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ABSTRACT

A table placement method is a critical component in big data ana-
lytics on distributed systems. It determines the way how data values
in a two-dimensional table are organized and stored in the under-
lying cluster. Based on Hadoop computing environments, several
table placement methods have been proposed and implemented.
However, a comprehensive and systematic study to understand, to
compare, and to evaluate different table placement methods has
not been done. Thus, it is highly desirable to gain important in-
sights into the basic structure and essential issues of table place-
ment methods in the context of big data processing infrastructures.

In this paper, we present such a study. The basic structure of
a data placement method consists of three core operations: row
reordering, table partitioning, and data packing. All the existing
placement methods are formed by these core operations with vari-
ations made by the three key factors: (1) the size of a horizontal
logical subset of a table (or the size of a row group), (2) the func-
tion of mapping columns to column groups, and (3) the function
of packing columns or column groups in a row group into physical
blocks. We have designed and implemented a benchmarking tool
to provide insights into how variations of each factor affect the I/O
performance of reading data of a table stored by a table placement
method. Based on our results, we give suggested actions to opti-
mize table reading performance. Results from large-scale experi-
ments have also confirmed that our findings are valid for production
workloads. Finally, we present ORC File as a case study to show
the effectiveness of our findings and suggested actions.

1. INTRODUCTION

Structured data analytics is a major Hadoop application, in the
context of which various query execution systems and query trans-
lators have been designed and implemented, such as Hive [1], Pig
[2], Impala [3], Cheetah [19], Shark [27], and Y Smart [24]. In these
systems and translators, a critical component is a table placement
method that determines how the data values in a two-dimensional
table are organized and stored on the storage devices. One critical
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issue of a table placement method is the I/O performance of read-
ing data from the placed table since it can fundamentally affect the
overall query execution performance.

In Hadoop-based computing environments, several table place-
ment methods have been proposed and implemented, such as CFile
in Llama [25], Column Format (CF) [20], Record Columnar File
(RCFile) [22] in Hive [1], Optimized Record Columnar File (ORC
File) [4] in Hive, Parquet [5], Segment-Level Column Group Store
(SLC-Store) in Mastiff [21], Trevni [6] in Avro [7], and Trojan Data
Layouts (TDL) [23]. These projects have been done independently,
and a comprehensive and systematic study of table placement meth-
ods is absent, leaving three critical issues unaddressed.

1. The basic structure of a table placement method has not been
defined. This structure should abstract the core operations to
organize and to store data values of a table in the underlying
cluster. It also serves as a foundation to design and imple-
ment a table placement method.

2. A fair comparison among different table placement methods
is almost impossible due to heavy influences of diverse sys-
tem implementations, various auxiliary data and optimiza-
tion techniques, and different workload configurations. Per-
formance evaluations from existing work commonly report
overall experimental results. Influences from different sources
are hard to be distinguished.

3. There is no general guideline on how to adjust table place-
ment methods to achieve optimized I/O read performance.
To adapt various workload patterns and different underlying
systems, a systematic approach to optimize a table placement
method is highly desirable.

In this paper, we present our study aiming to address the above
three issues. Our study focuses on the basic structure of a table
placement method, which describes core operations to organize and
store data values of a table. With the basic structure, we define
different table placement methods and identify critical factors on
which these methods are different from each other. Then, we com-
prehensively and systematically evaluate impacts of these factors
on the aspect of I/O read performance by our micro-benchmarks.
Based on the experimental results of our micro-benchmarks, we
provide general guidelines for performance optimization. To show
impacts of different table placement methods on production work-
loads, we also provide experimental results of several large-scale
experiments (macro-benchmarks). These results confirm our find-
ings from micro-benchmarks. Then, we discuss the trade-off be-
tween the data reading efficiency and the degree of parallelism
when choosing a suitable row group size. Finally, we present ORC
File as a case study to show the effectiveness of our findings and
suggested actions.
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Our study makes the following three main contributions.

1. We define the basic structure of a table placement method,
which is used to form a table placement method, to abstract
existing implementations, and to characterize differences be-
tween existing table placement methods.

. We design and implement a benchmarking tool (for micro-
benchmarks) to experimentally study different design factors
of table placement methods. To provide a fair evaluation and
insights into essential issues, this benchmarking tool uses an
implementation of a table placement method (also called a
table-placement-method implementation) to simulate varia-
tions of each design factor.

. We comprehensively study data reading issues related to ta-
ble placement methods and provide guidelines on how to ad-
just table placement methods to achieve optimized /O read
performance. Our guidelines are applicable to different table
placement methods. Because I/0 read performance is closely
related to table placement methods and is a critical factor of
the overall data processing performance, we believe that our
results and guidelines lay a foundation to existing and future
table placement methods.

The remainder of this paper is organized as follows. Section

2 presents the basic structure of table placement methods and de-

scribes existing table placement methods under this structure. Sec-

tion 3 gives an overview of our study methodology. Section 4

details our experimental results of micro-benchmarks. Section 5

details our experimental results of macro-benchmarks. Section 6

discusses the trade-off when choosing a suitable row group size in

clusters. Section 7 introduces ORC File in which we explain its
design as a case study. Section 8 is the conclusion.

2. TABLE PLACEMENT METHOD

In this section, we first provide the definition of the basic struc-
ture of table placement methods. Through this definition, we are
able to study existing table placement methods under a unified way.
Then, we summarize design factors on which existing table place-
ment methods are different from each other. Finally, we describe
how to use implementations of RCFile and Trevni to simulate vari-
ations of each design factor.

2.1 Definition

The basic structure of a table placement method comprises three
consecutive procedures, a row reordering procedure, a table parti-
tioning procedure, and a data packing procedure. These three pro-
cedures are represented by three corresponding functions, which
are frr, frp, and fpp, respectively. In our definition, all rows of
a table form a row sequence. We will use the position of a specific
row in the row sequence to refer to this row, e.g. the first row. Also,
all columns of a table form a column sequence. We will use the po-
sition of a specific column in the column sequence to refer to this
column, e.g. the second column. In this way, we use the position to
refer to a specific data value in the table, e.g. the data value at the
first row and the second column.

2.1.1 Row Reordering

The row reordering procedure rearranges rows of a given table
based on a given function frr shown in Equation 1.

i' = frr(i). (D

This function will form a new sequence of rows by assigning a new
position i’ to a row referred to as ¢ in the original sequence of rows.
For example, frr(1) = 10 means that the first row in the original
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Figure 1: A demonstration of a table placement method. V; ;
represents the data value at the ith row and jth column. For the
purpose of a clear presentation, all two dimensional indexes of
a data value are generated based on the original table.
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table will be the 10th row after the row reordering procedure. It
is worth noting that rows in the table will not be reordered in the
subsequent two procedures of table partitioning and data packing.

There are two representative examples of the row reordering pro-
cedure. First, the entire table is reordered based on the data values
of certain columns. Second, we can divide the table to multiple
non-overlapping subsets and then reorder every subset. This row
reordering procedure can be used when reordering the entire table
is not cost-effective or not feasible. One representative purpose of
the row reordering procedure is to encode or compress data values
efficiently. A demonstration of a simple row reordering procedure
is shown in Figure 1(a). In this figure, the row reordering procedure
reverses the original row sequence.

