
A Probabilistic Optimization Framework for the
Empty-Answer Problem

Davide Mottin
University of Trento

mottin@disi.unitn.eu

Alice Marascu⇤

IBM Research-Ireland
alice.marascu@ie.ibm.com

Senjuti Basu Roy
U of Washington Tacoma

senjutib@uw.edu

Gautam Das
UT Arlington & QCRI

gdas@uta.edu - gdas@qf.org.qa

Themis Palpanas
University of Trento

themis@disi.unitn.eu

Yannis Velegrakis
University of Trento

velgias@disi.unitn.eu

ABSTRACT
We propose a principled optimization-based interactive query re-
laxation framework for queries that return no answers. Given an
initial query that returns an empty answer set, our framework dy-
namically computes and suggests alternative queries with less con-
ditions than those the user has initially requested, in order to help
the user arrive at a query with a non-empty answer, or at a query
for which no matter how many additional conditions are ignored,
the answer will still be empty. Our proposed approach for suggest-
ing query relaxations is driven by a novel probabilistic framework
based on optimizing a wide variety of application-dependent objec-
tive functions. We describe optimal and approximate solutions of
different optimization problems using the framework. We analyze
these solutions, experimentally verify their efficiency and effective-
ness, and illustrate their advantage over the existing approaches.

1. INTRODUCTION
The web offers a plethora of data sources in which the user has

the ability to discover items of interest by filling desired attribute
values in web forms that are turned into conjunctive queries and get
executed over the data source. Examples include users searching
for electronic products, transportation choices, apparel, investment
options, etc. Users of these forms often encounter two types of
problems - they may over-specify the items of interest, and find no
item in the source satisfying all the provided conditions (the empty-
answer problem), or they may under-specify the items of interest,
and find too many items satisfying the given conditions (the many-
answers problem). This is because the majority of such searches are
often of exploratory nature since the user may not have a complete
idea, or a firm opinion of what she may be looking for.

In this paper we focus on the empty-answers problem. A popular
approach to cope with empty-answers is query relaxation, which
attempts to reformulate the original query into a new query, by re-
moving or relaxing conditions, so that the result of the new query
is likely to contain the items of interest for that user.
⇤Work primarily done while the author was with the University of
Trento.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 2150-8097/13/1�... $ 10.00.

A typical approach in query relaxation is the non-interactive ap-
proach (e.g., [9, 15, 16, 17]), in which a set of alternative queries -
with some of the original query conditions relaxed - is suggested to
the user in order to select the one he or she prefers the most. This
non-interactive approach has a number of limitations. The very
large number of candidate alternative queries that may be gener-
ated, due to the numerous combinations of conditions that can be
removed from it, makes the relevant systems hard to design, and
cumbersome to use by naive users.

We advocate here that a different and more palatable approach
for many application scenarios is the interactive (or navigational)
approach, in which the user starts from an original empty-answer
query, and is guided in a systematic way through several “small
steps”. Each step slightly changes the query, until it reaches a form
that either generates a non-empty answer, or any further change in
the query conditions does not result into a non-empty answer. In
addition to being effective for naive users, such an interactive ap-
proach is meaningful for scenarios in which the user interacts with
the data source via a small device, i.e., a mobile phone, where the
size of the screen does not allow many choices to be displayed at
once. Another kind of applications are the customer-agent inter-
actions that take place over the phone, as it happens during the
purchase of a travel insurance, an airline ticket, the reservation of a
holiday house, a car, etc. When the original user specifications can-
not be satisfied, the communication of all the different alternatives
to the customer by the agent is not possible, thus, the agent will
have to guide the customer through small steps to adapt to the orig-
inal request into one for which there are satisfactory answers. Such
interactions allows the user more control in the selection process.

Our proposed approach for suggesting query relaxations is driven
by a novel and principled probabilistic framework based on op-
timizing a wide variety of application-dependent objective func-
tions. For instance, when a user wants to purchase an airline ticket
(and her initial query returns empty-answer), this framework may
be used to suggest alternative queries that lead her to airline tick-
ets that are most “relevant” to her initial preference, or are most
economical, etc. The framework may be used to suggest queries
that lead the user to the more expensive airlines tickets, or tickets
in flights that have many unsold seats; thereby maximizing the rev-
enue/profit of the airlines company. It may also be used to suggest
queries that lead the user to valid tickets in the shortest possible
number of interactive steps; i.e., the objective is to minimize the
time/effort the user spends interacting with the system.

Most prior query relaxation approaches for the empty-answers
problem have been non-interactive, and/or do not support a broad
range of objectives, e.g., conflicting situations where the objective
is to maximize profit of the seller. We provide a detailed discus-

1762

t1
t2
t3
t4

M
ak

e

M
od

el

Pr
ic

e

A
BS

M
P3

A
la

rm
4W

D
D

SL
M

an
ua

l
H

iF
i

ES
P

Tu
rb

o

VW Touareg $62K 1 0 0 0 0 1 0 1 0
Askari A10 $206K 0 1 0 0 1 1 1 1 0
Honda Civic $32K 1 0 0 0 0 0 0 0 0

Porsche 911 $126K 0 0 0 0 1 0 1 1 0

Figure 1: An instance of a car database.

sion of related work in Section 8. Optimization-based interactive
approaches have been proposed for the many-answers problem [6,
18, 20], however these papers only consider one narrow optimiza-
tion goal, that of minimizing user effort. Moreover, we note that
there is a fundamental asymmetry between the empty-answer and
many-answers problems that precludes a straightforward adapta-
tion of previous optimization-based query tightening techniques to
query relaxation.

We provide a brief overview of our approach. At each interac-
tion step, a relaxation is proposed to the user1. In order to decide
what should be the next proposed relaxation, our system has to first
compute the likelihood that the user will respond positively to a pro-
posal, as well as quantify the effectiveness of the proposal with re-
spective to the optimization objective. Intuitively, the likelihood (or
probability) that a user responds positively to a proposed relaxation
depends on (a) whether the user believes that the proposal is likely
to return non-empty results, and (b) whether some of the returned
items are likely to be highly preferred by the user (even though
they only partially satisfy the initial query conditions). Since our
system cannot assume that the user knows the exact content of the
database instance, nor does it precisely know whether the user will
prefer the returned results, we resort to a probabilistic framework
for reasoning about these questions. This probabilistic framework
is one of the fundamental technical contributions of this paper.

To quantify the effectiveness of a proposed relaxation, one needs
to consider the probability with which the user will accept (or re-
ject) it, the value of the expected results of the specific query (this
depends on the application-specific objective function as briefly
discussed earlier, and discussed in more detail in Section 3.2), and
the further reformulations (relaxations) that can be applied to it
in case it turns out that it still produces no results. All these ele-
ments together form a factor that determines the cost of a proposal.
The problem then is to find the sequence of query proposals with
the optimum total cost (the actual cost function may be maximized
or minimized based on the specific optimization objective and dis-
cussed in Section 3). This is in general a challenging task, as we
have to consider an exponential number of possible sequences of
query proposals.

To cope with the above challenges, we have developed different
strategies for computing the sequences of query reformulations (re-
laxations) and have materialized these strategies into the respective
algorithms. The first algorithm, FullTree, is a baseline and is es-
sentially an exhaustive algorithm that pre-computes a complete tree
of all the possible relaxation sequences, the possible user responses
to each relaxation proposal, and the cost of the sequences. The sec-
ond algorithm, FastOpt, is an innovative space pruning strategy
that avoids computing the complete tree of all possible relaxations
in advance. When deciding to relax a condition in order to generate
a relaxation to propose to the user, it explores only part of the tree,
maintaining upper and lower bounds of the costs of the candidate
relaxations, until the one with the lowest cost can be unambigu-

1Instead of a single relaxation, a ranked list of top-k relaxations could also
be suggested in one step. We discuss these extensions in Section 6.

ously determined. While the above techniques always produce the
optimal condition relaxations sequence, we also investigate an ap-
proximate solution with improved scalability characteristics, called
CDR (or Cost Distribution Relaxation). This is a probabilis-
tic method that looks ahead into the space of potential relaxations
for the few next steps, estimates the probability distribution of the
cost of further relaxations necessary before the entire relaxation se-
quence is constructed, and makes a maximum likelihood decision
for the best next relaxation. The experimental evaluation demon-
strates that this method is both effective in finding a solution close
to the optimal, and efficient in producing this solution fast.

Our main contributions can be summarized as follows:

• We propose a principled probabilistic optimization-based interac-
tive framework for the empty-answer problem that accepts a wide
range of optimization objectives, and is based on estimation of the
user’s prior knowledge and preferences over the data. To the best of
our knowledge, such a probabilistic framework has not been stud-
ied before.

• We propose novel algorithmic solutions using our framework.
The algorithms FastOpt and CDR produce optimal and approxi-
mate relaxation sequences respectively, without having to explore
the entire relaxation tree. In particular, to the best of our knowl-
edge, a probabilistic method such as CDR for tree exploration has
not been considered before.

• We perform a thorough experimental performance and scalability
evaluation using different optimization objectives on real datasets,
as well as a usability study on Mechanical Turk.

2. MOTIVATING EXAMPLE
Consider a web site like cars.com, where users can search for

cars by specifying in a web-form the desired characteristics. An
example instance of such a database is shown in Figure 1. A user is
interested in a car that has anti-lock braking system (ABS), dusk-
sensing light (DSL), and manual transmission. The data instance
of Figure 1 reveals that there is no car that satisfies these three re-
quirements.

The user is in an urgent need of a cheap car, and is therefore
willing to accept one that is missing some of the desired character-
istics. The system knows that cheapest car is a Honda Civic (i.e.,
tuple t3) that has ABS, but no manual transmission and no DSL.
So it proposes to the user to consider cars with no DSL. If the user
accepts, the system next propose to the user to consider cars with
no manual transmission. If she also accepts the second relaxation,
then the cheapest car of the database, tuple t3 would be returned. If
the user does not accept the second relaxation, the second cheapest
car of the database (tuple t1) would be returned.

