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ABSTRACT
As of 2005, sampling has been incorporated in all major
database systems. While efficient sampling techniques are
realizable, determining the accuracy of an estimate obtained
from the sample is still an unresolved problem. In this paper,
we present a theoretical framework that allows an elegant
treatment of the problem. We base our work on generalized
uniform sampling (GUS), a class of sampling methods that
subsumes a wide variety of sampling techniques. We intro-
duce a key notion of equivalence that allows GUS sampling
operators to commute with selection and join, and deriva-
tion of confidence intervals. We illustrate the theory through
extensive examples and give indications on how to use it to
provide meaningful estimates in database systems.

1. INTRODUCTION
Sampling has long been used by database practitioners to

speed up query evaluation, especially over very large data
sets. For many years it was common to see SQL code of the
form “WHERE RAND() > 0.99”. Widespread use of this sort
of code lead to the inclusion of the TABLESAMPLE clause in
the SQL-2003 standard [1]. Since then, all major databases
have incorporated native support for sampling over rela-
tions. One such query, using the TPC-H schema, is:

SELECT SUM(l_discount*(1.0-l_tax))

FROM lineitem TABLESAMPLE (10 PERCENT),

orders TABLESAMPLE (1000 ROWS)

WHERE l_orderkey = o_orderkey AND

l_extendedprice > 100.0;

The result of this query is obtained by taking a Bernoulli
sample with p = .1 over lineitem and joining it with a
sample of size 1000 obtained without replacement (WOR),
from orders and evaluating the SUM aggregate.

In practice, there are two main reasons practitioners write
such code. One is that sampling is useful for debugging
expensive queries. The query can be quickly evaluated over
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a sample as a sanity check, before it is unleashed upon the
full database.

The second reason is that the practitioner is interested
in obtaining an idea as to what the actual answer to the
query would be, in less time than would be required to run
the query over the entire database. This might be useful as
a prelude to running the query “for real”—the user might
want to see if the result is potentially interesting—or else the
estimate might be used in place of the actual answer. Often,
this situation arises when the query in question performs
an aggregation, since it is fairly intuitive to most users that
sampling can be used to obtain a number that is a reasonable
approximation of the actual answer.

The problem we consider in this paper comes from the de-
sire to use sampling as an approximation methodology. In
this case, the user is not actually interested in computing
an aggregate such as “SUM(l discount*(1.0-l tax))” over a
sample of the database. Rather, s/he is interested in esti-
mating the answer to such a query over the entire database
using the sample. This presents two obvious problems:

• First, what SQL code should the practitioner write in
order to compute an estimate for a particular aggre-
gate?

• Second, how does the practitioner have any idea how
accurate that estimate is?

Ideally, a database system would have built-in mecha-
nisms that automatically provide estimators for user sup-
plied aggregate queries, and that automatically provide users
with accuracy guarantees. Along those lines, in this paper
we study how to automatically support SQL of the form:

CREATE VIEW APPROX (lo, hi) AS

SELECT QUANTILE(SUM(l_discount*(1.0-l_tax)), 0.05)

QUANTILE(SUM(l_discount*(1.0-l_tax)), 0.95)

FROM lineitem TABLESAMPLE (10 PERCENT),

orders TABLESAMPLE(1000 ROWS)

WHERE l_orderkey = o_orderkey AND

l_extendedprice > 100.0;

Presented with such a query, the database engine will use
the user-specified sampling to automatically compute two
values lo and hi that can be used as a [0.05, 0.95] confidence
bound on the true answer to the query. That is, the user
has asked the system to compute values lo and hi such that
there is a 5% chance that the true answer is less than lo, and
there is a 95% chance that the true answer is less than hi.
In the general case, the user should be able to specify any
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aggregate over any number of sampled base tables using any
sampling scheme, and the system would automatically figure
out how to compute an estimate of the desired quantile. A
database practitioner need have no idea how to compute an
estimate for the answer, nor does s/he need to have any idea
how to compute confidence bounds; the user only specifies
the desired quantiles, and the system does the rest.

Existing Work on Database Sampling. This is not an
easy problem to solve. While there has been a lot of re-
search on implementing efficient sampling algorithms [25,
24], providing confidence intervals for the sample estimate
is understood only for a few restricted cases. The simplest is
when only a single relation is sampled. A slightly more com-
plicated case was handled by the AQUA system developed
at Bell labs [13, 4, 5, 3]. AQUA considered correlated sam-
pling where a fact table in a star schema is sampled. These
cases are relatively simple because when a single table is
sampled, classical sampling theory applies with a few easy
modifications. Simultaneous work on ripple joins and online
aggregation [18, 16, 15, 20, 17] extended the class of queries
amenable to analysis to include those queries where multiple
tables are sampled with replacement and then joined.