2.1.2 Table Partitioning

In general, the table partitioning procedure divides the entire set
of data values of the table into multiple non-overlapping subsets
(called logical subsets) based on a given partitioning function frp
shown in Equation 2.

LSe.y = fre(i,j). @)
Through frp, the value at the ith row and the jth column ' is as-
signed to the logical subset LS, ,,. Like a value in a table, a logical
subset LS,y is identified by a two-dimensional index, which is
(z,y), and we also refer to this logical subset as the one located at
the xth logical-subset-row and the yth logical-subset-column. For
example, in Figure 1(b), the original table is divided to 6 logical
subsets, where LS1,1 belongs to the first logical-subset-row and
the first logical-subset-column. In a logical subset, values will be
stored in a row-by-row fashion, i.e. a value at the 7;th row and the
jith column is stored before the one at the i2th row and the joth if
and only if 41 < 42, 0r i1 = 42 and j1 < ja.

Table partitioning functions in existing table placement methods
(Section 2.2) commonly exhibit two properties which are

1. Vi7Vj1,Vj2, when stl,yl = pr(i7j1) and stz,yz =
frp(i, j2), we have 1 = x2; and

"To be specific, the value is at the ithe row and jthe column of the
reordered table, i.e. the output of the row reordering procedure.



Table 1: A summary of symbols used in Table 2

Symbol Meaning

C a set of columns

C; the ith column

Csort a subset of columns used as sorting keys
the column group presented by an integer index that

fea(Ch) the column C}; belongs to. For example, if there are
n column groups, the range of fog is [1,n].

RG a set of row groups (logical-subset-rows).

RG; the ith row group.

Sr(7) the size of the ith row

S(LS;,5) the size of the logical subset LS; ;

SpB the user-specified maximum size of a physical block

S(RG;,Cj) the size of the column C; in the row group RG;

2. Viy,Via, V4, when LSy, = frp(i1,7) and LSy 4y, =
pr(ig,j), if 11 < io, then 1 < x2.
For these table partitioning functions, a logical-subset-row repre-
sents a set of contiguous rows. In this case, a row group is also
used to refer to a logical-subset-row.

2.1.3 Data Packing

After a table being divided into multiple logical subsets, the data
packing procedure will place those logical subsets into physical
blocks based on a given function fpp shown in Equation 3.

PByq = for(LSzy). (3)

Through this function, a logical subset LS, , will be assigned to
a physical block P B, 4, which is identified by a two-dimensional
index, (p,q). For example, in Figure 1(c), logical subsets LS 1,
LS1,3, LS>,1,and LS5 3 are packed into the physical block PBj 1.
A physical block is filled by a set of logical subsets and two differ-
ent physical blocks do not have any common logical subset. Also,
a physical block is the storage unit of the underlying storage sys-
tem. For example, a HDFS block is a physical block in Hadoop
distributed filesystem (HDFS). In a physical block, logical subsets
are stored by the order of their indexes, i.e. LSy, 4, is stored before
LS4, .y, if and only if x1 < 2, or 21 = x2 and y1 < ya.

2.2 Existing Work

With the basic structure of a table placement method defined in
Section 2.1, we are able to describe different table placement meth-
ods in a unified way. Here, we choose Column Format (CF), CFile,
Record Columnar File (RCFile), Segment-Level Column Group
Store (SLC-Store), Trevni, and Trojan Data Layouts (TDL) as six
examples to show the generality of our definition of the basic struc-
ture. For the purpose of simplicity, we consider that a column has
a primitive data type (e.g. Integer, Double and String). Ifa
column has a complex data type (e.g. Map), it can be considered as
a single column or it can be decomposed to multiple columns with
primitive types.

Optimized Record Columnar File (ORC File) and Parquet are
not presented at here due to space limit. For primitive data types,
they are similar to RCFile from the perspective of the basic struc-
ture. For complex data types, they provide their own approaches to
decompose a column with a complex data type to multiple columns
with primitive data types. After the decomposition, a table can be
considered as one with only primitive data types. Other features
of these two data placement methods are beyond the scope of this
paper. Interested readers may refer to [8] for ORC File and to [5]
for Parquet.
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Using the symbols summarized in Table 1, we present the defi-
nitions of these six table placement methods in Table 2.

2.2.1 Row Reordering Variations

Among those six table placement methods in Table 2, CFile and
SLC-Store can specify the functions of the row reordering pro-
cedure. CFile applies a sort to the entire table based on certain
columns. SLC-Store can apply an optional sort to rows in every in-
memory write buffer based on certain columns before flushing data
to disks. These specific row reordering procedures target specific
workloads. For example, CFile is designed for join operations [25].
Other table placement methods do not specify the row reordering
function, and different functions can be applied as a pre-process.

2.2.2 Table Partitioning Variations

Regarding the procedure of table partitioning, those six table
placement methods are divided into three categories. In the first
category, CF, RCFile, and Trevni only store a single column in a
row group to a logical subset. Also, these three methods set that
the sizes of all row groups are the same. CFile is in the second cat-
egory. Like methods in the first category, it stores a single column
in a row group to a logical subset. However, CFile sets that all row
groups have the same number of rows. In the third category, SLC-
Store and TDL both store a column group (a subset of columns) 2
in a row group to a logical subset, and the sizes of all row groups
are the same. For these two table placement methods, a function
mapping columns to column groups is required.

2.2.3 Data Packing Variations

On the data packing procedure, those six table placement meth-
ods are divided into four categories. In the first category, CF stores
a single logical subset to a physical block. In the second category,
CFile stores multiple logical subsets of a logical-subset-column
to a physical block. In the third category, RCFile stores multiple
row groups to a physical block. In the fourth category, SLC-Store,
Trevni ®, and TDL store a single row group to a physical block.

2.2.4  Summary

Comparing six existing representative table placement methods,
we find that they are different on four design factors, which deter-
mine their differences on functions of frr, frr, and fpp. These
factors are:

1. Row reordering: How to reorder rows in the table. Varia-
tions in this factor aim to facilitate specific workloads.
Row group size: The size of a row group.
Grouping columns: How to group columns.
Packing column groups: How to pack column groups in a
row group into physical blocks. This factor is dependent on
underlying distributed filesystems.
The first factor determines the row reordering function frr. Then,
the second and third factors determine the table partitioning func-
tion frp. Finally, the fourth factor determines the data packing
function fpp.

2.3 A Unified Evaluation Framework

Although table placement methods shown in Table 2 are different
from each other, to provide a fair evaluation, we use a single im-
plementation to simulate variations of each design factor of table

2.
3.
4.

2A column group can have only one column.

3 Although the implementation of Trevni allows that a Trevni file
can be larger than a physical block, according to the design goal of
Trevni described in [6], we consider that the size of a file of Trevni
is equal to the size of a physical block.



Table 2: Definitions of six table placement methods. For the column of frr, NS means not specified, and sortl and sort2 are sorting

functions specified in corresponding table placement methods.

