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ABSTRACT

Keyword search has been popularly used to query graph
data. Due to the lack of structure support, a keyword query
might generate an excessive number of matches, referred to
as “answer graphs”, that could include different relation-
ships among keywords. An ignored yet important task is
to group and summarize answer graphs that share similar
structures and contents for better query interpretation and
result understanding. This paper studies the summarization
problem for the answer graphs induced by a keyword query
Q. (1) A notion of summary graph is proposed to character-
ize the summarization of answer graphs. Given @) and a set
of answer graphs G, a summary graph preserves the relation
of the keywords in @ by summarizing the paths connecting
the keywords nodes in G. (2) A quality metric of summary
graphs, called coverage ratio, is developed to measure infor-
mation loss of summarization. (3) Based on the metric, a
set of summarization problems are formulated, which aim
to find minimized summary graphs with certain coverage
ratio. (a) We show that the complexity of these summa-
rization problems ranges from PTIME to NP-complete. (b)
We provide exact and heuristic summarization algorithms.
(4) Using real-life and synthetic graphs, we experimentally
verify the effectiveness and the efficiency of our techniques.

1. INTRODUCTION

Keyword queries have been widely used for querying graph
data, such as information networks, knowledge graphs, and
social networks [37]. A keyword query @ is a set of keywords
{k1,...,kn}. The evaluation of @ over graphs is to extract
data related with the keywords in @ [5,37].

Various methods were developed to process keyword
queries. In practice, these methods typically generate a set
of graphs G induced by Q. Generally speaking, (a) the key-
words in @) correspond to a set of nodes in these graphs, and
(b) a path connecting two nodes related with keywords ki1,
k2 in @ suggests how the keywords are connected, i.e., the
relationship between the keyword pair (k1, k2). We refer to
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these graphs as answer graphs induced by Q. For example,
(1) a host of work on keyword querying [13,14,17,20,27,37]
defines the query results as answer graphs; (2) keyword
query interpretation [3,35] transforms a keyword query into
graph structured queries via the answer graphs extracted
for the keyword; (3) result summarization [16,22] generates
answer graphs as e.g., “snippets” for keyword query results.

Nevertheless, keyword queries usually generate a great
number of answer graphs (as intermediate or final results)
that are too many to inspect, due to the sheer volume of
data. This calls for effective techniques to summarize answer
graphs with representative structures and contents. Better
still, the summarization of answer graphs can be further
used for a range of important keyword search applications.

Enhance Search with Structure. It is known that there
is an usability-expressivity tradeoff between keyword query
and graph query [33] (as illustrated in Fig. 1). For search-
ing graph data, keyword queries are easy to formulate; how-
ever, they might be ambiguous due to the lack of struc-
ture support. In contrast, graph queries are more accurate
and selective, but difficult to describe. Query interpreta-
tion targets the trade-off by constructing graph queries, e.g.,
SPARQL [31], to find more accurate results. Nevertheless,
there may exist many interpretations as answer graphs for a
single keyword query [9]. A summarization technique may
generate a small set of summaries, from which graph queries
can be induced. That is, a user can first submit keyword
queries and then pick up the desired graph queries, thus
taking advantage of both keyword query and graph query.

Improve Result Understanding and Query Refine-
ment. Due to query ambiguity and the sheer volume of
data, keyword query evaluation often generates a large num-
ber of results [16,19]. This calls for effective result summa-
rization, such that users may easily understand the results
without checking them one by one. Moreover, users may
come up with better queries that are less ambiguous, by in-
specting the connection of the keywords reflected in the sum-
mary. Based on the summarization result, efficient query
refinement and suggestion [23,30] may also be proposed.
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Figure 2: Keyword query over a knowledge graph

Example 1: Consider a keyword query @ = { Jaguar, Amer-
ica, history } issued over a knowledge graph. Suppose there
are three graphs G, G2 and G3 induced by the keywords
in Q as e.g., query results [20,27], as shown in Fig. 2. Each
node in an answer graph has a type, as well as its unique id.
It is either (a) a keyword node marked with '+’ (e.g.,Jaguar
XK*) which corresponds to a keyword (e.g.,Jaguar), or (b) a
node connecting two keyword nodes.

The induced graphs for @ illustrate different relations
among the same set of keywords. For example, G1 sug-
gests that “Jaguar” is a brand of cars with multiple offers
in many cities of USA, while G3 suggests that “Jaguar” is
a kind of animals found in America. To find out the an-
swers the users need, reasonable graph structured queries
are required for more accurate searching [3]. To this end,
one may construct a summarization over the answer graphs.
Two such summaries can be constructed as Gs; and Gs,,
which suggest two graph queries where “Jaguar” refers to
a brand of car, and a kind of animal, respectively. Better
still, by summarizing the relation between two keywords,
more useful information can be provided to the users. For
example, G, suggests that users may search for “offers” and
“company” of “Jaguar”, as well as their locations.

Assume that the user wants to find out how “Jaguar” and
“America” are related in the search results. This requires a
summarization that only considers the connection between
the nodes containing the keywords. Graph G depicts such a
summarization: it shows that (1) “Jaguar” relates to “Amer-
ica” as a type of car produced and sold in cities of USA, or
(2) it is a kind of animal living in the continents of America.

Moreover, in practice one often place a budget for sum-
marizations [12,32]. This calls for quality metrics and tech-
niques for concise summaries that illustrate the connection
information between keywords as much as possible. a

The above example suggests that we may summarize an-
swer graphs G induced by a keyword query @, to help key-
word query processing. We ask the following questions. (1)
How to define “query-aware” summaries of G in terms of Q7
(2) How to characterize the quality of a summary for Q7 (3)
How to efficiently identify good summaries under a budget?

In this paper we study the above problems for summariz-
ing keyword induced answer graphs.

(1) We formulate the concept of answer graphs for a keyword
query @ (Section 2). To characterize the summarization
for answer graphs, we propose a notion of summary graph
(Section 2). Given @ and G, a summary graph captures the
relationship among the keywords from @ in G.
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(2) We introduce quality metrics for summary graphs (Sec-
tion 3). One is defined as the size of a summary graph,
and the other is based on coverage ratio o, which measures
the number of keyword pairs a summary graph can cover by
summarizing pairwise relationships in G.

Based on the quality metrics, we introduce two sum-
marization problems (Section 3). Given @ and G, (a)
the a-summarization problem is to find a minimum sum-
mary graph with a certain coverage ratio «; we consider
l-summarization problem as its special case where a = 1;
(b) the K summarization problem is to identify K summary
graphs for G, where each one summarizes a subset of answer
graphs in G. We show that the complexity of these prob-
lems ranges from PTIME to NP-complete. For the Np-hard
problems, they are also hard to approximate.

(3) We propose exact and heuristic algorithms for the sum-
marization problems. (a) For l-summarization, we present
an exact, quadratic-time algorithm to find a minimum 1-
summary (Section 4). For a given keyword query, it is to
identify a set of “redundant” (resp. “equivalent”) nodes in
G for @, and construct the summary by removing (resp.
mergeing) these nodes. (b) We provide heuristic algorithms
for the a-summarization (Section 4) and k summarization
problems (Section 5), respectively. These algorithms greed-
ily select and summarize answer graphs with the minimum
estimated cost in terms of size and coverage.

(4) We experimentally verify the effectiveness and efficiency
of our summarization techniques using both synthetic
data and real-life datasets. We find that our algorithms
effectively summarize the answer graphs. For example, they
generate summary graphs that cover every pair of keywords
with size in average 24% of the answer graphs. They
also scale well with the size of the answer graphs. These
effectively support summarization over answer graphs.