Instead, the system could also propose to the user cars with no
ABS in the beginning. However, if the user accepts that sugges-
tion, this would result in a match of the most expensive car of the
database (Askari A10, tuple t2). Since the user wishes to find the
cheapest car, therefore, proposing first to relax the DSL require-
ment is more preferred.

Assume that when the user is first asked to relax DSL, the answer
is no. In this case, the system needs to investigate what alternative
relaxations are acceptable. If the system knew that most users pre-
fer cars with DSL, it could have used this knowledge to propose a
different relaxation in the first place. In the following sections, we
present a framework that takes into account all the above issues, for
different optimization objectives.

The query lattice of the query ABS=1^DSL=1^Manual=1

is graphically depicted in Figure 2. The original query can be mod-
eled as (1, 1, 1), depicted at the root of the lattice, while each of

1763

(1,1,1)
{ }

(-,1,1)
{t

2
}

(1,-,1)
{t

1
}

(1,1,-)
{ }

(-,1,-)
{t

2
,t

4
}

(1,-,-)
{t

1
,t

3
}

(-,-,1)
{t

1
,t

2
}

(-,-,-)
{t

1
,t

2
,t

3
,t

4
}

(ABS,DSL,Manual)

Figure 2: Query lattice of the query Q in Example 1.
the other nodes in the lattice represents a relaxed query. A relax-
ation on a specific attribute is depicted by a “�” (e.g., ABS=1 ^
DSL=1 as (1, 1,�)). A directed edge from node p to node p

0 de-
notes that p0 contains exactly one additional relaxation that is not
present in p. For illustration, each relaxation contains the tuples
in its answer set. Note that, given a query with k conditions, the
number of possible relaxations is exponential in k.

3. PROBABILISTIC FRAMEWORK
In this section, we first discuss the generic probabilistic frame-

work for optimization-based query relaxation, and then discuss spe-
cific application-dependent instantiations of the generic framework.
This discussion considers Boolean databases for the ease of exposi-
tion, we refer to Section 6 for a further discussion on how to easily
adapt categorical/numerical attributes with hierarchies inside our
proposed framework.

3.1 Generic Probabilistic Framework
Let A be a collection {A1, A2, . . ., A

m

} of m attributes, with
each attribute A

i

2A associated with a finite domain Dom

A

i

. The
set of all possible tuples U=Dom

A1 ⇥Dom

A2 ⇥ . . . ⇥Dom

A

m

constitutes the universe. A database is a finite set D✓U . A tu-
ple t(v1, v2, . . ., v

m

) can also be expressed as a conjunction of
conditions A

i

=v

i

, for i=1..m, allowing it to be used in conjunc-
tive expressions without introducing new operators. Given t2U we
denote as Constrs(t) the set of conditions of t.

A query Q is a conjunction of atomic conditions of the form
A

i

=v

i

, where A
i

2A and v

i

2Dom

A

i

. Each condition in the query
is referred to as constraint. The set of constraints of a query Q is
denoted as Constrs(Q). A query can be equivalently represented as
a tuple (v1, v2, . . . , v

m

) where the value v
k

corresponds to attribute
A

k

and models the condition A

k

=v

k

if v
k

2Dom

A

k

or the boolean
value “true” if v

k

has the special value “-”. Similarly, a tuple (v1,
v2, . . . , v

m

) can be represented as a query Q, i.e., a conjunction
of conditions of the form A

i

=v

i

, one for each value v

i

. Thus, by
abuse of notation, we may write a tuple in the place of a query. A
tuple t satisfies a query Q if Constrs(Q) � Constrs(t)=;. The
universe of a query Q, denoted as U

Q

, is the set of all the tuples in
the universe U that satisfy the query Q. The answer set of a query
Q on a database D, denoted as Q(D), is the set of tuples in D that
satisfy Q. It is clear from the definition that Q(D)✓U

Q

. An empty
answer to a user query means that none of its satisfying tuples are
present in the database.

Example 1. The tuple t1 in Figure 1 can be represented as Make=VW

^ Model=Touareg ^ Price=62K ^ ABS=1 ^ Computer=0 ^
Alarm=0^ 4WD=0^DSL=0^Manual=1^HiFi=0^ESP=1
^ Turbo=1. Given the set of attributes (ABS, DSL, Manual), the
query ABS=1 ^ DSL=1 ^ Manual=1 can be modeled as (1, 1, 1)
while the query ABS=1 ^ DSL=1 as (1, 1,�). ⌅

A relaxation is the omission of some of the conditions of the
query. This results into a larger query universe, which means higher

likelihood that the database will contain one or more of the tuples in
it, i.e., the evaluation of the relaxed query will return a non-empty
answer.

Definition 1. A relaxation of a query Q is a query Q

0 for which
Constrs(Q

0
)✓Constrs(Q). The constraints in

Constrs(Q) � Constrs(Q

0
) are referred to as relaxed constraints

and their respective attributes as relaxed attributes. ⌅
For the rest of this paper, since our goal is to provide a system-

atic way of finding a non-empty answer relaxation, we consider
for simplicity only relaxations that involve one constraint at a time.
Note that there are other forms of relaxations, relevant to categori-
cal attributes with hierarchies, or numerical values. Our techniques
can also handle these forms of relaxations. We discuss these cases
further in Section 6.

The extra tuples that the query universe of a relaxation of a query
Q has as opposed to query universe of Q is called a tuple space.
Definition 2. The tuple space of a relaxation Q

0 of a query Q,
denoted as TS

Q

(Q

0
), is the set U

Q

0�U
Q

. ⌅
Among the constraints of a user query, some may be fundamen-

tal and the user may not be willing to relax them. We refer to such
constraints as hard constraints and to all the others as soft con-
straints. Since the hard constraints cannot be relaxed, for the rest
of this paper we focus our attention on the remaining constraints of
the user query, which are initially considered to be soft.

In the tuple representation of a query, we use the “#” symbol to
indicate a hard constraint, and “?” to indicate a question to the user
for the relaxation of the respective constraint.
Example 2. The expression (1,#,�, 1, ?) represents a relaxation
query for which the user has already refused to relax the second
constraint (i.e., she has kept the original query condition on the
second attribute as is), has accepted to relax the third one, and is
now being proposed to relax the last constraint.

In order to quantify the likelihood that a possible relaxation Q

0

of a query Q is accepted by the user, we need to consider two fac-
tors: first, the prior belief of the user that an answer will be found in
the database using the relaxed query Q

0, and second, the likelihood
that the user will prefer (i.e., be satisfied with) the answer set of
Q

0. The relaxation Q

0 selected by the framework should have high
values for both factors, and additionally should attempt to optimize
application-specific objectives (e.g., try to steer the user towards
highly profitable/expensive cars). We provide generic functional
definitions of both factors next, and defer application-specific de-
tails to Section 3.2.

Since we cannot assume that the user knows the precise instance
of the database, we resort to a probabilistic method for model-
ing that knowledge through a function called prior(t, Q,Q

0
). It

specifically measures the user belief that a certain tuple t satisfying
the relaxed query Q

0, i.e., a tuple from the tuple space of the relax-
ation, exists in the database. In order to estimate the likelihood that
the user is satisfied with an answer set, we use a preference function
pref(t, query) that captures the probability that a user will like a
tuple t, given the query. Section 3.2 discusses how specific prior
and pref functions can be constructed for various applications.

Using the prior and the pref functions, we can compute the re-
laxation preference function, i.e., the probability that a user accepts
a proposed relaxation Q

0 to a query Q (where Q evaluates to an
empty answer). The probability to reject the relaxation is:
relPref

no

(Q,Q

0
) =

X

t2TS
Q

(Q0)

(1� pref(t, Q

0
)) ⇤ prior(t, Q,Q

0
) (1)

which represents the probability of not liking any of the tuples
in the tuple space. Thus the probability of accepting the relaxation

1764

(ABS, DSL, Manual)

(1,1,1)
{}

(?,1,1) (1,?,1) (1,1,?)

(-,1,1)
{t2}

value=0.48
pref=0.3

cost=0.144

yes 30%

(#,1,1)
{}

 no 70%

(1,-,1)
{t1}

value=0.15
pref=0.7

cost=0.105

 yes 70%

(1,#,1)
{}

 no 30%

(1,1,-)
{}

 yes

(1,1,#)
{}

 no

(#,?,1) (#,1,?) (?,#,1) (1,#,?) (?,1,-) (1,?,-) (?,1,#) (1,?,#)

(#,-,1)
{t1}

value=0.15

 yes

(#,#,1)
{}

 no

(#,1,-)
{}

 yes

(#,1,#)
{}

 no

(-,#,1)
{t2}

value=0.48

 yes

(#,#,1)
{}

 no

(1,#,-)
{}

 yes

(1,#,#)
{}

 no

(-,1,-)
{t2,t4}

value=0.48

 yes

(#,1,-)
{}

 no

(1,-,-)
{t1,t3}

value=0.15

 yes

(1,#,-)
{}

 no

(-,1,#)
{t2}

value=0.48

 yes

(#,1,#)
{}

 no

(1,-,#)
{t1}

value=0.15

 yes

(1,#,#)
{}

 no

(#,?,-) (#,?,#) (?,#,-) (?,#,#) (#,?,-) (?,#,-) (#,?,#) (?,#,#)

(#,-,-)
{t1,t3}

value=0.15

 yes

(#,#,-)
{}

 no

(#,-,#)
{t1}

value=0.15

 yes

(#,#,#)
{}

 no

(-,#,-)
{t2,t4}

value=0.48

 yes

(#,#,-)
{}

 no

(-,#,#)
{t2}

value=0.48

 yes

(#,#,#)
{}

 no

(#,-,-)
{t1,t3}

value=0.15

 yes

(#,#,-)
{}

 no

(-,#,-)
{t2,t4}

value=0.48

 yes

(-,1,-)
{}

 no

(#,-,#)
{t1}

value=0.15

 no

(#,#,#)
{}

 no

(-,#,#)
{t2}

value=0.48

 yes

(#,#,#)
{}

 no

Figure 3: Query Relaxation tree of the query in Example 1.

is the probability that the user likes at least one tuple, which is
the inverse of the probability of the user not liking any tuple (i.e.,
rejecting the relaxation), namely

relPref
yes

(Q,Q0) = 1� relPref
no

(Q,Q0) (2)

To encode the different relaxation suggestions and user choices
that may occur for a given query Q that returns no results, we em-
ploy a special tree structure which we call the query relaxation tree
(see Figure 3 for an example of such a tree). This is similar to
tree structures used in machine learning techniques and games [23].
The tree contains two types of nodes: the relaxation nodes (marked
with double-line rectangles in Figure 3) and the choice nodes (marked
with single-line rectangles in Figure 3). Note that the children of
relaxation nodes are choice nodes, and the children of choice nodes
are relaxation nodes.