Name fRR frp(i,7) fop(z,y) Restrictions
) 1. all row groups have the same size Srg
CF NS ([ k=1 5r (k) (z,y)
Sryenml B ; 2. max({S(RG;,Cy)|RG; € RG,Cj € C}) < Spp
) S S(LS ) 1. all row groups have the same number of rows Npc
H . S k=1 k,y
CFile  sortl(Csort)  ([7,51:9) (=55 1Y) 2 max({S(RGs,C;)|RG; € RG,C; € C}) < Spp
) 1. all row groups have the same size Srg
- i Sr(k)q . Srg X
RCFile NS ([W]J) ((75133 1,1) 2. Sra < Spp
) 1. all row groups have the same size Srg
SLC- Y1 Sr(k
Store sort2(Csort) ([Zkg;ac ( )]’fCG(Cj) (1) 2. Srg = SpB
S sk 1. all row groups have the same size Srg
Trevni NS ([%]J) (z,1) 2. Spe = Spp
SR 1. all row groups have the same size Srg
TDL NS ([=Eg2m=], fea(Cy) - (@) 2. Spe = Spg
3. STUDY METHODOLOGY
In this work, we study the impacts of different table placement
vy methods on I/O performance of read operations for three reasons.
R First, since a table placement method describes how data in a table
M Tabte | | __inosks |

(2) |4 e

Stored Table
Storage Device (3)

» U licit operations

> Y it oper

(1) Table organizations
(2) Table placement methods

(3) Storage device types

(4) Access patterns of the application

(5) Processing operations of the application-level filesystem

(6) Processing operations of the filesystem inside the operating system

Figure 2: The entire process of accessing a table at run time.

placement methods. In this way, we are able to only focus on vari-
ations of the basic structure and to eliminate impacts from diverse
codebases, different optimizations, and various auxiliary data,

Because only implementations of RCFile and Trevni were open
sourced at the point when we started this study, we use these two
as examples to illustrate how to simulate variations of each design
factor summarized in Section 2.2.4.

Row reordering: Row reordering can be done as a pre-process
of storing tables to RCFile or Trevni. Different approaches of row
reordering can be implemented.

Row group size: In RCFile, the size of a row group can be ad-
justed. Trevni originally stores a single row group in a physical
block. We can adjust the row group size by adjusting the size of a
physical block. For example, to decrease the row group size used
in Trevni-based simulations, applications can explicitly write less
number of rows to a physical block before switching to write a new
physical block.

Grouping columns: In RCFile and Trevni, we can use a com-
posite column (e.g. STRUCT in Hive) to store multiple grouped
columns in a row by row fashion.

Packing column groups: We pack column groups in a row
group into one or multiple physical blocks by writing to multiple
RCFile or Trevni files.
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are organized and stored in the underlying system, the results rea-
soned from the evaluation of I/O read performance are useful to dif-
ferent table-placement-method implementations. Second, comput-
ing performance is tightly coupled with the implementation, but a
fair comparison among different table placement methods requires
eliminating impacts from different implementations. Thus, evalu-
ating computing performance is fundamentally against the purpose
of our study. Third, a table placement method aims to store a table
in a way through which applications can efficiently access the ta-
ble. For this reason, the performance of read operations is a major
concern for table placement methods.

Next, we identify six factors that affect the I/O performance of
reading data from a table. Figure 2 illustrates the entire process
of accessing a table. A table is stored in the storage device with
a given table placement method. Then, applications (readers) will
access the data of this table through an application-level filesystem
(e.g. HDFS) and the filesystem inside the local operating system
(e.g. ext4 in Linux). In this entire process, there are a total number
of six factors (numbered in Figure 2) which can have impacts on
the performance of data accessing. These six factors are:

1. Table organizations, which represent data structures of the
table, e.g. the number of columns, the type of a column, and
the size of a value in a column;

. Table placement methods, which describe how values in the
table are organized and stored in the underlying system;

. Storage device type, which represents the device actually
storing the table, e.g. a HDD or an SSD;

. Access patterns of the application, which represent how an
application accesses the data (user-explicit operations), i.e. a
sequence of read operations, each of which starts at a certain
position of the file(s) storing the table and loads a certain
amount of data from the underlying system;

. Processing operations of the filesystem at the application level
(application-level filesystem), which represent (1) the way
that the application-level filesystem issues read operations
originally from the application to the filesystem inside the



local OS, and (2) the background read operations (system-
implicit operations) issued by the application-level filesys-
tem, i.e. application-level filesystem asynchronous readahead;

6. Processing operations of the filesystem inside the local OS,

which represent (1) the way that the local OS issues read
operations from the application-level filesystem to the stor-
age device, and (2) the background read operations (system-
implicit operations) issued by this local OS, i.e. local-OS
asynchronous readahead;
To understand the impact of variations of table placement methods,
we need to study how table placement methods are interacted with
other five factors listed above.

To provide a comprehensive and unbiased evaluation, we used
two sets of benchmarks in our experiments and our experiments
were designed under the guidance of the unified evaluation frame-
work described in Section 2.3. First, a set of micro-benchmarks
was used to show insights into I/O read performance of a single
Map task. We set three requirements for our micro-benchmarks:

1. Different software implementations of table placement meth-
ods should not affect the results of the study;

2. Experimental cases used in the study should cover a wide

range to provide comprehensive results; and

3. Factors not shown in Figure 2 should be eliminated.
Experimental results from our micro-benchmarks will be presented
in Section 4. Second, we used a set of macro-benchmarks to show
implications of different table placement methods in real applica-
tions. We present results of our macro-benchmarks in Section 5.

4. MICRO-BENCHMARK RESULTS

4.1 Rationality and Objectives

In an execution environment of Hadoop, reading a table is de-
composed into several independent read operations executed by in-
dependent Map tasks. Thus, gaining insights into performance of a
single Map task is critical to understand and to improve the overall
table reading performance. However, gaining insights into a single
Map task is hard when benchmarking a table placement method us-
ing real-world applications because lots of factors other than table
placement methods can affect the performance. To solve this issue,
micro-benchmarks are needed. We aim to design a set of micro-
benchmarks that can be controlled to individually test each factor
summarized in Section 2.2.4. This set of micro-benchmarks should
also provide insights which are applicable to different implementa-
tions of table placement methods.

4.2 Controlled Experimental Environment

In this section, we describe our controlled experimental environ-
ment. Specifically, we detail those six factors described in Section
3 that affect the I/O performance of reading data from a table.

4.2.1 Table Organizations

Since we focus on I/O read performance, only two aspects of
the table organization matter in our study, which are the number
of columns and the size of a value of a column. Because impacts
from these two aspects are predictable, we believe that showing
the results on tables with a fixed number of columns and a fixed
value size is able to provide insights that are applicable to differ-
ent table organizations. Thus, we used tables with 16 columns in
our experiments and the data type of each column was string. We
fixed the length of a string, which was 40 characters. In our micro-
benchmarks, two tables 77 and 75 were used. 737 had 2100000

rows, and the size of a column was 80.1 MiB *. While, 75 had
700000 rows, and the size of a column was 26.7 MiB.