Unfortunately, the extension to other types of sampling
is not straightforward, and to date new formulas have been
derived every time a new sampling is considered (for ex-
ample, two-table without-replacement sampling [23]). Our
goal is to provide a simple theory that makes it possible to
handle very general types of queries over virtually any uni-
form sampling scheme: with replacement sampling, fixed-
size without replacement sampling, Bernoulli sampling, or
whatever other sampling scheme is used. The ability to eas-
ily handle arbitrary types of sampling is especially important
given that the current SQL standard allows for a somewhat
mysterious SYSTEM sampling specification, whose exact im-
plementation (and hence its statistical properties) are left
up to the database designers. Ideally, it should be easy for a
database designer to apply our theory to an arbitrary SYSTEM

sampling implementation.

Generalized Uniform Sampling. One major reason that
new theory and derivations were previously required for each
new type of sampling is that the usual analysis is tuple-
based, where the inclusion probability of each tuple in the
output set is used as the basic building block; computing ex-
pected values and variances requires intricate algebraic ma-
nipulations of complicated summations. In previous work,
we defined a notion that we called Generalized Uniform
Sampling (GUS) (ref Section 3) that subsumes many differ-
ent sampling schemes (including all of the aforementioned
ones, as well as block-based variants thereof). In this paper,
we develop an algebra over many common relational opera-
tors, as well as the GUS operator. This makes it possible to
take any query plan that contains one or more GUS opera-
tors and the supported relational operators, and perform a
statistical analysis of the accuracy of the result in an alge-
braic fashion, working from the leaves up to the top of the
plan.

No complicated algebraic manipulations over nested sum-
mations are required. This algebra can form the basis for a
lightweight tool for providing estimates and quantiles, that
should be easily integrable into any database system. The
database need only feed the tool the user-specified quantiles,
the set of tuples returned by the query, some simple lineage

information over those result tuples, and the query plan, and
the tool can automatically compute the desired quantiles.

Our Contributions. The specific contributions we make
in this paper are:

• We define the notion of Second Order Analytical equiv-
alence (SOA equivalence), a key equivalence relation-
ship between query plans that is strong enough to al-
low quantile analysis but weak enough to ensure com-
mutativity of sampling and relational operators.

• We define the GUS operator that emulates a wide class
of sampling methods. This operator commutes with
most relational operators under SOA-equivalence.

• We develop an algebra over GUS and relational oper-
ators that allows derivation of SOA-equivalent plans.
These plans easily allow moment calculations that can
be used to estimate quantiles.

• We describe how our theory can be used to add esti-
mation capabilities to existing databases so that the
required changes to the query optimizer and execution
engine are minimal. Alternatively, the estimator can
be implemented as an external tool.

Our work provides a straightforward analysis for the SUM
aggregate. It can be easily extended for COUNT by substi-
tuting the aggregated attribute to 1 and applying the anal-
ysis for SUM on this attribute. Though the analysis for AV-
ERAGE presents a slightly non-linear case, the analyses for
SUM and COUNT lay a foundation for it. The confidence
intervals can be derived using a method for approximating
probability distribution/variance such as the delta method.
The analysis for MIN, MAX and DISTINCT are extremely
hard problems to solve due to their non-linearity. For exam-
ple DISTINCT requires an estimate of all the distinct values
in the data and the number of such values. It is thus beyond
the scope of this paper.

While selections and joins are the highlight of our pa-
per, we show that SOA-equivalence allows analysis for other
database operators like cross-product (compaction), inter-
section (concatenation) and union. Due to space constraints,
we are unable to include all technical proofs, deeper imple-
mentation details and discussions. These are available in
the extended version of this paper[2].

The rest of the paper is organized as follows. In Section 2,
we provide a brief overview of related work in this area. In
Section 3, we introduce GUS methods and give details on
how to get estimates and confidence intervals for them. In
Section 4, we introduce the notion of SOA-equivalence be-
tween query plans and prove that GUS operators commute
with a variety of relational operators in the SOA sense. In
Section 5, we investigate interactions between GUS opera-
tors when applied to the same data and explore more possi-
bilities in using them. In Section 6, we provide insights on
how our theory can be used to implement a separate add-
on tool and how the performance of the variance estimation
can be enhanced. In Section 7, we test our implementation
thoroughly, and provide accuracy and runtime analysis. We
explore some possible applications and conclude with a dis-
cussion in Section 8.
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2. RELATED WORK
The idea of using sampling in databases for deriving es-

timates for a single relation was first studied by Shapiro et
al. [26]. Since then, much research has focused on imple-
menting efficient sampling algorithms in databases [25, 24].
Providing confidence intervals on estimates for SQL aggre-
gate queries is difficult, which is why there has been limited
progress in this area. Olken [25] studied the problem for
specific sampling methods for a single relation. This line of
work ended abruptly when Chaudhuri et al. [9, 10] proved
that extracting IID samples from a join of two relations is
infeasible.