A relaxation node represents a relaxed query. The root node
is a special case of a relaxation node that represents the original
user query. A relaxation node does not have any children when the
respective query returns a non-empty answer, or returns an empty-
answer but cannot be relaxed further (either because all its con-
straints are hard, or because no further relaxation can lead to a
non-empty answer). In every other case, relaxation nodes have k

children, where k is the number of soft constraints in the query cor-
responding to the node. Each child represents an attempt to further
relax the query. In particular, the i-th child represents the attempt
to relax the i-th soft constraint (recall that in each interaction step
we attempt to relax only a single constraint). These children are the
choice nodes.

A choice node models an interaction with the user, during which
the user is asked whether she agrees with the relaxation of the re-
spective constraint. Each choice node has always two children: one
that corresponds to a positive response from the user, and one that
corresponds to a negative response. In the first case, the child is
a relaxation node that inherits the constraints from its grandpar-
ent (i.e., the closest relaxation node ancestor), minus the constraint
that was just relaxed (this constraint is removed). In the second
case, the child is a relaxation node inheriting the constraints from
the same grandparent, but now the constraint proposed to be re-
laxed has become a hard constraint (the relaxation was rejected). A
choice node can never be a leaf. Thus, any root-to-leaf path in the
tree starts with a relaxation node, ends with a relaxation node, and
consists of an alternating sequence of relaxation and choice nodes.

Each path of the tree from the root to a leaf describes a possible
relaxation sequence. Note that if the query Q consists of k con-
straints (i.e., attributes), there are an exponential (in k) number of
possible relaxation sequences. In practice, the number of paths is
significantly smaller, because they may terminate early: at relax-

ation nodes that have a non-empty answer, or at relaxation nodes
for which no descendant corresponds to a non-empty answer.

Given an empty-answers query Q, let CONSTRUCTQRTREE(Q)
be the procedure that generates the query relaxation tree for Q.
This procedure will serve as a subroutine in our later algorithms
for finding relaxation sequences with optimal cost.

Example 3. Figure 3 illustrates the query relaxation tree for the
query Q in the Example 1. Relaxation nodes are modeled with a
double-line and choice nodes with a single-line border. The color-
filled nodes are nodes corresponding to relaxations with a non-
empty answer. The non-colored leaves correspond to relaxations
that cannot lead to a non-empty answer, irrespective of further re-
laxations that may be applied. Notice how the ”?” symbol is used
to illustrate the proposal to relax the respective condition, and how
this proposal is turned into a relaxed or a hard constraint, depend-
ing on the answer provided by the user. ⌅

Next, we introduce and assign a cost value to every node of the
query relaxation tree. Having the entire query relaxation tree that
describes all the possible relaxation sequences, the idea is to con-
sider the cost value of each relaxation node to determine which
relaxation to propose during each interaction, based on the specific
optimization objective, as we describe in Section 3.2.

Recall Equations (1) and (2) that describes the probability that
a user will reject, or accept a specific relaxation proposal made by
the system. Using these formulae, in general, the cost of a choice
node n can be expressed as:

Cost(n) = relPref
yes

(Q,Q0) ⇤ (C1 + Cost(n
yes

))+

relPref
no

(Q,Q0) ⇤ (C1 + Cost(n
no

))
(3)

where the n

yes

and n

no

are the two children (relaxation) nodes of
n, Q is the query corresponding to the parent of n, and Q

0 corre-
sponds to the suggested relaxation of Q at node n. In the formula,
the variable C1 is a constant, that is used to quantify any additional
cost incurred for answering the current relaxation proposal.

The cost of a relaxation node, on the other hand, depends on
the way the costs of its children are combined in order to decide
the next relaxation proposal. To produce the optimal solution, at
every step of the process, a decision needs to be made on what
branch to follow from that point onward. This decision should be
based on the selection of the relaxation that optimizes (maximizes
or minimizes) the cost. Thus, the cost of a relaxation node n in the
query relaxation tree is

Cost(n) = optimize

c2S

Cost(n

c

) (4)

where Q is the query that the node n represents, S is the set of soft
constraints in Constrs(Q), and n

c

is the choice child node of n that

1765

corresponds to an attempt to relax the soft constraint c. The opti-
mization task is either maximization or minimization depending on
the specific objective function.

The cost of a leaf node depends on a specific optimization objec-
tive, and the “value” of the tuples in that leaf node in contributing
towards this objective. These details are presented in Section 3.2.

Therefore, the final task is to propose a sequence of relaxation
suggestions interactively, such that the cost of the root node in the
relaxation tree is optimized. An algorithm for that task using the
relaxation tree is discussed in Section 4.1.

3.2 Application-Specific Instantiations of the
Probabilistic Framework

In the previous subsection we developed a generic query relax-
ation framework. We emphasize that the main thrust of our pa-
per’s contribution is in developing the generic framework, which
is largely agnostic to application-specific details. However, to il-
lustrate its range of applicability, we take the opportunity here to
discuss various specific instances of the framework, notably differ-
ent instances of the prior, pref, and objective functions.

Recall that the prior function represents the user’s prior knowl-
edge of the content of the database. An implementation of the prior
is to consider the data distribution in the case of known data do-
mains. In our current implementation, we use the popular Iterative
Proportional Fitting (IPF) [7] technique on the instance data (which
can be thought as a sample of the subject domain) to estimate the
required probabilities. IPF takes into account multi-way correla-
tions among attributes, and can produce more accurate estimates
than a model that assumes independence across attributes. How-
ever, we note that the independence model, or any other probability
density estimation technique can be applied in the place of IPF.

The pref function is the probability/likelihood that a user will like
a tuple t given a query. In simple instances, e.g., where the user in
interested in cheap items in the query instances, the preference for
a tuple can be modeled as any suitable function where the probabil-
ity is dependent on the price of the item (higher the price, lower the
probability). More generally, the approach is to use a tuple scor-
ing function for calculating the pref of the tuples that imposes a
non-uniform bias over the tuples in the tuple space. For example,
instead of simple tuple scoring functions (such as price), one could
also use more complex scoring functions such as assigning a rele-
vance score [5] to each of the tuples. There exists a large volume of
literature on such ranking/scoring functions [1, 10, 5]. Even though
any of these functions are possible, in our implementation, we use
a simple and intuitive measure, which is based on the Normalized
Inverse Document Frequency [1].
pref(t, query) =

P
c2Constr(query)\Constr(t) idf(c)

P
c2Constr(query) idf(c) ,

where idf(c) = log

|D|
|{t|t2D,t satisfies c}| .

However, the question remains - as the relaxation process progresses,
does the preference of the user also evolve, i.e., the preference for
a particular tuple changes? Note that the preference for a particular
tuple may be computed in several different ways: (1) preference
for a tuple is independent of the query and is always static - an
example is where the preference is tied to a static property of the
tuple, such as price, (2) preference for a tuple is query dependent,
but only depends on the initial query and does not change during
the interactive query relaxation session - e.g., when the preference
is based on relevance score measured from the initial query, and (3)
preference for a tuple is dependent on the latest relaxed query the
user has accepted - this is a very dynamic scenario where after each
step of the interactive session the preference can change. These dif-

ferent preference computation approaches are referred to as Static,
Semi-Dynamic, and Dynamic respectively.

The generic probabilistic framework discussed in the previous
subsection could be used to optimize a variety of objective func-
tions, by appropriately modifying the preference computation ap-
proach of the tuples, and the cost computation of the leaf nodes,
relaxation nodes, and the choice nodes of the relaxation tree. We
illustrate this next.

Just as each tuple has a preference of being liked by a user, each
tuple can also be associated with a value that represents its con-
tribution towards a specific objective function. It is important to
distinguish the value of a tuple from the preference for a tuple -
e.g., if the objective is to steer the user towards overpriced, highly-
profitable items, then the value of a tuple may be its price (higher
the better), whereas the user may actually prefer lower priced items
(lower is better) - although in most applications the value and the
preference of a tuple are directly correlated. Thus in some appli-
cations, our query relaxation algorithms have to delicately balance
the conflicting requirement of trying to suggest relaxations that will
lead to high-valued tuples, but at the same time ensuring that the
user is likely to prefer the proposed relaxation. The following ex-
ample illustrates this situation:

Example 4. Consider the example database in Figure-1, and as-
sume that instead of steering the user towards cheap cars, the ob-
jective is to steer users towards expensive cars. In this case, the
value/preference of a tuple is directly/inversely correlated with its
price. For the purpose of illustration, let value of t1 = 0.15, t2 =

0.48, t3 = 0.07, t4 = 0.30. Let us also assume that the probabil-
ity that the user will say “yes” to relaxing ABS is only 0.3 (e.g.,
she knows that most cars come with ABS systems, and relaxing
ABS will not offer too many additional choice of cars), whereas the
probability that she will say “yes” to relaxing DSL is much higher
at 0.7 (e.g., it may be a relatively rare feature, and relaxing it may
offer new choices). Of course, our system can only estimate these
relaxation preference probabilities using Equations 1 and 2, which
depend on the prior and tuple preference functions.