4.2.2 Table Placement Methods

Since impacts of different row reordering functions (frr) are
tightly coupled with workloads and we aim to provide workload-
independent insights, we did not use any row reordering function.
We only studied impacts of different table partitioning functions
(frp) and data packing functions (fpp). Specifically, we consid-
ered different functions of frp and fp p based on the second, third,
and fourth factors described in Section 2.2.4.

71 and T were stored with different table placement methods.
We refer to every stored table by a 3-tuple ( frp, fpp, table), where
frp, fop, and table are the table partitioning function, the data
packing function, and the name of the table, respectively.

frp is represented by a 2-tuple (RG,CG), where RG shows
the size of a row group, e.g. 64 MiB, and C'G means how columns
were grouped. C'G can be grouped, which means that 2 columns
were grouped into a column group in our micro-benchmarks, or it
can be non-grouped, which means that a single column was stored
in a column group. Combining both RG and C'GG, we can know
the table partitioning function frp of a stored table. For exam-
ple, (256 MiB, grouped) means that the row group size was 256
MiB, and 2 columns were grouped into a column group. Also,
we use * to indicate that varied options were used. For example,
(s, non-grouped) means that varied row group sizes were used and
a column group only had a single column. If a table was stored by
Trevni, since it does not have a knob to directly configure the row
group size, we use RG = max.

fpp is represented by n-file, which means the number of files
(physical blocks) that a row group was packed into. Specifically,
we used /-file and 16-file in our experiments. For /6-file, a column
group only had a single column, i.e. for frp, CG = non-grouped.

4.2.3 Storage Device Type

A HDD was used because HDDs are commonly used in exist-
ing production deployments of HDFS. Also, we did not use RAID
because in Hadoop clusters, Just a Bunch of Disks (JBOD) is the
recommended configuration for slave nodes and using RAID is not
recommended [9].

4.2.4  Accessing Patterns of the Application

RCFile and Trevni both determine the size of the data needed
in a read operation based on metadata. For reading a row group,
RCFile loads data in a column by column way. For Trevni, we
used both column by column and row by row methods. Addition-
ally, to provide unbiased results, it is worth noting that when multi-
ple columns were accessed, we chose those columns that were not
stored contiguously. Also, in our experiments, the size of unneeded
data between two needed columns was always larger than the size
of a read buffer.

4.2.5 Processing Operations of the Application-level
Filesystem

We used two application-level filesystems provided by Hadoop,
which were local filesystem (LFS) and distributed filesystem (DFS)
3. For LFS, it uses buffered read operations and the buffer size is
configurable. For DFS, it has two approaches to read data. First, if
data is co-located with the client (the reader), the client can directly
access the file through local OS. In HDFS, this approach is called

41 MiB = 2%° bytes.
SLFS is a middleware on the top of the local OS. It provides the
same set of interfaces as DFS
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DEFS short circuit. Second, clients will contact the server having
the required data in HDFS to read data through socket. In this
approach, buffered read operations are used.

On the aspect of the application-level asynchronous filesystem
readahead, LFS does not have a mechanism to issue asynchronous
requests to prefetch data which may be used in future. However,
DEFS can be configured to issue asynchronous requests to local OS
through posix_fadvise . Since this mechanism relies on lo-
cal OS readahead, we disabled DFS readahead in our study and
focused on the impact from local OS readahead.

4.2.6  Processing Operations of the Filesystem in OS

For read operations from application-level filesystems or those
directly from applications, local OS will execute these operations
as requested. Also, local OS will issue asynchronous readahead
requests in an adaptive way [26]. In our study, we used different
maximum readahead sizes.

4.3 Benchmarking Tool

To have apple-to-apple comparisons, we have developed a bench-
marking tool that uses RCFile and Trevni to simulate variations of
each design factor in the scope of our study based on approaches
discussed in Section 2.3. In this tool, all values of a table are se-
rialized by the serialization and deserialization library in Hive. To
focus on I/O read performance, this tool does not deserialize data
loaded from underlying storage systems. To store a row of a col-
umn group, we use a composite data type (STRUCT in Hive) and
this column group will be stored as a single column.

RCFile and Trevni have complementary merits. By combining
them, our benchmarking tool covers a large variety of both table
placement methods and behaviors of applications ’. The main dif-
ferences of these two implementations are summarized as follows.
First, RCFile has a knob to explicitly configure the size of a row
group, but Trevni does not have this flexibility. Second, when read-
ing a column in a row group, RCFile reads the entire column at
once. However, Trevni only reads a block (the unit for compres-
sion) 8 at a time. Third, when reading referenced columns in a row
group, RCFile reads all needed columns in a column by column
way before applications can access values of this row group, which
means that RCFile determines the sequence of read operations is-
sued from applications. However, Trevni does not have this restric-
tion, and applications can determine how to read those referenced
columns.

4.4 Eliminating Unnecessary Factors

We aim to only focus on the second, third, and fourth design
factors summarized in Section 2.2.4. To accomplish this objec-
tive, we need to eliminate impacts from three unnecessary factors.
First, columns with different data types can blur experimental re-
sults since different columns may have significantly different im-
pacts on the I/O performance. To eliminate the impact of this factor,
in our experiments, columns of a table had the same data type and
all values had the same size (also discussed in Section 4.2.1). Sec-
ond, optimizations existing in different implementations of table
placement methods provide workload-dependent benefits and can
make experimental results hard to reason. Because table placement

®http://linux.die.net/man/2/posix_fadvise

7 Because we want to compare results of variations of each design
factor in the scope of our study, it is not meaningful to compare
results from RCFile-based simulations with results from Trevni-
based simulations.

8The uncompressed size of a block is 64 KiB.
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Table 3: A summary of conventions of presenting different pa-
rameters in our experimental results.

Parameter Explanation
rg=x MiB The row group size was set to x MiB
io=y KiB The size of read buffer was setto y KiB

The maximum size of local OS readahead was

OS-RA=z KiB  (oito2 KiB

methods studied in this paper are following the same basic struc-
ture presented in Section 2.1, they are equally affected by those
optimizations. Thus, we did not use any optimization in our micro-
benchmarks. Third, the variety of workloads can introduce unnec-
essary complexity and can cause biased results. In our experiments,
if a column was referenced, it was read entirely because when only
a portion of rows is needed, the initial ordering of rows directly
affects the performance. However, in this way, our experiments
cannot evaluate the performance of different table placement meth-
ods when indexes are used to access data in a physical block. We
believe that the I/O issue of randomly accessing data in a physical
block is beyond the scope of this paper and it will be studied in our
future work.

It is worth explaining reasons why we did not consider com-
pression. Because we focus on I/O performance, for a given table,
compression techniques only shrink the size of this table by reduc-
ing (1) the size of a column in a row group and thus (2) the size of
arow group. Thus, in our study, whether a table is compressed and
how a column is compressed do not affect our results.