Related Work. We categorize related work as follows.
Graph compression and summarization. Graph summariza-
tion is to (approximately) describe graph data with small
amount of information. (1) Graph compression [26] uses
MDL principle to compress graphs with bounded error.
However, the goal is to reduce space cost while the origi-
nal graph can be restored, by using auxiliary structures as
“corrections”. (2) Summarization techniques are proposed
based on (a) bisimulation equivalence relation [25], or (b) re-
laxed bisimulation relation that preserves paths with length
up to K [18,25]. Simulation based minimization [2] reduces
a transition system based on simulation equivalence relation.
These work preserve paths for every pair of nodes, i.e., all-
pair connectivity, which can be too restrictive to generate
concise summaries for keyword queries. (3) Summary tech-
niques in [34,38] enable flexible summarization over graphs
with multiple node and edge attributes, while the path infor-
mation is approximately preserved, controlled by additional
parameters, e.g., participation ratio [34].

In contrast to these work, we find concise summaries that
preserve relationships among keywords, rather than all-pair
connectivity [18,25] or entire original graph [26]. Moreover,
in contrast to [26,34], these summaries require no auxiliary
structure for preserving the relationships.

Relation discovery. Relation discovery is to extract the re-
lations between keywords over a (single) graph [8,27, 32].
The problem is studied for a single entity [32], a pair of



keywords [8], and for general keyword queries [27] which
finds top ranked subgraphs in terms of e.g., relevance.

In contrast to these studies which focus more on searching,
we propose summarization techniques over the extracted re-
sults. Moreover, users can place constraints, e.g., coverage
ratio, to identify summaries for a part or all keyword pairs
from the query, which are not addressed in these works.

Graph clustering. A number of graph clustering approaches
have also been proposed to group similar graphs [1]. As
remarked earlier, these techniques are not query-aware, and
may not be directly applied for summarizing query results
as graphs [21]. In contrast, we propose algorithms to (1)
group answer graphs in terms of a set of keywords, and (2)
find best summaries for each group.

Result Summarization. Result summarization over rela-
tional databases and XML are proposed to help users under-
stand the query results. [16] generates summaries for XML
results as trees, where a snippet is produced for each result
tree. This may produce snippets with similar structures that
should be grouped for better understanding [21]. To address
this issue, [22] clusters the query results based on the clas-
sification of their search predicates. Our work differs in that
(1) we generate summaries for and as general graphs rather
than trees [16], (2) we study how to summarize connections
“induced” by keywords, while the main focus of [22] is to
identify proper return nodes.

Application Scenarios. There have been a host of studies
on processing keyword queries that generate answer graphs.
Our work can be applied to these applications.

Keyword queries over graphs. Keyword search over graphs
typically return graphs that contain all the keywords [37].
For example, an answer graph as a query result is repre-
sented by (1) subtrees for XML data [13,14], or (2) sub-
graphs of schema-free graphs [17,20,27]. The summarization
techniques in our work can be applied in these applications
as post-processing, to provide result summarizations [16].

Query interpretation. Keyword query interpretation trans-
forms a keyword query into graph queries, e.g., XPath
queries [28], SPARQL queries [31], or formal queries [35]
(see [3] for a survey). Keyword query templates for SQL
queries are extracted by leveraging schema from relational
tables [6]. Closer to our work are [6,35], which generate
top ranked query templates [6] or conjunctive queries [35]
for keywords, by summarizing data graphs and schema in-
formation. Our work differs from these work in that (1) we
generate summaries over answer graphs with coverage and
conciseness guarantees, and (2) no schema information is
required. The conciseness and information coverage of the
summaries is not discussed in [35].

Query expansion. [23] considers generating suggested key-
word queries from a set of clustered query results. [30] stud-
ies the keyword query expansion that extends the original
queries with “surprising words”. Neither considers struc-
tured expansions. Our work produces structural summaries
that not only include keywords and their relationships, but
also a set of highly related nodes and relations, which could
provide good suggestions for query refinement (Section 6).

2. ANSWER GRAPHS AND SUMMARIES

In this section, we formulate the concept of answer graphs
induced by keyword queries, and their summarizations.
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2.1 Keyword Induced Answer Graphs

Answer graphs. Given a keyword query () as a set of key-
words {ki1,...,kn} [37], an answer graph induced by Q is
a connected undirected graph G = (V, E, L), where V is a
node set, ¥ C V x V is an edge set, and L is a labeling func-
tion which assigns, for each node v, alabel L(v) and a unique
identity. In practice, the node labels may represent the type
information in e.g., RDF [27], or node attributes [38]. The
node identity may represent a name, a property value, a
URI, e.g., “dbpedia.org/resource/Jaguar,” and so on. Each
node v € V is either a keyword node that corresponds to
a keyword k in @Q, or an intermediate node on a path be-
tween keyword nodes. We denote as v, a keyword node of
k. The keyword nodes and intermediate nodes are typically
specified by the process that generates the answer graphs,
e.g., keyword query evaluation algorithms [37]. A path con-
necting two keyword nodes usually suggests a relation, or
“connection pattern”, as observed in e.g., [8].

We shall use the following notations. (1) A path from key-
word nodes v, to v, is a nonempty simple node sequence
{vk,v1...,0n,v}, where v; (i € [1,n]) are intermediate
nodes. The label of a path p from vy to v, denoted as
L(p), is the concatenation of all the node labels on p. (2)
The union of a set of answer graphs G; = (Vi, E;, L;) is a
graph G = (V, E, L), where V = JV;, E = |J Ei, and each
node in V has a unique node id. (3) Given a set of answer
graphs G, we denote as card(G) the number of the answer
graphs G contains, and |G| the total number of its nodes and
edges. Note that an answer graph does not necessarily con-
tain keyword nodes for all the keywords in @, as common
found in e.g., keyword querying [37].

Example 2: Fig. 2 illustrates a keyword query @ and a
set of answer graphs G = {G1, G2, G} induced by Q. Each
node in an answer graph has a label as its type (e.g.,car),
and a unique string as its id (e.g.,Jaguar XK1).

Consider the answer graph Gi. (a) The keyword nodes
for the keyword Jaguar are Jaguarxrk, (¢ € [1,n]), and the
node United States of America is a keyword node for America.
(b) The nodes offer; (i € [1,m]) and city; (j € [1, k]) are the
intermediate nodes connecting the keyword nodes of Jaguar
and America. (c) A path from Jaguar to USA passing the nodes
offer; and city; has a label {car,offer, city,country}. Note that
(1) nodes with different labels (e.g., Jaguarxk, labeled by
“car” and black jaguar by “animal”) may correspond to the
same keyword (e.g.,Jaguar), and (2) a node (e.g., city;) may
appear in different answer graphs (e.g., G1 and G2). O

2.2 Answer Graph Summarization

Summary graph. A summary graph of G for @ is an
undirected graph Gs = (Vs, Es, L), where V; and E; are the
node and edge set, and Ls is a labeling function. Moreover,
(1) each node vs € Vs labeled with Ls(vs) represents a node
set [vs] from G, such that (a) [vs] is either a keyword node
set, or an intermediate node set from G, and (b) the nodes
v in [vs] have the same label L(v) = Ls(vs). We say v, is
a keyword node for a keyword k, if [vs,] is a set of keyword
nodes of k; (2) For any path ps between keyword nodes vs,
and v, of G, there exists a path p with the same label of ps
from v to vz in the union of the answer graphs in G, where
v1 € [vs,], V2 € [vs,]. Here the path label in G, is similarly
defined as its counterpart in an answer graph.
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Figure 3: Answer graphs and summary graphs

Hence, a summary graph Gs never introduces “false”
paths by definition: if vs, and vs, are connected via a path
ps in G, it suggests that there is a path p of the same label
connecting two keyword nodes in [vs, | and [vs,], respectively,
in the union of the answer graphs. It might, however, “lose”
information, i.e., not all the labels of the paths connecting
two keyword nodes are preserved in Gs.