Then, the cost of relaxing ABS is the expected value that can be
achieved from it, which is 0.3 ⇥ 0.48 = 0.144, while the cost of
relaxing DSL is 0.7 ⇥ 0.15 = 0.105. The system would therefore
prefer to suggest relaxing DSL to the user, since it has a higher
cost (i.e., potential for greater benefit towards to overall objective),
even though t2 has lower preference than t1. ⌅

As with preferences, the value of a tuple may evolve as the user
interacts with the system. Consequently three cases arise:

Static: In this case, the value of a tuple t is pre-calculated (stat-
ically) independently of the initial query Q, or subsequent relaxed
queries Q

0. The relaxation suggestions try to lead user to a leaf-
node that has the highest cost (cost of a non-empty leaf is the maxi-
mum value of the tuples that represent that leaf2)3. One can see that
this is equivalent to guiding the users to the most-valued tuples. In
such cases, the cost of a choice node is computed using Equation 3,
by setting C1 = 0. Finally, as the optimization objective is to max-
imize cost, then the cost of a relaxation node is the maximum cost
of its children.

Semi-Dynamic: In this case, the value of a tuple t is calculated
using the initial query Q, the first time it appears in the tuple space
of a relaxation. Typical examples of such values are relevance score
of the tuple to the initial query (here value is same as preference).

2Other aggregation functions (such as average) are also possible; the ap-
propriate choice of the aggregation function is orthogonal to our problem.
3Cost of an empty-leaf node is 0.

1766

This computed value of t is reused in all subsequent relaxations.
The rest of the process is similar to that of Static.

Dynamic: In this case, the value of a tuple t at a relaxation node
is calculated using the latest relaxed query Q

0 that the user has ac-
cepted. This value computation is fully dynamic, and the value
of the same tuple t may change as the last accepted relaxed query
changes. An example of such dynamically changing values are rel-
evance of the tuple to the most recent relaxed query. Such dynamic
value computation approach could be used inside the framework
with the optimization objective of minimizing user effort, as it min-
imizes the expected number of interactions. In this case, any leaf
node (empty or non-empty) has equal cost of 0. The cost of a choice
node is computed using Equation 3, by setting C1 = 1 (incurs ad-
ditional cost of 1 with one more interaction). Finally, if the cost of
a relaxation node is computed as the minimum cost of its children,
then the underlying process will suggest relaxations that terminate
this interactive process in minimum number of steps in an expected
sense, thus minimizing the user effort.
More Complex Objective Functions: Interestingly, the frame-
work could even be instantiated with more complex objective func-
tions, such as those that represent a combination of the previous
optimization objectives of relevance, price, user effort, etc. (e.g.,
most relevant results as quickly as possible, or cheapest result as
quickly as possible). In such cases, the cost of a leaf node needs
to be modeled as a function that combines these underlying opti-
mization factors. After that, the cost computation of the relaxation
nodes or the choice nodes in the relaxation tree would mimic ei-
ther Semi-Dynamic4 or Dynamic, depending upon the specific
combined optimization objective. Further discussion on complex
objective functions is omitted for brevity.

4. EXACT ALGORITHMS
4.1 The FullTree Algorithm

Given Equation 4, one can visit the whole query relaxation tree in
a depth-first mode and compute the cost of the nodes in a bottom-
up fashion. We refer to this algorithm as FullTree. Its steps are
described in Algorithm 1. Note that the specific approach has the
limitation that the whole tree needs to be constructed first, and then
traversed, a task that is computationally expensive since the size
of the tree can be exponential in k, where k is the number of the
constraints in the query. Furthermore, for every positive response
that the user provides to a relaxation request, the algorithm has to
call the database to evaluate the relaxed query. Additionally, based
on the specific score computation approach, for every response, it
may have to make additional calls to recompute the prior and the
pref value for the tuples in the relaxed query tuple space. This may
lead to time complexity prohibitive for many practical scenarios.

4.2 The FastOpt Algorithm
To avoid computing the whole query relaxation tree, for each re-

laxation, we can compute an upper and a lower bound of the cost of
its children. From the ranges of the costs that the computation pro-
vides, we can identify those branches that cannot lead to the branch
with the optimal cost. When the specific optimization minimizes
cost (i.e., effort), these are the branches starting with a node that
has as a lower bound for its cost a value that is higher than the up-
per bound of the cost of another sibling node. Similarly, when the
objective is to maximize the cost (i.e., lead user to most relevant an-
swers/answers with highest static score), the branches starting with
a node that has as a upper bound for its cost a value that is smaller
4choice node and relaxation node cost of Static is same as that of Semi-
Dynamic.

Algorithm 1 FullTree
Input: Query Q

Output: Relaxation Cost of Q
1: T CONSTRUCTQRTREE(Q)
2: return COMPOPTCOST(T)

3: procedure COMPOPTCOST(Node n)
4: if n has no children then
5: return 0
6: if n is a ChoiceNode then
7: Cost

yes

 COMPOPTCOST(n.yesChild)
8: Cost

no

 COMPOPTCOST(n.noChild)
9: Q

yes

 n.yesChild.Query . query in the “yes” child
10: P

no

 relPref

no

(n.Query,Q

yes

) . Equation (1)
11: P

yes

 1� P

no

12: return P

yes

⇤ (1+Cost

yes

)+P

no

⇤ (1+Cost

no

) . Equation (3)
13: else if n is a relaxation node then
14: return optimum

c2n.Children

COMPOPTCOST(c)

(1,1,1)
[0.18,0.52]

(?,1,1)
[0.05,0.22]

(1,?,1)
[0.18,0.35]

(1,1,?)
[0,0.52]

(-,1,1)
[0.08,0.08]

 yes 70%

(#,1,1)
[0,0.52]

 no 30%

(1,-,1)
[0.27,0.27]

 yes 67%

(1,#,1)
[0,0.52]

 no 33%

(1,1,-)
[0,0.52]

 yes 90%

(1,1,#)
[0,0.52]

 no 10%

(1,1,1)
[0.46,0.5]

(?,1,1)
[0.05,0.22]

(1,1,?)
[0.46,0.5]

(-,1,1)
[0.08,0.08]

 yes 70%

(#,1,1)
[0.1,0.52]

 no 30%

(1,1,-)
[0.41,0.51]

 yes 90%

(1,1,#)
[0.09,0.44]

 no 10%

(#,?,1)
[0.1,0.34]

(#,1,?)
[0,0.52]

(?,1,-)
[0.05,0.41]

(1,?,-)
[0.41,0.51]

(?,1,#)
[0.02,0.41]

(1,?,#)
[0.09,0.44]

(#,-,1)
[0.27,0.27]

 yes 36%

(#,#,1)
[0,0.52]

 no 64%

(#,1,-)
[0,0.52]

 yes 20%

(#,1,#)
[0,0.52]

 no 80%

(-,1,-)
[0.13,0.13]

 yes 36%

(#,1,-)
[0,0.52]

 no 64%

(1,-,-)
[0.52,0.52]

 yes 80%

(1,#,-)
[0,0.52]

 no 20%

(-,1,#)
[0.08,0.08]

 yes 20%

(#,1,#)
[0,0.52]

 no 80%

(1,-,#)
[0.27,0.27]

 yes 33%

(1,#,#)
[0,0.52]

 no 67%

Figure 4: Ex. 5 Query Relaxation Tree after 1st and 2nd expansions

than the lower bound of the cost of another sibling node could be
ignored. By ignoring these branches the required computations are
significantly reduced. We refer to this algorithm as FastOpt.

Instead of creating the whole tree, FastOpt starts from the root
and proceeds in steps. In each step, it generates the nodes of a spe-
cific level. A level is defined here as all the choice nodes found at
a specific (same) depth, alongside the respective relaxation nodes
they have as children. For the latter it computes a lower and upper
bound of their cost and uses them to generate a lower and upper
bound of the cost of the choice nodes in that level. When the cost
is to be minimized (maximized), those choice nodes with a lower
bound (upper bound) higher (lower) than the upper bound (lower
bound) of a sibling node are eliminated along with all their sub-
tree and not considered further. The computed upper and lower
bounds of the choice nodes allow the computation of tighter up-
per and lower bounds for their parent relaxation nodes (compared
to bounds that have already been computed for them in a previous
step). The update of these bounds propagates recursively all the
way to the root. If a relaxation node models a query that generates
a non-empty answer, then it does not expand to its sub-children.
Furthermore, after |Constrs(Q)| repetitions, the maximum branch
length is reached in which case the relaxation sequence with the
optimum cost can be decided.

The upper and lower bounds of the cost of a node are computed

1767

by considering the worst and best case scenario, and depends upon
the specific score computation approach. Recall that the cost of a
node is computed according to Equations (3) and (4). When the
process seeks to optimize the cost using Semi-Dynamic or Dy-
namic score computation approach (corresponds to maximum rel-
evance/maximize static score), the lowest cost of a node n at a level
L could be as small as 0, because the remaining |Constrs(Q)|�L

relaxations accepted by the user may have a very small (almost
zero) associated probability, resulting in the expected cost to be
close to 0. This yields a lower bound n.LB=0. Alternately, the
highest cost of a node n at a level L is achieved when the user is
lead to the highest cost leaf with a “yes” probability of 100% im-
mediately in the very next interaction. This yields an upper bound
n.UB = maximum cost of any leaf.

In contrast, when Dynamic score computation approach is used
(corresponds to minimum effort objective), the lowest cost of a
node n at a level L of the tree is achieved when the probability
for the yes branch of the choice node is 100% and the Cost(n

yes

)

in Equation (3) is 0. This yields a lower bound n.LB=0. Similarly,
the highest cost is achieved when all the remaining |Constrs(Q)|�
L negative responses have a probability of 100%. This yields an
upper bound n.UB=|Constrs(Q)|�L.