4.5 Experimental Settings

In our micro-benchmarks, the machine we used had an Intel Core
i7-3770K CPU and 32 GB memory. The OS was Red Hat En-
terprise Linux Workstation 6.4 and the kernel release was 2.6.32-
279.22.1.e16.x86_64. In our experiments, the HDD was a West-
ern Digital RE4 1 TB SATA hard drive. We formatted the HDD
with an ext4 filesystem and the HDD was mounted with options
-0 noatime -o data=writeback. The sequential band-
width of this HDD measured through hdparm -t was around
130 MB/s. The version of Hadoop used in micro-benchmarks was
1.1.0. RCFile was distributed with Hive 0.9.0, and Trevni was dis-
tributed with Avro 1.7.3. Before every experiment, we first freed all
cached objects, and then freed OS page cache, dentries and inodes.

In our experiments, 77 was stored in the local OS filesystem and
it was accessed directly or through LFS. 75 was stored in DFS and
it was accessed through DFS with or without DFS short circuit.
The reason that we stored a smaller table in DFS is that the size of
the table is comparable to the size of the data processed by a Map
task of Hadoop MapReduce. We configured DFS to use a large
physical block size, so every file associated with 75> was a single
physical block (a HDFS block). If 7> was stored in a single file,
only a single physical block was used.

4.6 Experimental Results

First, we summarize conventions of presenting different param-
eters in our experimental results in Table 3. We also follow these
conventions in our macro-benchmarks (Section 5).

4.6.1 Row Group Size

With a given table, the size of a row group determines the size of
every column in this row group. Because data of a column stored
in two row groups may not stored contiguously, if the size of this
column in a row group is small, lots of seeks will be introduced and
the performance of reading this column will be degraded.
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Figure 3: Sizes of needed data and actually read data, and
throughputs on reading 4 columns of tables stored with ((x,
non-grouped), 1-file, T') through LFS.
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Figure 4: Sizes of needed data and actually read data, and
throughputs on reading 4 columns of tables stored with ((x,
non-grouped), 1-file, T>) through DFS. DFS has a 256 KiB read
buffer.

Figure 3 shows results of reading 4 columns of tables stored with
((x, non-grouped), 1-file, T ) through LFS with different LFS read
buffer sizes and different maximum local OS readahead sizes. We
also did the same experiments on reading 1 and 2 columns, and we
have the same observations as reading 4 columns.

Figure 3(a) shows sizes of data needed and sizes of data actually
read from the HDD through LFS (collected by iostat). Through
Figure 3(a), we have three observations.

First, we focus on results when local OS readahead is disabled
(cases with the prefix of 0OS_RA=0 KiB). When a small row group

@ Non-grouped row-oriented throughput (MiB/s)
B Non-grouped column-oriented throughput (MiB/s)
[ Grouped throughput (MiB/s)

Throughput (MiB/s)
@
g

OS_RA=0KiB  OS_RA=128 KiB OS_RA=256 KiB OS_RA=512KiB OS_RA=1024 KiB

Figure 5: Throughput of reading 2 columns from tables stored
with ((max, non-grouped), 1-file, 1) and ((mmax, grouped), 1-file,
T1) from the filesystem in the local OS.

is used, a buffered read operation through LFS will read lots of
unnecessary data from unneeded columns. For example, when the
row group size was set to 4 MiB, in our benchmarks, the size of a
column in a row group was implicitly set to 256 KiB. However, the
size of a column in a row group cannot be exactly 256 KiB and it
is actually slightly larger than 256 KiB. Thus, when the read buffer
size was 256 KiB, the size of the data actually read from the storage
device was around two times as large as the size of the data needed.
Through Figure 3(a), we can see that the size of four columns was
320.4 MiB data. However, 655.5 MiB data was loaded from the
storage device when settings mentioned above were used.

Second, if buffered read operations read both needed data and
unneeded data from the device, local OS readahead will amplify
the size of unneeded data since local OS will prefetch data from
those unneeded columns. For example, when the row group size
was 4 MiB and read buffer size was 256 KiB, to read four columns,
more than half of the data in the table was loaded from the HDD
when local OS readahead was enabled.

Third, with the increase of the row group size, there will be less
buffered read operations that read unneeded data from the device,
and local OS readahead will do less useless work. For example,
when the row group size was 256 MiB, read buffer size was 256
KiB, and maximum local OS readahead size was 1024 KiB, to read
four columns, 360.6 MiB data was actually read and the size of
needed data was 320.4 MiB.

Figure 3(b) shows throughputs of reading data through LFS cor-
responding to Figure 3(a). When a read operation loads unneces-
sary data and OS readahead cannot efficiently prefetch needed data,
the throughput of data reading is very low. For example, when the
row group size was 4 MiB, read buffer size was 256 KiB, and max-
imum local OS readahead size was 1024 KiB, the throughput of
reading four columns was 31.8 MiB/s. When the row group size
was increased to 256 MiB, the throughput was 86.8 MiB/s.

Figure 4 shows results when reading data of tables stored with
((*, non-grouped), 1-file, T) through DFS with 256 KiB read buffer
size. We can see that sizes of data actually read and throughputs
have the same trend as those presented in Figure 3. It is worth not-
ing that, when DFS short circuit is enabled, RCFile does not use
buffered read operations. Thus, when reading the metadata of a
row group, it generates lots of small read operations (e.g. 1 byte
request). This behavior is the reason that throughputs of cases with
DFS short circuit were significantly lower than those cases without
DEFS short circuit when local OS readahead was disabled.

4.6.2 Grouping Columns

To present the impacts of grouping columns to column groups,
we first compare results of reading two columns of tables stored
with ((max, non-grouped), 1-file, T1) and ((max, grouped), 1-file,
T1) directly from the filesystem in the local OS, which are shown
in Figure 5. We configured Trevni to directly access local filesys-

1756



B Non-grouped Size of Data Needed (MiB)
W Grouped Size of Data Needed (MiB)

300
5250
2 200
2 150
§ 100

50 |

0

O Non-grouped Size of Data Actually Read (MiB)
B Grouped Size of Data Actually Read (MiB)

i |
SIRTRIBI R R RTRIRIRIE

rg=4 | rg=16 | rg=64 |rg=256|rg=512,
MiB | MiB | MiB | MiB | MiB

CRTETRIRI Y

rg=4
MiB

rg=4
miB

rg=16 | rg=64 rg=256rg=512,
MiB MiB | MiB | MiB

rg=16 | rg=64 rg=256rg=512,
MiB MiB | MiB MiB

\
(a) Sizes without HDFS short circuit

@ Non-grouped Throughput (MiB/s)

05_RA=0 KiB 05_RA=128 KiB 05_RA=256 KiB

B Grouped Throughput (MiB/s)

Throughput (MiB/s)

rg=4 | rg=16 | rg=64 rg=256|rg=512 rg=4 |rg=16  rg=64 rg=256|rg=512 rg=4 | rg=16 | rg=64 rg=256|rg=512

OS_RA=0 KiB 0S_RA=128 KiB 0S_RA=256 KiB

(b) Throughputs without HDES short circuit

W Non-grouped Size of Data Needed (MiB)
M Grouped Size of Data Needed (MiB)
200

[ Non-grouped Size of Data Actually Read (MiB)
B Grouped Size of Data Actually Read (MiB)