Another line of research was the extension to the corre-
lated sampling pioneered by the AQUA system [13, 3, 4].
AQUA is applicable to a star schema, where the goal is
sampling from the fact table, and including all tuples in di-
mension tables that match selected fact table tuples. The
AQUA type of sampling has been incorporated in DB2 [14].

The reason confidence intervals can be provided for AQUA
type sampling is the fact that independent identically dis-
tributed (IID) samples are obtained from the set over which
the aggregate is computed. A straightforward use of the cen-
tral limit theorem readily allows computation of good esti-
mates and confidence intervals. Indeed, it is widely believed
[9, 10, 25, 13, 3, 4] that IID samples at the top of the query
plan are required to provide any confidence interval. This
idea leads to the search for a sampling operator that com-
mutes with database operators. This endeavor proved to be
very difficult from the beginning [9] when joins are involved.
To see why this is the case, consider a tuple t ∈ orders and
two tuples u1, u2 in lineitem that join with t (i.e. they have
the same value for orderkey). Random selection of tuples
t, u1, u2 in the sample does not guarantee random selection
of result tuples (t, u1) and (t, u2). If t is not selected, nei-
ther tuple can exist, and thus sampling is correlated. A lot
of effort [9, 10] has been spent in finding practical ways to
de-correlate the result tuples with only limited success.

Progress has been made using a different line of thought
by Hellerstein and Hass [20] and the generalization in [19]
for the special case of sampling with replacement. The prob-
lem of producing IID result samples is avoided by develop-
ing central limit theorem-like results for the combination
of relation level sampling with replacement. The theory
was generalized first to sampling without replacement for
single join queries [23], then further generalized to arbi-
trary uniform sampling over base directions and arbitrary
SELECT-FROM-WHERE queries without duplicate elimination
in DBO [21], and finally to allow sampling across multiple
relations in Turbo-DBO [12]. Even though some simplifica-
tion occurred through these theoretical developments, they
are mathematically heavy and hard to understand/interpret.
Moreover, the theory, especially DBO and Turbo-DBO, is
tightly coupled with the systems developed to exploit it.

Technically, one major problem in all the mathematics
used to analyze sampling schemes is the fact the analyses use
functions and summations over tuple domains, and not the
operators and algebras that the database community is used
to. This makes the theory hard to comprehend and apply.
The fact that no database system picked up these ideas to
provide a confidence interval facility is a direct testament of
these difficulties.

3. GENERALIZED UNIFORM SAMPLING
Previous attempts at accommodating a sampling operator

in a query plan were limited to specific sampling methods.
In previous work [12], we analyzed a large class of sampling
methods for which the analysis can be unified: General-
ized Uniform Sampling (GUS). Sampling methods such as
uniform sampling with/without replacement, Bernoulli sam-
pling and more elaborate strategies like the chaining in [12]
are members of the GUS family. Moreover, the variance of
any GUS method can be efficiently estimated. We briefly in-
troduce GUS methods in this section and investigate them
further in this paper.

Definition 1 (GUS Sampling [12]). A randomized
selection process G(a,b̄) which gives a sample R from R =
R1 ×R2 × · · · ×Rn is called Generalized Uniform Sampling
(GUS) method, if, for any given tuples t = (t1, . . . , tn), t′ =
(t′1, . . . , t

′
n) ∈ R, P (t ∈ R) is independent of t, and P (t, t′ ∈

R) depends only on {i : ti = t′i}. In such a case, the GUS
parameters a, b̄ = {bT |T ⊂ {1 : n}} are defined as:

a = P [t ∈ R]

bT = P [t ∈ R ∧ t′ ∈ R|∀i ∈ T, ti = t′i,∀j ∈ TC , tj 6= t′j ].

This definition requires GUS sampling to behave like a
randomized filter. In particular, any GUS operator can be
viewed as a selection process from the underlying data, a
process that can introduce correlations. The uniformity of
GUS requires that the randomized filtering is performed on
lineage of tuples and not on the content. As simple as the
idea is, expressing any sampling process in the form of GUS
is a non-trivial task. Example 1 shows the calculation of
GUS parameters for a simple case.

Example 1. In this example, we show how the GUS defi-
nition above can be used to characterize the estimation neces-
sary for the query from the paper’s introduction. We denote
by l s the Bernoulli sample with p = 0.1 from lineitem and
by o s the WOR sample of size 1000 from orders. We as-
sume that cardinality of orders is 150000. Henceforth, for
ease of exposition, we will denote all base relations involved
by their first letters. For example, lineitem will be denoted
by l.

