.2 0.49 347 10400
Slashdot 0.01 7.3 0.35 317 11500
Gowalla 0.01 7.3 1.51 1179 17300
Digg 0.01 7.2 1.47 1404 253000
KDDTrack1 0.05 44.8 800 660139 2244100
EmailEnron 0.01 6.9 0.59 440 3600
EmailEuAll 0.01 5.2 0.16 162 5900
WikiTalk 0.01 6.6 1.52 1513 102100
HepPh 0.02 8.2 0.45 292 2300
AstroPh 0.02 10.7 0.38 326 3900
NotreDame 0.01 6.2 0.85 696 16000
Flickr 0.08 61.5 7.81 4943 270100

duced subgraphs. The update time per edge deletion is within 1
millisecond on most networks, and the batch update time for 1K
edge deletions is less than 1 second on most networks. Finally we
can see the incremental update (per edge as well as batch update of
1K edges) is several orders of magnitude faster than recomputing
the top-k results from scratch.

8. RELATED WORK
To the best of our knowledge, top-k structural diversity search

has not been studied before. In the following, we briefly review the
existing work that are related to ours.

First, our work is closely related to the work on top-k query pro-
cessing. The goal of top-k query processing is to find k objects
with the highest rank based on some pre-defined ranking function.
A commonly used framework for this problem is to examine the
candidates in a heuristic order and prune the search space using an
upper bound. After the seminal work by Fagin et al. [10, 11], a
large number of studies on top-k query processing have been done
for different application scenarios, such as processing distributed
preference queries [4], keyword queries [17], set similarity join
queries [25]. Recently, many studies take the diversity into con-
sideration in top-k query processing, in order to return diversified
ranking results [26, 18, 1, 16, 2, 27]. A comprehensive survey of
top-k query processing can be found in [12].

Second, our proposed techniques are related to the algorithms
for the triangle listing problem, which is to find all triangles in a
graph. Itai and Rodeh in [13] first proposed an O(m1.5) algorithm
for the triangle listing problem. In [15], Latapy proved that the time
complexity O(m1.5) is optimal. Subsequently, Schank and Wag-
ner [21, 20] proposed a simpler and particularly fast solution with
the optimal complexity based on the vertex ordering and efficient
lookup of the adjacency lists for neighborhood testing. Recently,
Chu and Cheng [7] proposed an I/O-efficient algorithm for triangle
listing in a massive graph, which cannot fit into the main memory.

9. CONCLUSIONS
In this paper, we study the top-k structural diversity search prob-

lem motivated by a number of network analysis applications. We
develop a novel Top-k-search framework to tackle this issue. Specif-
ically, we design a Union-Find-Isolate data structure to keep track
of the known structural information of each vertex, and an effec-
tive upper bound for pruning. We evaluate the proposed algorithms
on 13 large networks, and the results demonstrate the effectiveness
and efficiency of the proposed algorithms.

Our study in this paper serves as the first step to the exciting
topic of top-k structural diversity search. [22] gives two more def-
initions of structural diversity based on k-core [5] and k-truss [23].
It would be interesting to extend the proposed techniques to these
two definitions as a future work.
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