Example 3: Consider Q and G from Fig. 2. One may
verify that Gs,, G5, and G, are summary graphs of G for
Q. Specifically, (1) the nodes Jaguar, history and America are
three keyword nodes in Gs,, and the rest nodes are inter-
mediate ones; (2) G, contains a keyword node Jaguar which
corresponds to keyword nodes {black jaguar, white jaguar} of
the same label animal in G. (3) For any path connecting two
keyword nodes (e.g., {Jaguar, offer, city, America}) in Gs,,
there is a path with the same label in the union of G; and
G2 (e.g., {Jaguarxk,, offery, cityr, United States of America}).

As another example, consider the answer graphs G}, G4
and G% induced by a keyword query Q" = {a, c, e f, g} in
Fig. 3. Each node a; (marked with x if it is a keyword node)
in an answer graph has a label a and an id a;, similarly
for the rest nodes. One may verify the following. (1) Both
G5, and G5, are summary graphs for the answer graph set
{G1, G5}; while Gj, (resp. Gj,) only preserves the labels
of the paths connecting keywords a and c (resp. a, e and
g). (2) Gi, is not a summary graph for G3. Although it
correctly suggests the relation between keywords (a,e) and
(a, g), it contains a “false” path labeled (e, d, g), while there
is no path in G% with the same label between e3 and go. O

Remarks. One can readily extend summary graphs to sup-
port directed, edge labeled answer graphs by incorporating
edge directions and labels into the path label. We can also
extend summary graphs for preserving path labels for each
answer graph, instead of for the union of answer graphs, by
reassigning node identification to answer graphs.

3. QUALITY MEASUREMENT

We next introduce two metrics to measure the quality of
summary graphs, based on information coverage and sum-
marization conciseness, respectively. We then introduce a
set of summarization problems. To simplify the discussion,
we assume that the union of the answer graphs contains
keyword nodes for each keyword in Q.

3.1 Coverage Measurement

It is recognized that a summarization should summarize
as much information as possible, i.e., to maximize the in-
formation coverage [12]. In this context, a summary graph
should capture the relationship among the query keywords
as much as possible. To capture this, we first present a
notion of keywords coverage.

Keywords coverage. Given a keyword pair (ki, kj) (ki,
ki € Q and k; # k;) and answer graphs G induced by @,
a summary graph Gs covers (ki, k;) if for any path p from
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keyword nodes vy, to vg; in the union of the answer graphs
in G, there is a path ps in G5 from vs,; to Vs with the same
label of p, where vy, € [vs,], vi; € [vs;]. Note that the
coverage of a keyword pair is “symmetric” over undirected
answer graphs. Given @ and G, if G5 covers a keyword pair
(ki, kj), it also covers (kj, k;).

Coverage ratio. Given a keyword query @) and G, we define
the coverage ratio o of a summary graph G of G as

o.M
1Ql- (IRl —1)
where M is the total number of the keyword pairs (k, k')

(e%

covered by Gs. Note that there are in total % pairs
of keywords from . Thus, o measures the information
coverage of GG based on the coverage of the keywords.

We refer to as a-summary graph the summary graph for
G induced by @ with coverage ratio a. The coverage ra-
tio measurement favors a summary graph that covers more
keyword pairs, i.e., with larger a.

Example 4: Consider () and G from Fig. 2. Treating G,
and G, as a single graph G, one may verify that G, is a 1-
summary graph: for any keyword pair from ) and any path
between the keyword nodes in G, there is a path of the same
label in Gs,.On the other hand, G is a % summary graph
for Q: it only covers the keyword pairs (Jaguar, America).
Similarly, one may verify that G%, (resp. G%,) in Fig. 3 is a
0.1-summary graph (resp. 0.3-summary graph), for answer
graphs {G1, G5, G4} and Q = {a,c,e, f, ). O

3.2 Conciseness Measurement

A summary graph should also be concise, without intro-
ducing too much detail of answer graphs, as commonly used
in information summarization [12,32].

Summarization size. We define the size of a summary
graph G, (denoted as |Gs|) as the total number of the nodes
and edges it has. For example, the summary graph G, and
Gs, (Fig. 2) are of size 12 and 7, respectively. The smaller
a summary graph is, the more concise it is.

Putting the information coverage and conciseness mea-
surements together, We say a summary graph G is a min-
imum a-summary graph, if for any other a-summary graph
Gl of G for Q, |G| < |GAl-

Remarks. Bisimulation [11], graph summarization [26,34]
and query suggestion [35] also induce summarized graphs, by
grouping similar nodes and edges together for entire graphs,
rather than for specified keyword nodes. Moreover, (a) they
may not necessarily generate concise summaries; and (b)
their summary graphs may introduce “false” paths.

Example 5: Bisimulation relation [11] constraints the node
equivalence via a recursively defined neighborhood label
equivalence, which is an overkill for concise summaries over
keyword relations. For example, the nodes b1 and b2 can-
not be represented by a single node as in G, via bisimula-
tion (Fig. 3), due to different neighborhood. One the other
hand, error-tolerant [26], structure-based summaries [34]
and schema extraction [35] may generate summary graphs
with “false paths”, such as G%, for G3. To prevent this,
auxiliary structures and parameters are required. In con-
trast in our work, a summary graph preserves path labels
for keywords without any auxiliary structures. O



3.3 Summarization Problems

Based on the quality metrics, we next introduce two sum-
marization problems for keyword induced answer graphs.
These problems are to find summary graphs with high qual-
ity, in terms of information coverage and conciseness.

Minimum a-Summarization. Given a keyword query
Q@ and its induced answer graphs G, and a user-specified
coverage ratio a, the minimum a-summarization problem,
denoted as MSUM, is to find an a-summary graph of G with
minimum size. Intuitively, the problem aims to find the
smallest summary graph [32] which can cover the keyword
pairs no less than user-specified coverage requirement.
The problem is, however, nontrivial.

Theorem 1: MSUM is NP-complete (for decision version)
and APX-hard (as an optimization problem). |

The APX-hard class consists of all problems that cannot
be approximated in polynomial time within arbitrary small
approximation ratio [36]. We prove the complexity result
and provide a heuristic algorithm for MSUM in Section 4.

Minimum 1-summarization. We also consider the problem
of finding a summary graph that covers every pair of key-
words (ki, k;) (ki,k; € Q and i # j) as concise as possi-
ble, i.e., the minimum 1-summarization problem (denoted
as PSUM). Note that PSUM is a special case of MSUM, by
setting « = 1. In contrast to MSUM, PSUM is in PTIME.

Theorem 2: Given Q and G, PSUM is in O(|Q|*|G| +|G|*)
time, i.e., it takes O(|Q|?|G| +|G|?) time to find a minimum
1-summary graph, where |G| is the size of G. o

We will prove the above result in Section 4.

K Summarization. In practice, users may expect a set of
summary graphs instead of a single one, where each sum-
mary graph captures the keyword relationships for a set of
“similar” answer graphs in terms of path labels. Indeed, as
observed in text summarization (e.g., [12]), a summarization
should be able to cluster a set of similar objects.

Given @, G, and an integer K, the K summarization prob-
lem (denoted as KSUM) is to find a summary graph set G,
such that (1) each summary graph G, € Gs is a l-summary
graph of a group of answer graphs G,, C G, (2) the answer
graph sets G, form a K-partition of G, i.e., G = |J Gp,, and
Gp, NGy, =0 (4,5 € [1, K], i # j); and (3) the total size of
Gs, i.e., ZGsiGGs |G, | is minimized. The KSUM problem
can also be extended to support a-summarization.

The following result tells us that the problem is hard to
approximate. We will prove the result in Section 5, and
provide a heuristic algorithm for KSUM.

Theorem 3: KSUM is NP-complete and APX-hard.