@ 150
2 100
&
0 [I[I[I[I[Iﬂ[.[l[l[l Wimmm
0
rg=4 | rg=16 | rg=64 |rg=256rg=512| rg=4 |rg=16 rg=64 rg=256 rg=512| rg=4 | rg=16 | rg=64 rg=256rg=512
MiB | MiB | MiB | MiB | MiB | MiB | MiB | MiB | MiB | MiB | MiB | MiB | MiB | MiB | M
0S_RA=0 KiB 0S_RA=128 KiB 0S_RA=256 KiB
(c) Sizes with HDFS short circuit
@ Non-grouped Throughput (MiB/s) B Grouped Throughput (MiB/s)
_.80
@ 70
260
+ 50
240 -
£
230 -
220 -
£10 4
0
rg=4 | rg=16 | rg=64 rg=256rg=512| rg=4 | rg=16 | rg=64 rg=256|rg=512| rg=4 | rg=16  rg=64 |rg=256 rg=512
MiB | MiB | MiB | MiB | MiB | MiB | MiB | MiB | MB | MiB | M8 | MiB | MiB | MiB | M
0S_RA=0 KiB 0s_RA=128 KiB 0S_RA=256 KiB ‘

(d) Throughputs with HDFES short circuit

Figure 6: Sizes of needed data and actually read data, and
throughputs on reading 2 columns of tables stored with ((x,
non-grouped), 1-file, T>) and ((*, grouped), 1-file, T>) through
DFS. DFS has a 256 KiB read buffer.

tem instead of accessing files through LFS of DFS. Through this
way, we can eliminate the impacts from buffered read operation
introduced by LFS and DFS. When accessing the table that does
not group columns, we used both the row-oriented access method
and column-oriented access method. Through Figure 5, we can see
that grouping columns has a significant advantage only when the
row-oriented access method is used. Because row-oriented access
method will generate lots of seeks among two columns to fetch the
data, by grouping these two columns together, applications only
read a single column group and thus, seeks are eliminated. How-
ever, compared with the column-oriented access method on non-
grouped two columns, accessing two grouped columns does not
have significant performance improvement (only 3 to 4 MiB/s im-
provement). This small difference on throughputs is caused by one
additional disk seek and handling different metadata (in our exper-
iments, the table stored with ((max, non-grouped), 1-file, T1) had
16 columns and the table stored with ((max, grouped), 1-file, T1)
had 8 columns).

Additionally, we used tables stored with ((*, non-grouped), 1-file,
T5) and ((*, grouped), 1-file, I3) to study combined impacts of
different row group sizes and grouping columns. Figure 6 shows
results on DFS when accessing two columns of a table with and
without HDFS short circuit, varied row group sizes, and different
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Figure 7: Throughputs of reading 4 columns of tables stored
with ((max, non-grouped), 1-file, T1) and ((max, non-grouped),
16-file, T) from the filesystem in the local OS.
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Figure 8: Sizes of needed data and actually read data, and
throughputs on reading 4 columns of tables stored with ((x,
non-grouped), 1-file, T1) and ((x, non-grouped), 16-file, T")
through LFS.

maximum local OS readahead sizes. From cases with and without
DEFS short circuit, we can see that, when a small row group size is
used, grouping columns can have performance improvement. With-
out DFS short circuit, buffered read operations are used. In this
case, grouping columns can increase the size of needed data in a
read buffer when a small row group size is used. Also, when a
small row group is used, local OS readahead can easily do useless
work by prefetching unneeded columns. By grouping columns, lo-
cal OS readahead can do more useful work. However, when a large
row group size is used, grouping columns does not yield significant
performance improvement. The limited improvements over non-
grouped cases are caused by saving a limited number of disk seeks
and handling different metadata.

4.6.3 Packing Column Groups

Storing a row group to multiple physical blocks introduces a new
problem on how to group columns or column groups into physical
blocks. For simplicity, when columns in a row group were packed
into multiple physical blocks, we stored a single column in a phys-
ical block.

To show impacts of packing columns in a row group into multi-
ple physical blocks, we first present results of accessing 4 columns
of tables stored with ((max, non-grouped), 1-file, T1) and ((max,



non-grouped), 16-file, T%) directly from the filesystem in the local
OS in Figure 7. We can see that, for both the row-oriented ac-
cess method and column-oriented access method, using multiple
physical blocks to store a row group does not provide significant
performance improvement over corresponding cases that store all
columns in a physical block.

We also present results of reading 4 columns from tables stored
with ((x, non-grouped), 1-file, T1) and ((*, non-grouped), 16-file,
T7) through LFS in Figure 8. Through results, we can see that pack-
ing columns into different physical blocks only have performance
advantages when a smaller row group size is used and a relative
large maximum local OS readahead size is used. In this configu-
ration, when a single physical block (a single file in the local OS)
is used to store a row group, the local OS can do lots of useless
work by prefetching data from unneeded columns because it is not
aware of boundaries between columns. When a large row group
size is used, storing columns in different physical blocks does not
have performance advantages over storing all columns in one file.
We also evaluated performance of reading 4 columns from tables
stored with ((x, non-grouped), I-file, T%) and ((x, non-grouped),
16-file, T») through DFS. Results of these experiments show the
same trend as Figure 8.

4.7 Summary

With our thorough study and insightful findings, we suggest three
general-purpose and effective actions on how to adjust table place-
ment methods to achieve optimized I/O read performance.

4.7.1 Row Group Size

Action 1: using a sufficiently large row group size. As shown
in our experimental results, the size of a row group should be suffi-
ciently large. Otherwise, a buffered read operation issued by the un-
derlying storage system can load more data from unneeded columns
and the disk seeking cost cannot be well amortized.

In a distributed environment, determining the suitable row group
size requires careful considerations on the single machine data read-
ing performance and the available degree of parallelism. We will
discuss these considerations in Section 6.

4.7.2  Grouping Columns

Action 2: if a sufficiently large row group size is used and
columns in a row group can be accessed in a column-oriented
way, it is not necessary to group multiple columns to a column
group. Once two or more columns are grouped, reading a subset
of columns stored in this column group requires to load the data of
the entire column group from the underlying system, and thus, un-
needed data will be read. Also, because of the variety of workloads,
determining how to group columns may also introduce burden and
overhead on grouping columns.

If applications have to access columns in a row group in a row-
oriented way, it may worth grouping columns to column groups.
For example, if all columns in a column group are needed, this
column group can be read sequentially.

4.7.3  Packing Column Groups

Action 3: if a sufficiently large row group size is used, it is
not necessary to pack column groups (or columns) into multiple
physical blocks. When a sufficiently large row group size is used,
the negative impacts from local OS asynchronous readahead are
negligible. Also, if columns in a row group need to be placed in
the same machine, packing column groups into multiple physical
blocks may require additional supports from the underlying system,
which may not be feasible and can introduce overhead.