At the end, when the computation reaches a level equal to the
number of constraints in the query, |Constrs(Q)|, there is only one
choice node to choose. Note that for the leaf nodes of the full tree,
the upper and lower bounds coincide.

FastOpt is applicable to any cost function for which upper and
lower bounds of the cost of a node can be computed even after only
part of the tree below the node has been expanded. The efficiency
of the algorithm relies on whether very tight bounds can be com-
puted even after only a small part of the tree has been expanded.
The cost function should also have the following monotonic prop-
erty: the upper and lower bound calculations should get tighter if
more of the tree is expanded. All aforementioned cost functions
satisfy this property.

Example 5. Consider the running example in Section 2, with the
initial query (ABS, DSL, Manual), which aims to guide the user
towards cheap cars. The value of a tuple is inversely proportional
to its price. Let the normalized values for those tuples be 0.27,
0.08, 0.52, and 0.13. The objective is to select the relaxation node
with the highest cost (i.e., expected value).

Consider Figure 4. At the beginning the root node that is created
represents the original query with 3 conditions. Then, in the first
iteration (L=1), the 3 possible choice nodes (corresponding to the
3 attributes of the query) along with their yes and no relaxation
child nodes, will be generated (upper half of the figure). Since the
relaxation nodes (-,1,1) and (1,-,1) give non-empty answers, they
get lower bound (and upper bound) costs of .08 and 0.27 respec-
tively (in the figure, the bounds of every node are denoted in square
brackets “[. . .]”). The rest of the relaxation child nodes will be
assigned a lower bound of 0 and an upper bound of 0.52 (price
of the most expensive tuple in the database). Then the bounds of
the choice nodes will be updated based on the expected value (con-
sidering respective preference probabilities), and the lower bound
(resp. upper bound) of the root node will also be updated with
the maximum of lower bound (resp. upper bound) cost of its child
nodes. In the figure, the values of the quantities relPref

no

(Q,Q

0
)

and relPref

yes

(Q,Q

0
) are illustrated next to the label of the no

and yes edges, respectively.
Let us now consider the expansion of the second level. For brevity,

we only expand the first and the third child, as shown in the lower
half of Figure 4. The newly generated relaxation nodes have new
upper bounds, apart from those generating empty answers (or can-

not be relaxed further) that have a 0 upper bound. This impacts the
relaxation nodes of the previous (first) level, whose bounds are up-
dated to [0.08,0.08], [0.1,0.52], [0.41,0.51] and [0.09,0.44]. The
updates propagate all the way to the top. Notice that the first child
of the root has now an upper bound (0.22) that is smaller than the
lower bound of the third child (0.46), thus the first child is pruned
and will not be considered further. ⌅

To further optimize the algorithm, we expand at each step only
the node that has the tightest bounds, i.e., the smallest difference
between its lower and upper bounds. The intuition is that the dif-
ference between these two values will become tighter (or even 0),
and the algorithm will very soon decide whether to keep, or prune
the node, with no effect on the optimal cost of the tree.

5. APPROXIMATE ALGORITHM
Although the FastOpt algorithm discussed in the previous sec-

tion generates optimum-cost relaxations and builds the relaxation
tree on demand, the effectiveness of this algorithm largely depends
on the cost distribution properties between the participating nodes.
In the worst case, FastOpt may still have to construct the entire
tree first, even before suggesting any relaxation to the user. In
fact, due to the exponential nature of the relaxation tree, even the
FastOpt algorithm may be slow for an interactive procedure for
queries with a relatively large number of constraints. Applications
that demand fast response time (such as, online air-ticket or rental-
car reservation systems) may not be able to tolerate such latency.
On the other hand, these applications may be tolerant to slight im-
precision. Thus, we propose a novel approximate solution that we
refer to as the CDR (Cost Distribution Relaxation) algorithm.
Like FastOpt, Algorithm CDR also constructs the query relaxation
tree on demand, but the constructed part is significantly smaller.
This is possible because it leverages the distributional properties of
the nodes of the tree to probabilistically compute their cost. Of
course for applications that are less tolerant to approximate an-
swers, FastOpt may be more desirable, even though the response
time may be higher.

Given a query Q, the algorithm CDR computes first the exact
structure of the relaxation tree up to a certain level L < |Constrs(Q)|.
Next, it approximates the cost of each L-th level choice nodes by
considering the cost distributions of its children and proceeds with
the bottom-up computation of the remaining nodes until the root.
At the root node, the best relaxation child node is selected, and the
remaining ones are pruned. Upon suggesting this new relaxation,
the algorithm continues further based on the user’s response.

There are three main challenges in the above procedure: (i) in the
absence of the part of the tree below level L, how will the cost of
level L nodes be approximated? (ii) How is the cost of the interme-
diate nodes approximated in the bottom-up propagation? and (iii)
how is the best relaxation at the root selected? To address these
challenges, we propose the use of the distributional properties of
the cost of the nodes and the employment of probabilistic compu-
tations, as described next.

5.1 Computing Cost Probability Distributions
The algorithm computes the distribution of the cost of the nodes

at level L (first the relaxation nodes, then the choice nodes), and
higher by assuming that the underlying distributions are indepen-
dent and by computing the convolutions [3] of the probability den-
sity functions (pdf for short).5 We adopt convolution of distribu-
tions definitions from previous work [3] to compute the probability
5The independence assumption is heavily used in database litera-
ture, and as the experimental evaluation shows, it does not obstruct
the effectiveness of our approach.

1768

1/3$

0$$$$$$$$$$$$$$$$$$$$$0.33$$$$$$$$$$$$$0.67$$$$$$$$$$$$$$$$1$ $0$$$$$$$$$$$$$$$$$$$$1.17$$$$$$$$$$$$$$$$$0.34$$$$$$$$$$$$0.5$

1/3$

$ a) Original PDF b) relPref_{yes} * CostPDF(n1’))

$$

1/9$

0$$$$$$$$$$$$$$$$$$$$$$0.33$$$$$$$$$$$$$0.67$$$$$$$$$$$$$$$$$$$1$

1/3$

0$$$$$$$$$$$$$$$$$$$$0.17$$$$$$$$$$$$$$$$0.34$$$$$$$$$$$$$$$0.5$ $0$$$$$$$$$$$$$$$$$$$$0.17$$$$$$$$$$$$$$$$$0.34$$$$$$$$$$$$0.5$

1/3$

+"+

7/9$

1/9$
1/81$

0$$$$$$$$$$$$$$$$$$$$$$0.33$$$$$$$$$$$$$0.67$$$$$$$$$$$$$$$$$$$1$
+"Max

63/81$
17/81$

1/9$

7/9$

1/9$ 1/9$

7/9$

1/9$

0$$$$$$$$$$$$$$$$$$$$$0.33$$$$$$$$$$$$$0.67$$$$$$$$$$$$$$$$$1$$$$$$$$0$$$$$$$$$$$$$$$$$$$$$0.33$$$$$$$$$$$$$$$$0.67$$$$$$$$$$$$$1$

(a) (b) (c)

Figure 5: CostPDF (n) for (a) the “yes” branch of a choice node, (b) choice node, and (c) non-leaf relaxation nodes.

distribution of the cost of the nodes in the partially built relaxation
tree, as defined below. Then, in Section 5.2, we discuss how such
convolution functions could be efficiently approximated using his-
tograms.

Definition 3 (Sum-Convolution of Distributions). Assume that f(x),
g(x) are the pdfs of two independent random variables X and Y

respectively. The pdf of the random variable X + Y (the sum
of the two random variables) is the convolution of the two pdfs:
⇤({f, g})(x) =

R
x

0
f(z)g(x� z) dz.

Definition 4 (Max-Convolution of Distributions). Assume that f(x),
g(x) are the pdfs of the two independent random variables X , Y
respectively. The pdf of the random variable Max(X,Y) (the
maximum of the two random variables) is the max convolution of
the two pdfs:

max

⇤({f, g})(x) = f(x)

R
x

0
g(z) dz+g(x)

R
x

0
f(z) dz.

The Min-Convolution can be analogously defined, and moreover
these definition can be easily extended to include more than two
random variables.

We now describe how to estimate the cost distribution of each
node using Sum convolution and Max(similarly Min) convolution.
We denote as CostPDF (n) the probability density function of the
cost of a node n.
Cost distribution of a Relaxation Node: We first need to com-
pute the cost distribution of nodes at level L and then propagate the
computation to the parent nodes. We consider the pdf of each node
at level L to be uniformly distributed between its upper and lower
bounds of costs as described in FastOpt.

For relaxation nodes at higher levels, we need to compute the op-
timum cost over all the children nodes. Note that, optimization ob-
jectives associated with Semi-Dynamic and Static require Max-
convolution as the score of the relaxation nodes are maximized in
those cases. In contrast, Dynamic could be used to minimize effort
- requiring Min-convolution to be applied to compute the minimum
cost of the relaxation nodes.
Cost distribution of a Choice Node: The computation of the cost
distribution involves the summation operation between two pdfs
(CostPDF (n

yes

) and CostPDF (n

no

)), and between a constant
and a pdf (e.g., C1 + CostPDF (n

yes

)) (ref. equation (3)). As-
suming independence, the former operation involves the sum con-
volution of two pdfs, whereas the latter requires the sum convolu-
tion between a pdf and a constant. In addition, C1+CostPDF (n

yes

)

(similarly C1 + CostPDF (n

no

)) needs to be multiplied with a
constant relPref

yes

(similarly relPref

no

). We note this multi-
plication operation between a constant and a pdf can be handled
using convolution as well.
Selecting Relaxation at the Root: Given that the root node in the
relaxation tree contains k children, the task is to select the best re-
laxation probabilistically. For each child node n

i

of root with pdf
CostPDF (n

i

), we are interested in computing the probability that
the cost of n

i

is the largest (resp. smallest) among all its k chil-
dren when we want to maximize (resp. minimizes) the cost of the
root. Formally, the suggested relaxation at the root (N

rlx

) equals

N

rlx

= (argmax)

n

i

(Pr(Cost(n

i

) �
Q

k

j=1,j 6=i

Cost(n

j

))) (re-
spectively N

rlx

= (argmin)

n

i

(Pr(Cost(n

i

)
Q

k

j=1,j 6=i

Cost(n

j

))))
Given the user response, the above process is repeated for the

subsequent nodes until the solution is found.