Remarks. The techniques for MSUM and KSUM can
be used in a host of applications. (a) The a-summaries
from MSUM can be used to suggest (structured) keyword
queries [3], as well as graph (pattern) queries [7,31,35]. The
intermediate nodes in the summaries also benefit reasonable
query expansion [30]. (b) In practice the answer graphs can
be too many to inspect. The techniques for KSUM natu-
rally serve as post-processing for result summarizations [16].
Better still, KSUM also provides a reasonable clustering for
answer graphs [12]. The generated K summaries can further
be used for query expansion based on clustered results [23].

O
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Figure 4: Dominance relation: (vi,v2) € R<

While determining the optimal value of @ and K remain
to be open issues, « can be usually set according to e.g.,
“budget” of comprehansion [32], and K can be determined
following empirical rules [24] or information theory.

4. COMPUTING o-SUMMARIZATION

In this section we investigate the a-summarization prob-
lem. We first investigate PSUM in Section 4.1, as a special
case of MSUM. We then discuss MSUM in Section 4.2.

4.1 Computing1-Summary Graphs

To show Theorem 2, we characterize the 1-summary graph
with a sufficient and necessary condition. We then provide
an algorithm to check the condition in polynomial time.

We first introduce the notion of dominance relation.

Dominance relation. The dominance relation R<(k,k") for
keyword pair (k, k") over an answer graph G =(V, E, L) is
a binary relation over the intermediate nodes of G, such
that for each node pair (vi,v2) € R<(k,k"), (1) L(v1)
L(v2), and (2) for any path p;1 between keyword node pair
v, of k and vy, of k' passing v1, there is a path po with
the same label between two keyword nodes v, of k and
vy of k' passing vo. We say va dominates vi w.r.t. (k,k');
moreover, vy i8 equivalent to ve if they dominate each other.
In addition, two keyword nodes are equivalent if they have
the same label, and correspond to the same keyword.

The dominance relation is as illustrated in Fig. 4. Intu-
itively, (1) R<(k,k’) captures the nodes that are “redun-
dant” in describing the relationship between a keyword pair
(k, k') in G; (2) moreover, if two nodes are equivalent, they
play the same “role” in connecting keywords k and k', i.e.,
they cannot be distinguished in terms of path labels. For
example, when the keyword pair (a,c) is considered in G7,
the node b; is dominated by b2, as illustrated in Fig. 4.

Remarks. The relation R~ is similar to the simulation re-
lation [2,15], which computes node similarity over the entire
graph by neighborhood similarity. In contrast to simula-
tion, R< captures dominance relation induced by the paths
connecting keyword nodes only, and only consider interme-
diate nodes. For example, the node b; and b2 is not in a
simulation relation in G, unless the keyword pair (a,c) is
considered (Fig. 4). We shall see that this leads to effective
summarizations for specified keyword pairs.

Sufficient and necessary condition. We now present the
sufficient and necessary condition, which shows the connec-
tion between R~ and a 1-summary graph.

Proposition 4: Given Q and G, a summary graph Gs is a
minimum 1-summary graph for G and Q, if and only if for
each keyword pair (k,k") from Q, (a) for each intermediate
node vs in Gs, there is a node v; in [vs], such that for any
other node v; in [vs], (vj,vi) € R<(k,k"); and (b) for any
intermediate nodes vs, and vs, in Gs with same label and
any nodes vi € [vs,], V2 € [Vs,], (v2,v1) & R=<(k, k). O



Proof sketch: We prove Proposition 4 as follows.

(1) We first proof by contradiction that G is a 1-summary
graph if and only if Condition (a) holds. Assume Gs is
a l-summary graph while Condition (a) does not hold.
Then there exists an intermediate node vs, and two nodes
v; and v; that cannot dominate each other. Thus, there
must exist two paths in the union of answer graphs as p =
{vi, .., Vi,Vig1, .., om} and p' = {vl,..., 0}, V41, ., Un}
with different labels, for a keyword pair (k,k’). Since v;,
vj is merged as vy in Gy, there exists, w.l.o.g., a false
path in G, as p” with label L(v1) ... L(vi)L(vjt1) - .. L(vm),
which contradicts the assumption that G is a l-summary
graph. Now assume Condition (a) holds while G is not a
l-summary graph. Then there at least exists a path from
keywords k to k’ that is not in Gs. Thus, there exists at
least an intermediate node vs on the path with [vs] in Gy
which contains two nodes that cannot dominate each other.
This contradicts the assumption that Condition (a) holds.

(2) For the summary minimization, we show that Conditions
(a) and (b) together guarantee if there exists a l-summary
G, where |G| < |G|, there exists a one to one function
mapping each node (resp. edge) in G to a node (resp.
edge) in G, i.e., |Gs| = |G%|. Hence, Gs is a minimum
1-summary graph by definition. O

We next present an algorithm for PSUM following the suf-
ficient and necessary condition, in polynomial time.

Algorithm. Fig. 5 shows the algorithm, denoted as pSum.
It has the following two steps.

Initialization (lines 1-4). pSum first initializes an empty
summary graph G; (line 1). For each keyword pair (k, k')
from @, pSum computes a “connection” graph of (k,k’) in-
duced from G (line 2-3). Let G be the union of the answer
graphs in G. A connection graph of (k, k") is a subgraph of
G induced by (1) the keyword nodes of k and k', and (2)
the intermediate nodes on the paths between the keyword
nodes of k and those of k£’. Once G (k) is computed, pSum
sets G5 as the union graph of Gs and G /) (line 4).

Reducing (lines 5-7). pSum then constructs a summary
graph by removing nodes and edges from Gs. It computes
the dominance relation R< by invoking a procedure DomR,
which removes the nodes v as well as the edges connected to
them, if they are dominated by some other nodes (line 5).
It next merges the nodes in G5 that have dominate relation,
i.e., line 6 (as defined in 4(a)), into a set [vs], until no more
nodes in G can be merged. For each set [vs], a new node
vs as well as its edges connected to other nodes are created.
Gs is then updated with the new nodes and edges, and is
returned as a minimum l-summary graph (line 7).

Procedure DomR. Similar as the process to compute a simu-
lation [15], DomR extends the process to undirected graphs.
For each node v in G5, DomR initializes a dominant set [v],
as {v'|L(v") = L(v)} (lines 1-2). For each edge (u,v) € Gs, it
identifies the neighborhood set of u (resp. v) as N(u) (resp.
N(v)), and removes the nodes that are not in N(v) (resp.
N(u)) from [u] (resp. [v]) (lines 4). Indeed, a node u’ € [u]
cannot dominant u if v’ ¢ N(v), since a path connecting two
keyword nodes passing edge (u, v) contains “L(u)L(v)” in its
label, while for u’, such path does not exist. The process
repeats until no changes can be made (lines 3-4). R< is then
collected from the dominant sets and returned (line 5-7).
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Input: A keyword query @, an answer graph set G.
Output: A minimum 1-summary graph Gs.
1. Initialize G5 = 0;
2. for each keyword pair (k, k') (k, k" € Q,k # k') do
3. build G,y as an induced connection graph of (k, k');
4. merge Gs with G x);
5. R< := DomR(G); remove dominated nodes from Gg;
6. merge each vs,, vs, in G5 where there is a node
v1 € [vs,] such that for Yvs € [vs,], (v2,v1) € R<(k,k);

7. return Gg;

Procedure DomR
Input: a graph G, G;
Output: the dominance relation R< over Gs.

1. for each node v in G5 do
2. dominant set [v] = {v'|L(v") = L(v)};
3. while [v] is changed for some v do
4 for each edge (u,v) in G do
] = [ " N (o)) [e] = [o] N N ([u]);
5. for each v and v’ € [v] do
6. R< = R<U {(v,v")}
7. return R<;

Figure 5: Algorithm pSum

Analysis. pSum correctly returns a summary graph Gs. In-
deed, G is initialized as the union of the connection graphs,
which is a summary graph (lines 2-4). Each time G is up-
dated, pSum keeps the invariants that G5 remains to be a
summary graph. When pSum terminates, one may verify
that the sufficient and necessary condition as in Proposi-
tion 4 is satisfied. Thus, the correctness of pSum follows.