Table 4: A summary of datasets we used in our macro-

benchmarks. The column of Scale Factor shows the scale set-

ting we used to generate every dataset, and the column of Total

Size shows the corresponding size of the entire dataset.
Benchmark  Scale Factor — Total Size

SSB 1000 1000 GB
TPC-H 1000 1000 GB
SS-DB large 9.9TB

If the maximum size of a row group is limited by the data pro-
cessing environment and the negative impacts from local OS asyn-
chronous readahead are observable, it may worth packing column
groups into multiple physical blocks, which can indirectly enlarge
the size of a row group. In this case, the issue of co-locating phys-
ical blocks that store column groups in a row group is still needed
to be carefully considered and addressed.

5. MACRO-BENCHMARK RESULTS

In this section, we present results of a set of macro-benchmarks
to show impacts of different row group sizes (Section 5.3.1) and
impacts of grouping columns (Section 5.3.2) in production work-
loads. We do not present results of packing column groups of a row
group into multiple physical blocks at here because of two reasons.
First, packing column groups of a row group into multiple physical
blocks prevents local filesystem from prefetching unnecessary data.
The impact of it has been studied clearly in Section 4.6.3. Second,
in existing systems, packing column groups in a row group into
more than one physical blocks is not practical because it increases
the memory usage of the master node (e.g. NameNode in HDFS),
and it requires customized block placement policy to achieve ex-
pected performance.

5.1 Workloads

In our macro-benchmarks, we evaluated queries selected from
Star Schema Benchmark (SSB) [18], TPC-H [10], and SS-DB (A
standard science DBMS benchmark) [17]. In our evaluation, we
generated a large dataset for every benchmark. Table 4 shows the
scale factor we used and the size of every dataset. Queries used in
our experiments are summarized as follows.

SSB Query 1.1, 1.2, and 1.3: Every query in these three queries
first has a join operation between a fact table (1ineorder) and
a dimension table (date), and then has an aggregation operation
on results of the join operation. These queries have different filter
factors (the ratio of needed rows to the total number of rows) on the
fact table. In our results, query 1.1, 1.2, and 1.3 are referred to as
ssb.1.1, ssb.1.2, and ssb.1.3, respectively.

TPC-H Query 6: This query is an aggregation query on the
table of 1ineitem, which is the largest table in TPC-H.

SS-DB Query l.easy, 1.medium, and 1.hard: These queries
are aggregation queries on images. These three queries differ from
each other on the difficulty, i.e. easy, medium, and hard. With the
increase of the difficulty (e.g. from easy to medium), the volume of
data that will be processed in the query increases. It is worth noting
that queries in SS-DB processed only one cycle of images. In our
dataset, one cycle of images has a raw size of around 200 GB. In
our results, query 1.easy, 1.medium, and 1.hard are referred to as
ssdb.ql.easy, ssdb.ql.medium, and ssdb.q1.hard, respectively.

These queries were selected based on two reasons. First, they
are from widely used benchmarks. Second, they can be executed in
a single MapReduce job and thus make it easier to reason impacts
of different table placement methods on real applications than com-
plex queries. If we use queries that need to be evaluated by multiple
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MapReduce jobs, we would introduce more operations which are
invariant to different choices of table placement methods. Those
irrelevant operations will equally contribute to elapsed times in our
experiments. Thus, it is not reasonable to use queries that need to
be evaluated by multiple MapReduce jobs in this paper.

5.2 Experimental Settings

We used Hive 0.11.0 running on Hadoop 1.2.0 in our macro-
benchmarks. Because Trevni has not been integrated into Hive, we
only used the RCFile-based simulation. We used Hive in a 101-
node Hadoop cluster, which was setup in Amazon EC2. This clus-
ter had one master node and 100 slave nodes. The virtual machine
(VM) instance of the master node was m1.large. The VM in-
stance of 100 slave nodes was m1 .medium. In this cluster, the
master node ran the NameNode and the JobTracker. Each slave
node ran a DataNode and a TaskTracker.

HDFS, MapReduce and the local filesystem in every node were
setup as follows. For HDFS, we set replication factor to 3 and
HDFEFS block size to 256 MiB. For MapReduce, we set every slave
node to have 1 Map slot and 1 Reduce slot based on specifications
of the slave node. We also set that a spawned JVM can be reused
unlimited times. To measure exact elapsed times of a Map phase
and a Reduce phase, the Reduce phase was started after all Map
tasks had finished. For the local filesystem, we set the maximum
local OS readahead sizes to 512 KiB, which is a recommended size
for Hadoop clusters [11].

For every experiment, we report the median of three repetitions.
Before every repetition of our experiments, we first freed all cached
objects, then freed OS page cache, dentries and inodes.

5.3 Experimental Results

Our experimental results of macro-benchmarks are presented in
Figure 9. In our experiments, we used 4 MiB, 64 MiB, and 128
MiB as row group sizes. We used 64 KiB and 128 KiB as read
buffer sizes. We used two schemes to group columns. In figures
presented in this section, GroupingColumn=no means that we
did not group columns and we stored a single column in a col-
umn group. GroupingColumn=Best means that we stored all
needed columns of a query into a single column group.

5.3.1 Row Group Size

Based on Figure 9, we can see that when the row group size is
small, Hive will read significantly more data than needed for all
queries from three benchmarks. With the increase of row group
size, the size of the data actually read decreases significantly.

Additionally, elapsed times of Map phases are affected by dif-
ferent row group sizes. From 4 MiB row group size to 64 MiB
row group size, the elapsed times of the Map phase decrease sig-
nificantly. However, when further increase the row group size from
64 MiB to 128 MiB, the change on the elapsed times of the Map
phase is not significant. It is because 64 MiB row group size is large
enough for these workloads. Any further increase of the row group
size only result in a small gain of query processing performance.

5.3.2  Grouping Columns

When the row group size is small, grouping columns can pro-
vide benefits in two aspects. First, because needed columns are
stored together, a buffer read operation can load a less amount of
unnecessary data from disks. Second, a less number of disk seeks
is needed to read needed columns. However, when the row group
size is large enough, grouping columns cannot provide significant
performance benefits. Based on Figure 9, for 64 MiB or 128 MiB
row group size, there is no significant difference between storing

a single column in a column group and the best column grouping
scheme which stored only needed columns in a column group.

5.4 Summary

From experimental results of our macro-benchmarks, we can
confirm that our observations of our micro-benchmarks also exist
in a production-like environment. Moreover, our suggested actions
based on results of micro-benchmarks are also valid in practice.

6. THE DATA READING EFFICIENCY AND
THE DEGREE OF PARALLELISM

As shown in our experimental results, a sufficiently large row
group size can make read operations efficient on HDDs. In recent
work, e.g. ORC File [4] and Parquet [5], a large row group size
is also recommended. However, in a distributed environment, in-
creasing the row group size may not always result in performance
improvement. On one hand, for a given table, using a large row
group size can improve the efficiency of data reading because more
values of a column (or a column group) in a row group can be stored
contiguously, which improves the efficiency of disk read opera-
tions. Cost-efficient read operations are highly desirable, e.g. in a
cloud environment like Amazon Elastic MapReduce [12], a higher
data reading efficiency implies a lower price-performance ratio. On
the other hand, a smaller row group size can increase the avail-
able degree of parallelism. A high degree of parallelism has three
benefits. First, more tasks can be used to process data in parallel,
which can increase the aggregated data reading throughput. Sec-
ond, tasks assigned to machines can achieve better dynamic load
balance, which reduces elapsed time cased by unbalanced loads.
Third, when a machine fails, more available ones can be used to
process tasks originally assigned to the failed one, which decreases
the recovery time in the presence of machine failure events.