5.2 Efficient Computation of Convolutions
The practical realization of our methodologies is based on a widely

adopted model for approximating arbitrary pdfs, namely histograms
(we adopt equi-width histograms, however any other histogram
technique is also applicable). In [3] it has been shown that we
can efficiently compute the Sum, Max, and Min-convolutions using
histograms to represent the relevant pdfs. In the following exam-
ple, we illustrate how histograms may be used for representing cost
pdfs at nodes of the relaxation tree.

Example 6. Consider a query Q with |Constrs(Q)|=5 and empty
answers, and assume that the approximation algorithm sets L = 2.
Let us assume that cost is required to be maximized. Consider a
choice node n at level 2, which has child relaxation nodes n0

1 (for a
positive response to the relaxation proposal) and n

0
2 (for a negative

response); Wlog, let 1 be the upper bound of cost of n0
1

6. Thus, the
cost of each child is a pdf with uniform distribution between 0 and
1. CostPDF (n

0
1) is approximated using a 3-bucket equi-width

histogram, and if we assume that relPref

yes

and relPref

no

of
n are 0.5, the CostPDF (n) can be computed using Equation 3
by approximating the pdf of the cost of each child with a 3-bucket
histogram. Figures 5 (a) - (b) illustrate these steps.

The algorithm continues its bottom-up computations, and con-
siders relaxation nodes in the next higher level: at level 1, given
a relaxation node (n0) that has k children (each corresponds to a
choice node in level 2), CostPDF (n

0
) is computed by using Equa-

tion 4 and applying max-convolution on its children (see Figure 5
(c)). Once the pdf of the cost of every relaxation node at level 1
has been determined, the algorithm next computes the pdf of cost
of each level 1 choice nodes using sum-convolution, and so on.

6. EXTENSIONS
Managing databases with categorical / numerical attributes with
hierarchies: Treatment of a categorical attribute is no different in
our framework than that of its Boolean counterpart. A categorical
attribute is treated Boolean by assuming its specified value (in the
query) to be 1, and all other possible values as ‘*’ (i.e., relaxed).
Similarly, hierarchies in categorical attributes are readily accom-
modated by our approach: we just expand the query lattice (refer
to Figure 2) using the hierarchies of each attribute, construct the
query relaxation tree, and proceed with our algorithms as usual.

In the presence of numerical attributes, apart from choosing which
attribute to relax, we also have to decide to what extent to relax the
value of the chosen attribute. This can be formulated as a problem
of relaxing hierarchical attributes, by defining buckets over data
ranges of the numerical attributes, and hierarchies over those buck-
ets. (This formulation makes sense in several practical situations,
6Recall that the lower bound is always 0.

1769

where numerical ranges can be naturally bucketized: e.g., the age
can be bucketized in ”teens”, ”young”, ”middle-aged”, ”seniors”,
screen resolution in ”VGA”, ”SVGA”, ”XGA”, ”QVGA”, etc.).
Cardinality constraint on answer set: In several cases, the users
are interested in non-empty answers that contain a certain minimum
number of tuples (specified by a threshold). This is a generalization
of the solutions we propose in this study: we build the query relax-
ation tree (with a simple adjustment to the relaxation preference
function), only that this time we stop expanding a branch of the
tree when we reach a node that corresponds to an answer set with
the desired cardinality, and we then apply the relaxation algorithm
as usual.
Suggesting top-k relaxations: In certain applications, it may be
disconcerting for the user to get just one relaxation suggestion at a
time. Our proposed framework could be easily extended to suggest
a ranked list of k relaxations at a given interaction, by suggesting
to the user the k best sibling relaxation nodes based on cost, at a
given level in the relaxation tree.

7. EXPERIMENTAL EVALUATION
We present our experimental evaluations in this section, investi-

gate the effectiveness and scalability of our proposed solutions, and
compare our proposed framework with a number of related works
and baseline methods. Our prototype is implemented in Java v1.6,
on an i686 Intel Xeon X3220 2.40GH machine, running Linux
v2.6.30. We report the mean values, as well as the 95% confidence
intervals, wherever appropriate.
Datasets: We use two real datasets from diverse domains, namely,
used cars and real estate. The Cars dataset is an online used-car
automotive dealer database from US, containing 100,000 tuples
and 31 attributes. The Homes dataset is a US home properties
dataset extracted from a nationwide realtor website, comprising of
38,095 tuples with 18 boolean attributes. Based on the Cars dataset,
we also generated datasets ranging between 20,000-500,000 rows
(Cars-X), where we maintained the original (multidimensional) dis-
tribution of attribute values. This offers a realistic setting for testing
the scalability of our algorithms.
Queries: We consider a workload of 20 random queries, initially
containing only soft constraints. User preferences are simulated
using our relPref value associated with each choice node.

7.1 Implemented Algorithms
Interactive Algorithm - Interactive: This algorithm is from our
interactive query relaxation framework, and we implement three
different instances of the preference computation: (i) Dynamic: a
minimization of the user effort, with parameter C1 = 1 and leaf
cost 0; (ii) Semi-Dynamic: a maximization of the answers qual-
ity with parameter C1 = 0 and leaf cost equal to the maximum
value of the preference function in the result-set; and (iii) Static:
a maximization of a randomly chosen static value for each tuple,
with parameter C1 = 0 and leaf cost the maximum profit of the
result-set. Additionally, we implement FullTree, FastOpt, and our
parameterized algorithm CDR.
Simple Baselines: We implement two simple baseline algorithms:
Random always chooses the next relaxation to propose to the user
at random, and Greedy greedily selects the first encountered non-
empty relaxation, considering only the next level.
Related Works: We describe implemented related works next.
• top-k: This algorithm takes user-specific ranking functions as
inputs (user provides weights for each attribute of the database),
and we show the top-k tuples, ranked by the linear aggregation of
the weighted attributes.

• Why-Not: This algorithm is from [24], non-trivially adapted for
the empty-answer problem. We note that method [24] is primarily
designed for numerical data, and inappropriate for empty-answer
problem, since it assumes that the user knows her desirable answer
(unlike empty-answer problems). We make the following adapta-
tions: given a query with empty-answers, we apply our relevance-
based pref ranking function (Section 3) to determine the most rele-
vant tuple in the database that matches the query (non-exact match).
We use that tuple as user’s desirable answer, then convert the cate-
gorical database to a numeric one (in scale 0 � 1), and apply [24]
to answer the corresponding Why-Not query. The algorithm gener-
ates a set of relaxations that we present to the user.
• Multi-Relaxations: This algorithm is from [15], suggesting all
minimal relaxations to the user.
• Mishra and Koudas: This algorithm is from [22]. Given a query,
the method suggests a set of relaxations, such that the number of
tuples in the answer set is bounded by a user specified input. The
main differences and limitations of this work are discussed in Sec-
tion 8. Our empirical study on the queries presented above exhibits
that 81% of the queries with 8 constraints do not lead to a non-
empty answer (i.e., failing queries), if the relaxations take place
along each attribute independently (and ignore multiple attribute
relaxations in conjunction). Figure 6 depicts the percentage of fail-
ing queries with queries of increasing size. Therefore, [22] largely
fails to successfully address the empty-answer problem at hand.
Summary of Experiments: We implement the related works dis-
cussed above, and set up a user study comparing the related works
with our proposed framework in Section 7.2. Additionally, we also
present a separate study that validates the effectiveness of different
cost-functions supported by our framework. An empirical com-
parison among the different objectives is presented in Section 7.3.
Section 7.4 presents quality experiments to experimentally demon-
strate the effectiveness of our proposed framework in optimizing
the preferred cost function (by the cost of the root node of the re-
laxation tree). Section 7.5 presents the scalability studies. Sec-
tion 7.6 reports the effectiveness of the approximation algorithm
CDR based on the parameter (L).
Summary of Results: Our study concludes the following major
points - (1) Existing methods are unable to address the same broad
range of objectives (e.g., the case when the overall goal conflicts
with user preference) as we do. (2) More than 60% of the users pre-
fer “step-by-step” interactive relaxation suggestion to non-interactive
top-k results based on user defined ranking functions (11%), or re-
turning all relaxations suggestions in one step [24, 12] (20%). (3)
User satisfaction is maximum (i.e., over 90%) with the returned
results by our framework even for seller-centric optimization ob-
jectives. (4) Our proposed algorithms scale well with increasing
dataset or query size (experiments up to 500k tuples). (5) Algo-
rithm CDR can effectively balance between efficiency and the qual-
ity of the returned results (within a factor of 1.08 from the optimal).

7.2 User Study
We build a prototype of our system and use the Homes database

to conduct two user studies with Amazon’s Mechanical Turk (AMT).
User-Study 1: In this user study, we compare our proposed method
Interactive (for seller-centric optimization) with top-k, Why-Not
and Multi-Relaxations. We hire 100 qualified AMT workers to
evaluate 5 different queries, and measure user satisfaction in a scale
of 1 to 4 7 independently and in comparison with other methods.
We ask each worker, which method is most preferable (Favored),

71- very dissatisfied, 2 - dissatisfied, 3- satisfied, 4-very satisfied

1770

0%#
20%#
40%#
60%#
80%#

100%#

3# 4# 5# 6# 7# 8#

Fa
ili
ng
'q
ue

rie
s'

Query'Size'

Figure 6: Failing queries in
Mishra and Koudas vs query size.