It takes O(|Q|*|G|) to construct G as the union of the
connection graphs for each keyword pairs (lines 2-4). It
takes DomR in total O(|G|?) time to compute R<. To see
this, observe that (a) it takes O(|G|*) time to initialize the
dominant sets (line 1), (b) during each iteration, once a
node is removed from [u], it will no longer be put back,
i.e., there are in total |G|? iterations, and (c) the checking
at line 4 can be done in constant time, by looking up a
dynamically maintained map recording |[u] \ N(v)| for each
edge (u,v), leveraging the techniques in [15]. Thus, the total
time complexity of pSum is in O(|Q[*|G| + |G[*).

Theorem 2 follows from the above analysis.

Example 6: Recall the query @ and the answer graph set
G in Fig. 2. The algorithm pSum constructs a minimum 1-
summary graph G for G as follows. It initializes G5 as the
union of the connection graphs for the keyword pairs in @,
which is the union graph of G1, G2 and Gs. It then invokes
procedure DomR, which computes dominance sets for each
intermediate node in G, partly shown as follows (k <p).

Nodes in G dominance sets

offer {offer; } (i € [1,m])

iy {10 € [LA), {17 € F T L.7)
company {company, }(z € [1,1 — 1]), {company, }

pSum then reduces G by removing dominated nodes and
merging equivalent nodes until no change can be made. For
example, (1) company, (z € [1,]—1]) are removed, as all are
dominated by company;; (2) all the offer nodes are merged
as a single node, as they dominate each other. Gy is then
updated as the union of G, and G, (Fig. 2). O



From Theorem 2, the result below immediately follows.

Corollary 5: It is in O(|S||G| + |G|?) to find a minimum
1-summary graph of G for a given keyword pair set S. m]

Indeed, pSum can be readily adapted for specified keyword
pair set S, by specifying G5 as the union of the connection
graphs induced by S (line 4). The need to find 1-summary
graphs for specified keyword pairs is evident in the context
of e.g., relation discovery [8], where users may propose spec-
ified keyword pairs to find their relationships in graph data.

4.2 Minimum o-Summarization

We next investigate the MSUM problem: finding the min-
imum a-summarization. We first prove Theorem 1, i.e., the
decision problem for MSUM is NpP-complete. Given @, a set
of answer graphs G induced by @, a coverage ratio «, and a
size bound B, the decision problem of MSUM is to determine
if there exists a a-summary graph G with size no more than
B. Observe that MSUM is equivalent to the following prob-
lem (denoted as MSUM®): find an m-element set Sp,, C S
from a set of keyword pairs S, such that |Gs| < B, where
(a) m = a- LU= () S = {(k, k') |k, K € Q, k # Kk}, and
(c) Gs is the minimum 1-summary graph for G and Sy,. It
then suffices to show MSUM™ is NP-complete.

Complexity. We show that MSUM”* is NP-complete as fol-
lows. (1) MSUM™ is in NP, since there exists a polynomial
time algorithm to compute G for a keyword pair set S, and
determine if |Gs| < B (Corollary 5). (2) To show the lower
bound, we construct a reduction from the maximum cover-
age problem, a known NP-complete problem [10]. Given a set
X and a set T of its subsets {T1,...,T,}, as well as integers
K and N, the problem is to find a set 7" C T with no more
than K subsets, where ||J7' N X| > N. Given an instance
of maximum coverage, we construct an instance of MSUM*
as follows. (a) For each element z; € X, we construct an
intermediate node v;. (b) For each set T; € T, we introduce
a keyword pair (ij,képj), and construct an answer graph
G'r; which consists of edges (ij ,vi) and (vy, kéwj)7 for each
v; corresponding to z; € T;. We set S as all such (k:Tj,képj)
pairs. (¢) Weset m = |T|-K, and B = | X|-N. One may ver-
ify that there exists at most K subsets that covers at least
N elements in X, if and only if there exists a 1-summary
graph that covers at least |S|-K keyword pairs, with size at
most 2 % (|X|-N+ m). Thus, MSUM" is Np-hard. Putting
(1) and (2) together, MSUM™ is NP-complete.

The APX-hardness can be proved by constructing an
approximation ratio-preserving reduction [36] from the
weighted maximum coverage problem, a known APX-hard
problem, via a similar transformation as discussed above.

The above analysis completes the proof of Theorem 1.

The APX-hardness of MSUM indicates that it is unlikely to
find a polynomial-time algorithm for MSUM with every fixed
approximation ratio [36]. Instead, we resort to an efficient
heuristic algorithm, mSum.

A greedy heuristic algorithm. Given @ and G, mSum (1)
dynamically maintains a set of connection graphs G¢, and
(2) greedily selects a keyword pair (k, k') and its connection
graph G, such that the following “merge cost” is minimized:

br(gc,Go) = |Gsgouta.p| — 1Gsgo)l

where Gs(g,u(a.}) (resp. Gs(g,)) is the I-summary graph of
the answer graph set GeU{G.} (resp. (G¢)). Intuitively, the
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Input: A keyword query @, a set of answer graphs G,
a coverage ratio «

Output: An a-summary graph Gs.

1. Initialize G's; Set Go = 0;

2. for each pair (k, k) where k, k' € Q do

3. compute connection graph G x); Go = Go U {Gek,en) };
4. while Gs # () do

5. for each G k) € Gc with minimum merge cost do

6. if G; = () then G, := pSum((k, k'), G);

7 else merge(Gs, Gk, ir);

8 Go:= G \ {Gew,e) };

9

. if m connection graphs are merged then break ;
10. for each G. € G¢ do
11. update merge cost of G;

12return Gg;

Figure 6: Algorithm mSum

strategy always chooses a keyword pair with a connection
graph that “minimally” introduces new nodes and edges to
the dynamically maintained 1-summary graph.

The algorithm mSum is shown in Fig. 6. It first initializes
a summary graph G5 (as empty), as well as an empty answer
graph set G to maintain the answer graphs to be selected
for summarizing (line 1). For each keyword pair (k, k'), it
computes the connection graph G,y from the union of
the answer graphs in G, and puts G,y to Go (line 2-3).
This yields a set Go which contains in total O(W)
connection graphs. It then identifies a subset of connection
graphs in G by greedily choosing a connection graph G. that
minimizes a dynamically updated merge cost 6,(g. c.), as
remarked earlier (line 5). In particular, we use an efficiently
estimated merge cost, instead of the accurate cost via sum-
marizing computation (as will be discussed). Next, it either
computes G as a l-summary graph for Gegry if Gs is 0,
by invoking pSum (line 6), or updates Gs with the newly
selected G., by invoking a procedure merge (line 7). G. is
then removed from Gg (line 8), and the merge cost of all
the rest connection graphs in Go are updated according to
the selected connection graphs (line 10-11). The process re-
peats until m = [%] pairs of keywords are covered
by Gs, i.e., m connection graphs are processed (line 9). The
updated G is returned (line 12).

Procedure. The procedure merge (not shown in Fig. 6) is
invoked to update GGs upon new connection graphs. It takes
as input a summary graph G5 and a connection graph G..
It also keeps track of the union of the connection graphs G,
corresponds to. It then updates G via the following actions:
(1) it removes all the nodes in G. that are dominated by the
nodes in itself or the union graph; (2) it identifies equivalent
nodes from the union graph and G, (or have the same iden-
tification); (3) it then splits node vs in Gy if [vs] contains
two nodes that cannot dominate each other, or merge all
the nodes in G5 that have dominance relation. Gy is then
returned if no more nodes in G5 can be further updated.