The essential issue to be considered is the trade-off between the
degree of parallelism in a cluster and the data reading efficiency
in each individual machine (or each data processing task). Users
having different tables, infrastructures and requirements on costs
should choose different row group sizes with considerations of the
above trade-off. Here we provide an example to illustrate our point
of view. The table in this example is based on 1ineitemin TPC-
H benchmark [10] and we call this table L. Values from the same
column in L have the same size. The size of a value in a column is
the average value size of the corresponding column in 1ineitem
calculated based on TPC-H specification (revision 2.15.0) and the
actual data type used in Hive [13]. This table L has four integer
columns, four double columns, two 1-byte string columns, four 10-
byte string columns, one 25-byte string column, and one 27-byte
string column. We assume that a value in an integer column occu-
pies four bytes and that a value in a double column occupies eight
bytes.

In this example, we assume that a logical subset in a row group
only has values of a single column. We then analyze the change of
data reading efficiency on reading a single column of a row group
with the increase of the row group size. The data reading efficiency
is calculated as the ratio of the data reading throughput to the disk
bandwidth. Equation 4 shows how we calculate the data reading
efficiency with a given size of a column in a row group (S¢), disk
seek time (tseek ), and disk bandwidth (Bp).

Throughput Sc y 1
B D tseek + }g—g B D '

Efficiency = )

Figure 10 shows the data reading efficiency on reading different
columns with the increase of the row group size. In this analysis,
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Figure 9: Sizes of data actually read and elapsed times of queries introduced in Section 5.1. GroupingColumn=x represents the
scheme of grouping columns. The unit of the row group size (rg) is MiB. The unit of the read buffer size (i0) is KiB.
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Figure 10: The change of data reading efficiency with the in-
crease of the row group size.

we set teek = 10 ms and Bp = 100 MiB/s. For the purpose of
simplicity, we do not consider the impact from buffered read op-
erations. Because different columns have different sizes of values,
they have different data reading efficiency for a given row group
size.

We summarize the implications presented in Figure 10 as fol-
lows. First, when we start to increase the row group size from
a small number, the increase of data reading efficiency of those
columns with small value sizes increases much slower than those
columns with large value sizes. For the smallest columns (those
two 1-byte string columns), when the row group size is 64 MiB,
the efficiency is only 31%. However, for the 27-byte string col-
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umn, it can achieve 75% efficiency when the row group size is less
than 20 MiB. Second, the increase of data reading efficiency via en-
larging the row group size decreases when the row group becomes
bigger. Taking columns with type double as an example, to achieve
50% and 75% data reading efficiency, 17.85 MiB and 53.57 MiB
row group sizes should be used, respectively (hollow squares in the
figure). Third, for a table with columns having a high variance of
average value sizes, achieving a certain data reading efficiency goal
for all columns may not be practical because a very large row group
size can limit the degree of parallelism. We conclude that an opti-
mal row group size is determined by a balanced trade-off between
the data reading efficiency and the degree of parallelism.

7. ORCFILE: A CASE STUDY

Recently, Optimized Record Columnar File (ORC File) has been
designed and implemented to improve RCFile. In this section, we
explain its design from the perspective of our study as a case study.
Specifically, we describe ORC File from the aspect of the basic
structure of table placement methods, i.e. row reordering, table par-
titioning, and data packing. In the end, we also highlight other im-
provements in ORC File.

Row reordering: The writer of ORC File does not sort a table,
but users can explicitly sort it as a pre-process. Like other table
placement methods, a sorted table may improve the efficiency of
data encoding and compression. Also, ORC File supports predicate
pushdown [8] [14]. The improvement of performance contributed
by this feature on reading a sorted column is more significant be-
cause the reader of ORC File can effectively skip rows which do
not satisfy the given predicates.



Table partitioning: On table partitioning, ORC File is similar
to RCFile. For primitive data types, the function of table partition-
ing of RCFile is also applicable to ORC File. However, ORC File
uses a 256 MiB row group size by default (a row group is called by
a stripe in ORC File). This large stripe size improves the perfor-
mance of reading data, which is consistent to our suggested action
in Section 4.7.1. Since the default stripe size is large, as we dis-
cussed in Section 6, it is possible that the degree of parallelism on
processing a given table is bounded by the stripe size [15]. ORC
File takes this issue into consideration in its optimization. Also,
ORC File does not group columns, which is consistent with our
suggested action in Section 4.7.2. For complex data types like Map,
ORC File decomposes a column with a such data type to multiple
actual columns with primitive data types [16]. In contrast, RCFile
does not decompose a column with a complex data type.

Data packing: ORC File does not store a stripe (a row group)
to multiple files. Because the size of a stripe is usually large and
an ORC File reader uses the column-oriented access method, it is
not necessary to store a stripe to multiple files from the perspective
of I/O read performance. Also, storing all columns of a stripe in
a single file is friendly to the NameNode of HDFS. This design
choice is consistent with our suggested action in Section 4.7.3.

ORC File also have several major improvements on auxiliary
data and optimization techniques. On the aspect of auxiliary data,
ORC File has integrated indexes that support rapidly seeking to a
specific row (identified by the row number) and predicate push-
down. In contrast to RCFile, ORC File records the locations of
stripes in the footer. Thus, the reader of ORC File does not need to
scan the file to locate the starting point of a stripe. On the aspect of
optimization techniques, ORC File uses two levels of compression.
The writer first automatically applies type-specific encoding meth-
ods to columns with different data types. Then, an optional codec
can be used to compress encoded data streams. Interested readers
may refer to [8] for details of these improvements.

8. CONCLUSION

We have presented our study on the basic structure and essential
issues of table placement methods in Hadoop-based data process-
ing systems. We have proposed a general abstraction framework
that makes it possible to abstract and compare different table place-
ment methods in a unified way. Based on this framework, we have
developed a benchmarking tool that simulates variations of table
placement methods. We have conducted a set of comprehensive
experiments with our benchmarking tool to understand the funda-
mental impacts of different variations of each design factor. Ex-
perimental results from our large-scale experiments have also con-
firmed results of micro-benchmarks in production workloads.

Our main findings are four-fold: (1) the row group size should be
large enough so that the column (or column group) size inside a row
group will be large enough to facilitate applications to achieve effi-
cient read operations; (2) when the row group size is large enough
and the column-oriented access method is used to read columns,
it is not necessary to group multiple columns to a column group;
(3) when the row group size is large enough, it is not necessary to
store columns or column groups in a row group to multiple physi-
cal blocks; (4) in a distributed computing cluster, the row group size
should be selected with considerations on the trade-off between the
data reading efficiency in each machine or task and the degree of
parallelism. Our presentation of ORC File makes a case on the
effectiveness of our findings and suggested actions.

Our benchmarking tool used in micro-benchmarks and scripts
used in macro-benchmarks are available at https://github.com/yhuai/
tableplacement.
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