0%#

20%#

40%#

60%#

80%#

100%#

##########Q1# ##########Q2# ##########Q3# ##########Q4#

sat.#Dynamic# sat.#Semi7Dynamic# sat.#Sta8c#
dissat.#Dynamic# dissat.#Semi7Dynamic# dissat.#Sta8c#

Figure 7: Percentage of satisfied
and dissatisfied users.

0%#
20%#
40%#
60%#
80%#

100%#

###################Favored#########Answers#Quality########################Usability#

Interac>ve# Mul>@Relaxa>ons# top@k# Why@Not#

Figure 8: Comparison of user satisfaction with different related work.

0"
0.5"
1"

1.5"
2"

2.5"
3"

3.5"
4"

4.5"

4" 5" 6" 7"

N
um

be
r'o

f's
te
ps
'

Query'size'

Dynamic"
Semi4Dynamic"
Sta6c"

Figure 9: Number of steps vs
query size in the user study.

0"

1"

2"

3"

4"

5"

6"

3" 4" 5" 6" 7"

N
um

be
r'o

f's
te
ps
'

Query'Size'

Dynamic" Semi3Dynamic" Sta5c"

Figure 10: Effort vs Query Size
of different preference objective
functions (Homes dataset).

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

3" 4" 5" 6" 7"

Pr
ofi

t&

Query&Size&

Dynamic" Semi5Dynamic" Sta7c"

Figure 11: Profit vs query size
of different preference objective
functions (Homes dataset).

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

3" 4" 5" 6" 7"

An
sw

er
'Q
ua

lit
y'

Query'Size'

Dynamic" Semi4Dynamic" Sta6c"

Figure 12: Quality of the results
vs query size for different objec-
tive functions (Homes dataset).

rate her satisfaction with the quality of the returned results (An-
swers Quality) for each method, and rate her satisfaction with the
effectiveness of each of methods (Usability). In addition we ask
them the age range and the level of expertise with the use of com-
puters and Internet (naive to IT professional user in the range 1-4).
As depicted in Figure 8, more than 60% of the users prefer In-
teractive compared to other methods, and only 11% of users like
to design ranking functions. With regard to result quality, more
than 80% think that Interactive is appropriate for obtaining good
quality results. At the other extreme, the adaptation of Why-Not
algorithms produce good quality results only for 58% of the work-
ers. With regard to method usefulness, the users are asked to in-
dependently evaluate the usefulness of each of the four methods
in obtaining fast answers. 88% of the users prefer Interactive (i.e.,
give scores of 3 or 4), whereas 76% prefer Multi-Relaxations, 65%
top-k, and 58% Why-Not. Finally, the users are also asked to score
Interactive in terms of overall satisfaction: 91% workers are very
satisfied with Interactive, out of which 49% are naive users (data
is not shown in Figure 8).

User-Study 2: We set up three different tasks, hire a different
set of 100 workers to test different optimization functions (with-
out actually knowing them) in our framework. We propose five
empty-answer queries per HIT, with 4 � 7 attributes. The study
uses the FastOpt algorithm, and the workers are asked to evalu-
ate the suggested refinements (Q1), the system guidance (Q2), the
time to arrive to the final result (Q3), and the system overall (Q4),
in a scale of 1 (very dissatisfied) to 4 (very satisfied). We com-
pare different optimization functions in terms of number of steps,
profit, and answer quality (we only show results for the number of
steps; the others exhibit a behavior similar to the ones described
in the previous section, and are omitted for brevity). The analysis
shown in Figure 9 shows that Dynamic guides users to non-empty
results 2 times faster than the other approaches when the query size
increases. The results (Figure 7) also show that the users express
a favorable opinion towards our system. As expected, the Static
method, being seller-centric, is the least preferred, yet satisfies 60%
of the users on an average. The Semi-Dynamic approach is the
most preferable overall, producing higher quality results faster, and
highest user satisfaction (ranging between 72-89%) .

7.3 Preference Computation Comparison
Figure 10 shows how different cost functions behave with re-

spect to the number of expected steps before we find a non-empty
answer. We notice that the Static approach performs significantly
worse than the other two. This is due to the fact that, in order to find
more profitable tuples, the best option is to relax several constraints,
which leads to producing long optimal paths. On the other hand,
Figure 11 shows that Static achieves considerably better profit re-
sults, which means that the extra cost incurred pays off. Figure 12
measures the quality of the results, and indicates that the inclusion
of the preference function in the probability computation tends to
favor good quality answers. We also observe that the behavior of
Static is very different from that of Dynamic and Semi-Dynamic,
since it does not depend on the user preference, while the other
two are highly user-centric, thus leading to (slightly) better answer
quality.

7.4 Effectiveness
In the next set of experiments, we evaluate the effectiveness of

the algorithms by measuring the cost of the relaxation for different
query sizes. For brevity, we present only the results for Dynamic,
since there are no significant differences among those objectives.
In these experiments, we use queries of size up to 7, because this is
maximum possible size for running FullTree in our experimental
setup. Figure 13 depicts the results for the Homes dataset (normal-
ized by the cost of FullTree for query size 3). The Cars dataset
results are similar, and we omit them for brevity.

The graph confirms the intuition that the Random, Greedy and
QueryRef algorithms are not able to find the optimal solution (i.e.,
the solution with the minimum expected number of relaxations).
In addition, their relative performance gets worse as the size of
the query increases, since the likelihood of making non-optimal
choices increases as well. For query size 7, Random produces a
solution that needs 2.4 times more relaxations than the optimal one.

On the other hand, CDR performs very close to FullTree, choos-
ing the best path in most of the cases. The same observation holds
for larger queries (upto 10 attributes, refer to Figure 14), where all
values are normalized by the cost of FastOpt for query size 3). Our
results also shows that CDR remains within a factor of 1.08 off the

1771

0"

1"

2"

3"

4"

5"

6"

3" 4" 5" 6" 7"

Co
st
%

Query%size%

FullTree"
FastOpt"
CDR"
Greedy"
Random"

Figure 13: Relaxation cost vs
query size (Homes dataset).

0"

0.5"

1"

1.5"

2"

2.5"

3"

3" 4" 5" 6" 7" 8" 9" 10"

Co
st
%

Query%size%

FastOpt"
CDR"

Figure 14: Relaxation cost vs
query size, for FastOpt and
CDR-3 (Homes dataset).

0.001$

0.01$

0.1$

1$

10$

100$

1000$

10000$

3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$

Q
ue

ry
&'
m
e&
(s
ec
)&

Query&size&

FullTree$
CDR$
FastOpt$

Figure 15: Query time (log scale)
vs query size (Homes dataset).

0"

2"

4"

6"

8"

10"

0" 100" 200" 300" 400" 500"

Q
ue

ry
&'
m
e&
(s
ec
)&

Number&of&tuples&(k)&

FullTree"
FastOpt"
CDR"

Figure 16: Query time vs dataset
size, for query size 6 (Cars-X
datasets).

0"
2"
4"
6"
8"

10"
12"
14"
16"

3" 4" 5" 6" 7" 8" 9" 10"

Q
ue

ry
&T
im

e&
(s
ec
)&

Query&Size&

L=5"
L=4"
L=3"
L=2"

Figure 17: Query time vs
query size, for CDR-L (Homes
dataset).

0"

1"

2"

3"

4"

5"

6"

7"

3" 4" 5" 6" 7" 8" 9" 10"

Co
st
%

Query%Size%

L=2"
L=3"
L=4"
L=5"

Figure 18: Relaxation cost vs
query size, for CDR-L (Homes
dataset).

optimal solution (expressed by FastOpt in the graph) corroborating
its effectiveness to the empty-answer problem.

7.5 Scalability
Next we present experiments on the scalability properties of the

top performers, FullTree, FastOpt and CDR, when both the size
of the query and the size of the database increase.

In Figure 15, we illustrate the time to propose the next relax-
ation, as a function of the query size. We observe that the FastOpt
algorithm performs better than CDR when the query size is small
(i.e., less than 8).This behavior is explained by the fact that CDR
is always computing all the nodes of the relaxation tree up to level
L. In contrast, FastOpt is able to prune several of these nodes,
leading to a significantly smaller tree. For query sizes larger than
8, CDR computes close to one order of magnitude less relaxation
nodes than FastOpt. Finally, FullTree has an acceptable perfor-
mance only for small query sizes (in our experimental setting we
could only execute FullTree for query sizes up to 7).

The FastOpt algorithm remains competitive to CDR for small
sized queries, but becomes extremely slow for large query sizes,
requiring more than 1000 sec for queries of size 10. For the same
queries, CDR executes three orders of magnitude faster, requiring
1.4 sec to produce the next relaxation, and significantly less than 1

sec for smaller queries.
We also experiment with varying dataset sizes between 25K-

500K tuples, using the Cars-X datasets, having query size set to
6. Figure 16 indicates that the relaxation tree becomes smaller with
increasing dataset size. This happens because more tuples in the
dataset translate to an increased chance of a specific relaxation (i.e.,
node in the query relaxation tree) being non-empty. Note that, even
though CDR involves more nodes than FastOpt, it has better time
performance, since FastOpt has to build the entire tree before pro-
ducing the first relaxation, whereas, CDR chooses the best candi-
date relaxation after computing the first L levels of the tree, which
translates to reduced time requirements per iteration. Overall, we
observe that FullTree and QueryRef quickly becomes inapplica-
ble in practice, while FastOpt is useful only for small query sizes.
In contrast, CDR is able to propose relaxations in less than 1 sec,
even for queries with 10 attributes, and always produces a solution
that is very close to optimal.

7.6 Calibrating CDR
Recall that the CDR-L algorithm starts by computing all the

nodes of the relaxation tree for the first L levels (see Section 5),
where L is a parameter.