Optimization. The merge cost (line 5) of mSum takes in
total O(|G|?) time. To reduce the merging time, we effi-
ciently estimate the merge cost. Given G, a neighborhood
containment relation R, captures the containment of the la-
bel sets from the neighborhood of two nodes in the union
of the graphs in G. Formally, R, is a binary relation over
the nodes in G, such that a pair of nodes (u,v) € R, if and
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Figure 7: Computing minimum a-summary graph

only if they have the same label, and for each neighbor '’
of u, there is a neighbor v’ of v with the same label of u’'.
Denoting as D(R,) the union of the edges attached to the
node u, for all (u,v) € R,, we have the following result.

Lemma 6: For a set of answer graphs G and its 1-summary
Gs, |9 2 |Gs| 2 1G] - [R(G)] - |D(Rr)|. o

To see this, observe the following. (1) |G| is clearly no less
than |Gs|. (2) Denote G as the union of the answer graphs
in G, we have |G| > |G| - |[R<(G)| - |D(R<]), where R<(G)
is the dominance relation over G, and D(R~) is similarly
defined as D(R;). (3) For any (u,v) € R<(G), (u,v) is in
R, (G). In other words, |R<(G)| < |R-(G)|, and |D(R<)| <
|D(R-)|. Putting these together, the result follows.

The above result tells us that |G| - |R-(G)| - |D(Ry)| is a
lower bound for G5 of G. We define the merge cost 5T(gcycc)
as |G| - [R-(G)] - |[D(R;)| - |Gs(geyl- Using an index struc-
ture that keeps track of the neighborhood labels of a node
in G, d,(gy,c.) can be evaluated in O(|G|) time.

Analysis. The algorithm mSum correctly outputs an a-
summary graph, by preserving the following invariants. (1)
During each operation in merge, G5 is correctly maintained
as a minimum summary graph for a selected keyword pair
set. (2) Each time a new connection graph is selected, Gs is
updated to a summary graph that covers one more pair of
keywords, until m pairs of keywords are covered by Gs.

For complexity, (1) it takes in total O(m - |G|) time to
induce the connection graphs (line 1-3); (2) the while loop
is conducted m times (line 4); In each loop, it takes O((|G|?)
time to select a G. with minimum merge cost, and to update
G (line 7). Thus, the total time complexity is O(m|G|?).
Note that in practice m is typically small.

Example 7: Recall the query Q' = {a,c, e, f,g} and the
answer graph set G = {G, G5} in Fig. 3. There are in total
10 keyword pairs. To find a minimum 0.3-summary graph,
MSUM starts with a smallest connection graph induced by
e.g., (a,g), and computes a 1-summary graph as G%, shown
in Fig. 7. It then identifies the connection graph G induced
by (e, g), with least merge cost. Thus, G5, is updated to Gs,
by merging G, with one more node es and edge (ds,e2)
inserted. It then updates the merge cost, and merges the
connection graph of (a,e) to GY, to form G%,, by invoking
merge. merge identifies that in GY, (1) a1 is dominated by
a2, (2) the two ej nodes refer to the same node. Thus, it
removes a; and merges ej, updating G%, to G¥, and returns
G” as a minimum 0.3-summary graph. O

Remarks. mSum can be adapted to (approximately) find a
summary graph with size no larger than B with a maximized
a. To this end, mSum is invoked in O(log|Q|) times to find
the coverage ratio via a binary search. At each iteration, it
computes a minimum a-summary graph G for a fixed a.
If |G| is larger than B, it changes o to §; and otherwise,
2 - a.. The process repeats until a proper « is identified.
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5. COMPUTING K SUMMARIZATIONS

In this section we study how to construct K summary
graphs for answer graphs, i.e., the KSUM problem.

Complexity. We start by proving Theorem 3 (Section 2).
Given @, G, an integer K and a size bound B, the decision
problem of KSUM asks if there exists a K-partition of G,
such that the sum of the 1-summary graph for each parti-
tion is no more than B. The problem is in NP. To show
the lower bound, we construct a reduction from the graph
decomposition problem shown to be Np-hard [29]. Given
a complete graph G where each edge is assigned with an
integer weight, the problem is to identify K’ partitions of
edges, such that the sum of the maximum edge weight in
each partition is no greater than a bound W. Given an in-
stance of the problem, (a) We identify the maximum edge
weight w,, in G, and construct w,, intermediate nodes V; =
{v1,...,Vu,, }, where each intermediate node has a distinct
label. (b) For each edge in G with weight w;, we construct
an answer graph with two fixed keyword nodes ki, k2 and
edges (k1,v;) and (vj, k2), where v; € Vi, and j € [1,w;].
(c) We set K = K', and B = W. One may verify that if
a K'-partition of edges in G has a total weight within W,
then there exists a K-partition of G with total summary size
within 3W 4+ 2K, and vice versa. Thus, KSUM is Np-hard.
This verifies that KSUM is NP-complete.

The APX-hardness of the K summarization problem can
be shown similarly, by conducting an approximation pre-
serving reduction from the graph decomposition problem,
which is shown to be APX-hard [29]. The above analysis
completes the proof of Theorem 3.

We next present a heuristic algorithm for KSUM. We first
introduce a distance measure for answer graphs.

Graph distance metric. Given two answer graphs Gi

and G2, we introduce a similarity function F(G1,G2) as

Ry (G D(R . .
%7 where G2 is the union of G; and G,

and R,(G1,2) and D(R,) are as defined in Section 4. In-
tuitively, the similarity function F' captures the similarity
of two answer graphs, by measuring “how well” a summary
graph may compress the union of the two graphs [12]. Thus a
distance function 6(G1, G2) can be defined as 1 - F(G1, G2).
Based on the distance measure, we propose an algo-
rithm, kSum, which partitions G into K clusters Gp, such
that the total set distance F'(Gp,) in each cluster G, is min-
imized. This intuitively leads to K small summary graphs.

Algorithm. The algorithm kSum works similarly as a K-
center clustering process [4]. It first initializes a set Gp
to maintain the partition of G, an answer graph set G
with randomly selected K answer graphs from G as K “cen-
ters”, and a summary set Gg to keep record of K 1-summary
graphs, each corresponds to a cluster G, in Gp; in addi-
tion, the total difference 6 is initialized as a large number,
e.g., K |g|2. It then iteratively refines the partition Gp as
follows. (1) For each answer graph G € G, it selects the
“center” graph G.; which minimizes §(G,G¢;), i.e., is the
closest one to G, and extends the cluster G, with G. (2)
The updated clusters Gp forms a partition of G. For each
cluster Gp, € Gp, a new “center” graph G, is selected,
which minimizes the sum of the distance from G'cl. to all
the rest graphs in Gp,. The newly identified K graphs re-
place the original graphs in Gx. (3) The overall distance
H:Zizcecpi 0(G, Ge,;) is recomputed for Gp. kSum re-
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Figure 8: summary graphs for a 2-partition

peats the above process until 6 converges. It then com-
putes and returns K l-summary graph by invoking the al-
gorithm pSum for each cluster G,, € Gp.

/

Example 8: Recall the answer graph set G ={G', G5, G5}
in Fig. 3. Let K= 2. The algorithm pSum first selects
two graphs as “center” graphs, e.g., Gi and G%, and com-
putes the distance between the graphs. One may verify that
5(G1,GY) > §(GY,GY). Thus, G5 and GY% are much “closer,”
and are grouped together to form a cluster. This produces
a 2-partition of G as {{G1},{G5,G5}}. The l-summary
graphs are then computed for each cluster. pSum finally
returns G5, and G5, as the minimized 2 1-summary graphs,
with total size 22 (Fig. 8). O

Analysis. The algorithm kSum correctly computes K 1-
summary graphs for a K-partition of G. It heuristically
identifies K clusters with minimized total distance of each
answer graph in the cluster to its “center” graph. kSum can
also be used to compute K a-summary graphs.

For complexity, (1) it takes kSum O(G) time for initializa-
tion; (2) the clustering phase takes in total O(I - K - |Gm|?)
time, where [ is the number of iterations, and G,, is the
largest answer graph in G; and (3) the total time of sum-
marization is in O(|Q|?||G| + |G|?). In our experiments, we
found that I is typically small (no more than 3).

6. EXPERIMENTAL EVALUATION

In this section, we experimentally verify the effectiveness
and efficiency of the proposed algorithms.

6.1 Experimental Settings

Datasets. We use the following three real-life datasets in
our tests. (1) DBLP (http://dblp.uni-trier.de/xml/), a
bibliographic dataset with in total 2.47 million nodes and
edges, where (a) each node has a type from in total 24 types
(e.g.,’paper’, 'book’, ’author’), and a set of attribute values
(e.g.,’network’, ’database’, etc), and (b) each edge denotes
e.g., authorship or citation. (2) DBpedia (http://dbpedia.
org), a knowledge graph which includes 1.2 million nodes
and 16 million edges. Each node represents an entity with
a type (e.g.,’animal’, ’architectures’, famous places’) from
in total 122 types, with a set of attributes (e.g.,’jaguar’,
'Ford’). (3) YAGO (http://www.mpi-inf.mpg.de/yago) is
also a knowledge graph. Compared with DBLP and DBpe-
dia, it is “sparser” (1.6 million nodes, 4.48 million edges)
and much richer with diverse schemas (2595 types).

Keyword queries. We design keyword queries as follows.
(1) For DBLP, we select 5 common queries as shown in
Table 1. The keyword queries are for searching information
related with various topics or authors. For example, ;1 is
to search the mining techniques for temporal graphs.

(2) For DBpedia and YAGO, we design 6 query templates
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| Query | Keywords | card(G) | VIL1E] |

Q1 mining temporal graphs 355 (5,6)
Q- d;g,{;: parallel computing 1999 (5,4)
distributed graphs meta-data
Qs integration 563 (5,5)
improving query uncertain
Q4 gataba(sje confﬁrerl'nce h 1617 014
_ eyword search algorithm
Qs evaluation XML conference 7635 (7.8)

Table 1: Queries for DBLP
[Qr| [ card(§) [ TVI.IE[ ]

| Query | Keywords template |

Qr, Jaguar place 136 75 (5,7)
Qry :x:fjd_states politician 235 177 (6,7)
Qry album.mu5|c genre 168 550 (11,25)
- Qmerican. mMmaLSLC (]717(]7‘d9
fish bird mamma
Qry protected_area 217 1351 (12,24)
nlorth tluréerican
player club manager
Qs league city country 52 1231 (17,28)
actor film award
Qg company hollywood 214 1777 (12,27)

Table 2: Queries and the answer graphs for DBpedia.
The templates are also applied for YAGO.

QT, to Qr, each consists of type keywords and wvalue key-
words. The type keywords are taken from the type informa-
tion in DBpedia (resp. YAGO), e.g., country in Qr,, and
the value keywords are from the attribute values of a node,
e.g., United States in Qr,. Each query template Qr, is then
extended to a set of keyword queries (simply denoted as
Qr,), by keeping all the value keywords, and by replacing
some type keywords (e.g.,place) with a corresponding value
(e.g.,America). Table 2 shows the query templates Qr and
the total number of its corresponding queries |Qr|. For ex-
ample, for Qr,, 136 keyword queries are generated for DB-
pedia. One such query is {'Jaguar’, 'America'}.

Answer graph generator. We generate a set of answer
graphs G for each keyword query, leveraging [17,20]. Specif-
ically, (1) the keyword search algorithm in [17] is used to
produce a set of trees connecting all the keywords, and (2)
the trees are expanded to a graph containing all the key-
words, with a bounded diameter 5, using the techniques
in [20]. Table 1 and Table 2 report the average number
of the generated answer graphs card(G) and their average
size, for DBLP and DBpedia, respectively. For example, for
Qr,, an answer graph has 11 nodes and 25 edges (denoted
as (11,25)) on average. For YAGO, card(G) ranges from
200 to 2000, with answer graph size from (5,7) to (10, 20).
On the other hand, various methods exist e.g., top-k graph
selection [35], to reduce possibly large answer graphs.

Implementation. We implemented the following algo-
rithms in Java: (1) pSum, mSum and kSum for answer
graph summarization; (2) SNAP [34] to compare with pSum,
which generates a summarized graph for a single graph, by
grouping nodes such that the pairwise group connectivity
strength is maximized; (3) kSum 4, a revised kSum us-
ing a top-down strategy: (a) it randomly selects two answer
graphs GG1 and G2, and constructs 2 clusters by grouping the
graphs that are close to G1 (resp. G2) together; (b) it then
iteratively splits the cluster with larger total inter-cluster
distance to two clusters by performing (a), until K clusters
are constructed, and the K summary graphs are computed.

All experiments were run on a machine with an Intel Core2
Duo 3.0GHz CPU and 4GB RAM, using Linux. Each ex-
periment was run 5 times and the average is reported here.



{Jaguar_cars.Ltd"}
company

/ \ OMO’ artist O
(Jaguar- x -type, {Cody,
Jaguar-S-type}  Johnny}

place place
{Detroity ~ {North America*}

{Jaguar} {Jaguar love*}
specles band

{Latin-America,
Peru, Argentia)

company
{Tata-motors
Ford, raton

language
(Lahn)

{Rock}
Iace
species
(peccary deer
amadillo}

Martin} \ O/
lacs place
Gg  {North America‘}

pla
GS {North Amerlca ) G'S

music genre|

Kip

{rara_r

place
[{burmal

rotected_area {south_america} K,: Dir - protected_area

national_park} place {crane} ({rara_national_park}

TR,

(sou(hﬁamenca) 2. Dir T protected_area
place {crane} {rara_national_park}

FU

Ks mammal K; lace blrd place Ka: mammal
{red_panda} {north_: amerlca) {grebe}  {burma}  {red_panda}|

Gs(a=0.3)

Kz mammal
{red_panda}

burd place
{grebe}  {burma}

Gs(a=0.2)

1)

Figure 9: Case study: summarizing real-life answer graphs

6.2 Case Study:x and o-summarization

We first provide a case study using DBpedia. (1) Fixing
K = 10 and @Q = {Jaguar,America}, we select 3 summary
graphs generated by kSum, as shown in Fig. 9 (left). The
summary graph suggests three types of connection patterns
between Jaguar and America, where Jaguar is a type of ani-
mal, car, and a band, respectively. Each intermediate node
(e.g.,company) contains the entities connecting the keyword
nodes, (e.g.,Ford). Observe that each summary graph can
also be treated as a suggested graph query for Q. (2) Fig. 9
(right) depicts three a-summary graphs for a keyword query
Q from the query template Qr,. Gga=0.1) covers a single
pair of keyword “protected area” With the in-
crease of a, new keywords are added to form new a-summary
graphs. When a = 0.3, we found that G4(4—0.3) already cov-
ers 67% of the path labels for all keyword pairs.

and “mammal”.

6.3 Performance on Real-life Datasets

Exp-1: Effectiveness of pSum. We first evaluate the ef-
fectiveness of pSum. To compare the effectiveness, we define
the compression ratio cr of a summarization algorithm as
“%‘ where |Gs| and |G| are the size of the summary and
answer graphs. For pSum, G refers to the 1-summary graph
for G and Q. Since SNAP is not designed to summarize a
set of graphs, we first union all the answer graphs in G to
produce a single graph, and then use SNAP to produce a
summarized graph Gs. To guarantee that SNAP preserves
path information between keywords, we carefully selected
parameters e.g., participation ratio [34]. We verify the ef-
fectiveness by comparing cr of pSum with that of SNAP.