Figure 18 shows the impact of L on the cost (the values have
been normalized using as a base the cost of CDR-5 for query size
3). We notice that for L = 2 the algorithm behaves reasonably
well only for very small query sizes. This behavior is expected,
since for query sizes more than 4 the algorithm is trying to approx-
imate the node cost distributions and then make decisions based on
too little information. Increasing L always improves cost. L = 3

results in a considerable improvement in cost, but the results show
that further increases have negligible additional returns. We also
compare the time performance in Figure 17. The results show that
CDR-5 quickly becomes expensive in terms of time, while CDR-4
is an efficient solution for queries with size up to 6. We conclude
that using L = 3, CDR achieves the desirable trade-off between
effectiveness and efficiency.

We also conduct experiments (omitted for brevity) with varying
the number of the CDR histogram buckets between 5� 40, which
has a negligible impact on time performance. For the rest of the
experimental evaluation, we use CDR with L = 3, and 20 buckets.

8. RELATED WORK
Query Reformulation for Structured Databases: The closest re-
lated works are interactive optimization-based approaches studied
for the many-answers problem, most notably [6, 18, 20], where
given an initial query that returns a large number of answers, the
objective is to design an effective drill-down strategy to help the
user find acceptable results with minimum effort. We solve the
complementary problem, where we have an empty answer and we
need to relax the query condition to get a non-empty one. This
fundamental asymmetry precludes a direct adaptation of one to an-
other. In the former it is assumed that the user for sure prefers one
of the tuples already in the result set, whereas, in our case the chal-
lenge is that we have no evidence what the user prefers, so we have
to go with a probabilistic framework.

Most of the previous query relaxation solutions proposed for
the empty-answer problem are non-interactive in nature. One of
them [9] proposes query modification based on a notion of general-
ization, and identifies the conditions under which a generalization
is applicable. In this framework there is no concept of leveraging
user preferences in deciding the relaxation. Some other work [19]
suggests alternative queries based on the “minimal” shift from the
original query. In contrast, our method considers interactivity and
additional goals that could be optimized during this interaction.
“Why Not” queries are studied in [8, 24], where, given a query
Q that did not return a set of tuples S that the user was expecting to
be returned, to design an alternate query Q

0 that (a) is very “simi-
lar” to Q, and (b) returns the missing tuples S, however the rest of
the returned tuples should not be too different from those returned
by Q. “Why Not” queries are non-interactive, and it appears to be

1772

non-trivial to extend these methods for the empty answers prob-
lem, because these problems require the user to be aware of some
desired tuples S in the database, whereas in our case, no such set S
is available to the user. Relaxation strategies for the empty-answer
problem have been proposed as a recommendation service in [15,
16, 17]. All these methods are non-interactive and suggest relax-
ations with the objective to arrive at a non-empty answer that has
the minimum number of attributes relaxed.

A few interactive query relaxation approaches have been pro-
posed for the empty-answer problem. The paper [21] proposes
an interactive relaxation strategy, and relaxes attributes one-by-one
based on a deterministic partial/total order over attributes - no opti-
mization criterion is explicitly described. A recent paper [22] pro-
poses interactive query refinement to satisfy certain query cardi-
nality constraints. The proposed techniques are designed to handle
queries having range and equality predicates on numerical and cat-
egorical attributes. However, the technique is neither designed for
optimizing any objective, nor does it consider any model of user
preferences. We have provided an empirical study of this approach
in Section 7.1.

An alternative to query reformulation approaches to solve empty/
many-answers problems is the ranked-retrieval approach, where
the task is to develop a ranking function that is able to score all
items (even those that do not exactly match the query conditions)
in the repository according to a “degree” of preference for the user,
and return the top-k items. This approach can be very effective
when the user is relatively sophisticated and knows what she wants,
because the ranking function can be directly provided by the user.
However, in the case of a naive user who is unable to provide a
good ranking function, there have been many efforts to develop
suitable system-generated ranking functions, both by IR [5] and
database [1, 10, 11] researchers. At the same time, it has also been
recognized [6, 14] that the rank-retrieval based approach has an
inherent limitation for naive users - it is not an interactive process,
and if the user does not like the returned results, it is not easy to
determine how the system-generated ranking function should be
changed. In this context, interactive approaches such as query re-
formulation are popular alternatives.
Query Reformulation in IR: Automatic query reformulation strate-
gies for keyword queries over text data have been widely investi-
gated in the IR literature [13, 12]. Various strategies have been
used, ranging from relevance feedback to analyzing query logs and
finding queries that are similar to the user queries. To find related
queries, various strategies have been proposed, including measures
of query similarity [4], query clustering [25], or exploiting sum-
mary information contained in the query-flow graph [2]. An alter-
native approach relies on suggesting keyword relaxations by relax-
ing the ones which are least specific based on their idf score [14].
9. CONCLUSIONS

In this work, we propose a novel and principled interactive ap-
proach for queries that return no answers by suggesting relaxations
to achieve a variety of optimization goals. The proposed approach
follows a broad, optimization-based probabilistic framework which
takes into consideration user preferences. This is in contrast to prior
query reformulation approaches that are largely non-interactive, and/or
do not support such a broad range of optimization goals. We de-
velop optimal and approximate solutions to the problem, demon-
strating how our framework can be instantiated using different op-
timization goals. We have experimentally evaluated their efficiency
and effectiveness, both by comparing to several techniques and by
user studies.

As subsequent work, we intend to investigate extending our frame-
work to handling join queries, as well as investigate a more holistic

optimization-based query reformulation framework that considers
simultaneous relaxations and tightening during interactive sessions.

10. ACKNOWLEDGMENTS
The work of Gautam Das was partially supported by NSF grants

0812601, 0915834, 1018865, and grants from Texas NHARP and
Microsoft Research. Part of this work was done while the author
was visiting the University of Trento and Qatar Computing Re-
search Institute.

References
[1] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated ranking

of database query results. In CIDR, 2003.
[2] A. Anagnostopoulos, L. Becchetti, C. Castillo, and A. Gionis. An

optimization framework for query recommendation. In WSDM, pages
161–170, 2010.

[3] B. Arai, G. Das, D. Gunopulos, and N. Koudas. Anytime measures for
top-k algorithms on exact and fuzzy data sets. VLDB J., 18(2):407–
427, 2009.

[4] R. A. Baeza-Yates, C. A. Hurtado, and M. Mendoza. Query recom-
mendation using query logs in search engines. In EDBT Workshops,
pages 588–596, 2004.

[5] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Re-
trieval. Addison-Wesley New York, 2011.

[6] S. Basu Roy, H. Wang, G. Das, U. Nambiar, and M. Moha-
nia. Minimum-effort driven dynamic faceted search in structured
databases. In CIKM, pages 13–22, 2008.

[7] Y. M. M. Bishop, S. E. Fienberg, and P. W. Holland. Discr. Multivari-
ate Analysis: Theory and Practice. MIT Press, 1975.

[8] A. Chapman and H. V. Jagadish. Why not? In SIGMOD, pages 523–
534, 2009.

[9] S. Chaudhuri. Generalization and a framework for query modification.
In ICDE, pages 138–145, 1990.

[10] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic
ranking of database query results. In VLDB, pages 888–899, 2004.

[11] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic
information retrieval approach for ranking of database query results.
ACM Trans. Database Syst., 31(3):1134–1168, 2006.

[12] S. Gauch and J. Smith. Search improvement via automatic query re-
formulation. TOIS, 9(3):249–280, 1991.

[13] S. Gauch and J. B. Smith. An expert system for automatic query
reformulation. JASIS, 44(3):124–136, 1993.

[14] V. Hristidis, Y. Hu, and P. G. Ipeirotis. Ranked queries over sources
with boolean query interfaces without ranking support. In ICDE,
pages 872–875, 2010.

[15] D. Jannach. Techniques for fast query relaxation in content-based
recommender systems. KI’06: Advances in AI, pages 49–63, 2007.

[16] D. Jannach and J. Liegl. Conflict-directed relaxation of constraints in
content-based recommender systems. Advances in Applied AI, pages
819–829, 2006.

[17] U. Junker. Quickxplain: Preferred explanations and relaxations for
over-constrained problems. In AAAI, volume 4, pages 167–172, 2004.

[18] A. Kashyap, V. Hristidis, and M. Petropoulos. Facetor: cost-driven
exploration of faceted query results. In CIKM, pages 719–728, 2010.

[19] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing join and
selection queries. In VLDB, pages 199–210, 2006.

[20] C. Li, N. Yan, S. B. Roy, L. Lisham, and G. Das. Facetedpedia: dy-
namic generation of query-dependent faceted interfaces for wikipedia.
In WWW, pages 651–660, 2010.

[21] D. McSherry. Incremental relaxation of unsuccessful queries. In EC-
CBR, pages 331–345, 2004.

[22] C. Mishra and N. Koudas. Interactive query refinement. In EDBT,
pages 862–873. ACM, 2009.

[23] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[24] Q. T. Tran and C.-Y. Chan. How to conquer why-not questions. In

SIGMOD, pages 15–26, 2010.
[25] J.-R. Wen, J.-Y. Nie, and H. Zhang. Query clustering using user logs.

ACM Trans. Inf. Syst., 20(1):59–81, 2002.

1773

	Introduction
	Motivating Example
	Probabilistic Framework
	Generic Probabilistic Framework
	Application-Specific Instantiations of the Probabilistic Framework

	Exact Algorithms
	The FullTree Algorithm
	The FastOpt Algorithm

	Approximate Algorithm
	Computing Cost Probability Distributions
	Efficient Computation of Convolutions

	Extensions
	Experimental Evaluation
	Implemented Algorithms
	User Study
	Preference Computation Comparison
	Effectiveness
	Scalability
	Calibrating CDR

	Related Work
	Conclusions
	Acknowledgments