Fixing the query set as in Table 1, we compared cr of
pSum and SNAP over DBLP. Fig. 10(a) tells us the follow-
ing. (a) pSum generates summary graphs much smaller than
the original answer graph set. For example, cr of pSum is
only 7% for Q2, and is on average 23%. (b) pSum generates
much smaller summary graphs than SNAP. For example, for
Q2 over DBLP, the G5 generated by pSum reduces the size of
its counterparts from SNAP by 67%. On average, pSum out-
performs SNAP by 50% over all the datasets. While SNAP
may guarantee path preserving via carefully set parameters,
it cannot identify dominated nodes, thus produces larger G.

Using Qr, (i € [1,6]), we comapred cr of pSum and SNAP
over DBpedia (Fig. 10(b)) and YAGO (Fig. 10(c)). (1) pSum
produces summaries on average 50% (resp. 80%) smaller of
the answer graphs, and on average 62% (resp. 72%) smaller
than their counterparts generated by SNAP over DBpedia
(resp. YAGO). (2) For both algorithms, cr is highest over
DBpedia. The reason is that DBpedia has more node labels
than DBLP, and the answer graphs from DBpedia are denser
(Table 2). Hence, fewer nodes can be removed or grouped in
the answer graphs for DBpedia, leading to larger summaries.
To further increase the compression ratio, one can resort to
a-summarization with information loss.
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Exp-2: Effectiveness of mSum. In this set of experiments,
we verify the effectiveness of mSum. We compare the average
size of a-summary graphs by mSum (denoted as |G¢|) with

that of 1-summary graphs by pSum (denoted as |Gsl). Using
‘\G [

Fixing the keyword query set as {Q3, Q4, Qs } we show
the results over DBLP in Fig. 10(d). (1) |Gg]| increases
for larger . Indeed, the smaller coverage ratio a summary
graph has, the fewer keyword pair nodes and the paths are
summarized, which usually reduce |G5| and make it more
compact. (2) The growth of |G¢| is slower for larger a.
This is because new keyword pairs are more likely to have
already been covered with the increment of a. Fig. 10(e)
and Fig. 10(f) illustrate the results over DBpedia and YAGO
using the query templates {Qr,, Qrs,Qrs} (Table 2). The
results are consistent with Fig. 10(d).

We also evaluated the recall merit of mSum as follows.
Given a keyword query @, we denote the recall of mSum as

‘P‘ , where P (resp. P’) is the set of path labels between the

keyword nodes of k and k' in G (resp. a-summary graph by
mSum), for all (k, k') € Q. Figures 10(g), 10(h) and 10(i)
illustrate the results over the three real-life datasets. The
recall increases with larger «, since more path labels are
preserved in summary graphs, as expected. Moreover, we
found that mSum covers on average more than 85% path
labels for all keyword pairs over DBLP, even when o = 0.6.

In addition, we compared the performance of mSum with
an algorithm that identifies the minimum summary graph by
exhaust searching. Using DBpedia and its query templates,
and varying a from 0.1 to 1 (we used pSum when a = 1.0),
we found that mSum always identifies summary graphs with
size no larger than 1.07 times of the minimum size.

real-life datasets, we evaluated

Exp-3: Effectiveness of kSum. We next evaluate the ef-
fectiveness of kSum, by evaluating the average compression
ratio, crx= %Zle }g;\ for each cluster Gp, and its corre-
sponding l-summary grlaph G, .

Fixing the query set {Qs,Q4,Qs5} and varying K, we
tested crx over DBLP. Fig. 10(j) tells us the following. (1)
For all queries, cri first decreases and then increases with
the increase of K. This is because a too small K induces
large clusters that contain many intermediate nodes that are
not dominated by any node, while a too large K leads to
many small clusters that “split” similar intermediate nodes.
Both cases increase crix. (2) crig is always no more than
0.3, and is also smaller than its counterpart of pSum in
Fig. 10(a). By using kSum, each cluster G, contains a set
of similar answer graphs that can be better summarized.

The results in Fig. 10(k) and 10(l) are consistent with
their counterparts in Fig. 10(a). In addition, crx is in gen-
eral higher in DBpedia than its counterparts over DBLP and
YAGO. This is also consistent with the observation in Exp-1.
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Figure 10: Performance evaluation

The space cost of the algorithms is mainly on storing an-
swer graphs and dominance relations. In general, pSum
takes at most 100M over DBLP and YAGO, which is less
than 1% of the cost for storing the original data graphs. The
space cost of mSum and kSum are similar to that of pSum.

Summary: effectiveness. We found the following. (1)
The summarization effectively constructs summary graphs:
the compression ratio of pSum is on average 24%, and the av-
erage compression ratio is 20% for kSum. Moreover, mSum
can provide more compact summary results with some in-
formation loss. (2) Graphs with simpler schema (less types)
and topology can be better summarized. In addition, our al-
gorithms take up to several seconds over all real-life datasets.

6.4 Performance on Synthetic Dataset

We randomly generated synthetic queries using 5 key-
words from a set X of 40 random labels. We generated G
with size card(G) and average graph size Avg. |G| as follows.
We selected 5 labels from X, and randomly generated 50
path templates, each connects two keywords with the labels.
We then constructed an answer graph by (a) constructing
a path from a template by replacing its labels with nodes,
and (b) merging two paths until it has size Avg. |G].

Exp-4: Summarization efficiency. We varied card(G)
from 1000 to 6000 and Avg. |G| from 20 to 50. Fig. 10(m)
tells us that pSum takes more time over larger answer
graphs, and over larger card(G). It scales well with card(G).
Note that pSum seldom perform its worst case complexity.

Varying « from 0.1 to 0.9, we tested the efficiency of mSum
where card(G) (resp. Avg. |G|) varies from 3000 to 5000 (resp.
30 to 40). Fig. 10(n) shows that mSum scales well with «,
and takes more time when card(G) and Avg. |G| increase.

Fixing card(G) = 5000, we evaluated the efficiency of kSum
and its baseline version kSum .4, by varying K (resp. Avg.
|G|) from 10 to 100 (resp. 30 to 40). Figure 10(o) tells us
that both algorithms take less time with the increase of K,
since they take less total time over smaller clusters induced
by larger K. In general, kSum ;4 runs faster than kSum, due
to a faster top-down partitioning strategy.

Fixing card(G) = 5000, we compared crg, i.e., average
compression ratio of kSum ¢4 and kSum, by varying K (resp.
Avg. |G|) from 1 to 70 (resp. 30 to 40). As shown in
Fig. 10(p), crx first decreases, and then increases with the
increasing of K, the same as Fig. 10(j) and Fig. 10(k). Al-
though kSum .4 is faster, kSum outperforms kSum ;4 with
lower crg, due to better iterative clustering strategy.
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Summary: efficiency. Our summarization algorithms are
efficient, and scale well with the size of answer graphs. They
take more time over random graphs than over real datasets,
due to (1) larger answer graph number and size, and (2)
more diversity in connection patterns. Techniques such as
incremental simulation [7] may apply for dynamic and in-
teractive summarization for large number of answer graphs.

7. CONCLUSION

In this paper we have developed summarization tech-
niques for keyword search in graph data. By providing a
succinct summary of answer graphs induced by keyword
queries, these techniques can improve query interpretation
and result understanding. We have proposed a new concept
of summary graphs and their quality metrics. Three summa-
rization problems were introduced to find the best summa-
rizations with minimum size. We established the complexity
of these problems, which range from PTIME to NP-complete.
We proposed exact and heuristic algorithms to find the best
summarizations. As experimentally verified, the proposed
summarization methods effectively compute small summary
graphs for capturing keyword relationships in answer graphs.

For future work, we will compare the summarization for
different keyword search strategies. It is also important to
consider keywords with different weights, as e.g., importance
or interestingness [8], as well as provable guarantees on sum-
mary quality and improved efficiency. Our work can also be
extended to enhance keyword search with summary struc-
tures, so that the access to graph data becomes easier.
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