Applying the definition above and the independence be-
tween sampling processes, we can derive the parameters for
this GUS as follows: For any tuple t ∈ lineitem and tuple
u ∈ orders:

a = P [(t ∈ l s) ∧ (u ∈ u s)] = 0.1× 1000

150000
= 6.667× 10−4

since the base relations are sampled independently from each
other. For any tuples t, t′ ∈ lineitem and u, u′ ∈ orders:

b∅ = P [(t, t′ ∈ l s) ∧ (u, u′ ∈ o s)]

= 0.1× 0.1× 1000

150000
× 999

149999

= 4.44× 10−7,

and

bo = P [t ∈ l s]× P [t′ ∈ l s|t ∈ l s]× P [u ∈ o s]

= 0.1× 0.1× 1000

150000
= 6.667× 10−5.
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Similarly,

bl = P [(t ∈ l s) ∧ (u, u′ ∈ o s)]

= P [t ∈ l s]× P [u ∈ o s]× P [u′ ∈ o s|u ∈ o s]

= 0.1× 1000

150000
× 999

149999

= 4.44× 10−6.

The last term is

bl,o = P [(t ∈ l s)∧(u ∈ o s)] = 0.1× 1000

150000
= 6.667×10−4.

Notice that the GUS captures the entire estimation pro-
cess, not only the two individual sampling methods. The
above analysis dealt with a simple join consisting of two base
relations. For more complex query plans, the derivation of
GUS parameters would involve consideration of all possible
interactions between participating tuples. This will make the
analysis highly complex.

The analysis of any GUS sampling method for a SUM-like
aggregate is given as follows.

Theorem 1. [12] Let f(t) be a function/property of t ∈
R, and R be the sample obtained by a GUS method G(a,b̄).
Then, the aggregate A =

∑
t∈R f(t) and the sampling esti-

mate X = 1
a

∑
t∈R f(t) have the property:

E[X] = A

σ2(X) =
∑

S⊂{1:n}

cS
a2
yS − yφ (1)

with

yS =
∑

ti∈Ri|i∈S

 ∑
tj∈Rj |j∈SC

f(ti, tj)

2

cS =
∑

T∈P(n)

(−1)|T |+|S| bT .

The above theorem indicates that the GUS estimates of
SUM-like aggregates are unbiased and that the variance is
simply a linear combination of properties of the data, terms
yS and properties of the GUS sampling method cS . More-
over, yS can be estimated from samples of any GUS [12].
This result is not asymptotic; it gives the exact analysis
even for very small samples. Once the estimate and the
variance are computed, confidence intervals can be readily
provided using either the normality assumption or the more
conservative Chebychev bound [12].

In the rest of the paper, we will study GUS sampling
methods in detail.

4. ANALYSIS OF SAMPLING QUERY
PLANS

The high-level goal of this paper, is to introduce a tool
that computes the confidence bounds of estimates based on
sampling. Given a query plan with sampling operators in-
terspersed at various points, our tool transforms it to an
analytically equivalent query plan that has a particular struc-
ture: all relational operators except the final aggregate form
a subtree that is the input to a single GUS sampling opera-
tor. The GUS operator feeds the aggregate operator that

produces the final result. Note that this transformation
is done solely for the purpose of computing the confidence
bounds of the result; it does not provide a better alternative
to the execution plan used as input. Once this transforma-
tion is accomplished, Theorem 1 readily gives the desired
analysis – the equivalence ensures that the analysis for the
special plan coincides with the analysis for the original plan.

A natural strategy to obtain the desired structure is to
perform multiple local transformations on the original query
plan. These local transformations are based on a notion of
analytical equivalence, that we call Second Order Analyti-
cal (SOA) equivalence. They allow both commutativity of
relational and GUS operators, and consolidation of GUS op-
erators. Effectively, these local transformations allow a plan
to be put in the special form in which there is a single GUS
operator just before the aggregate.

In this section, we first define the SOA-equivalence and
then use it to provide equivalence relationships that allow
the plan transformations mentioned above. A more elabo-
rate example showcases the theory in the latter part of the
section.

4.1 SOA-Equivalence
The main reason the previous attempts to design a sam-

pling operator were not fully successful is the requirement
to ensure IID samples at the top of the plan. Having IID
samples makes the analysis easy since Central Limit The-
orem readily provides confidence intervals. However it is
too restrictive to allow plans with multiple joins to be dealt
with. It is important to notice that the difficulty is not in
executing query plans containing sampling but in analyzing
such query plans.

The fundamental question we ask in this section is: What
is the least restrictive requirement we can have and still
produce useful estimates? Our main interest is in how the
requirement can be transformed into a notion of equivalence.
This will enable us to talk about equivalent plans, initially,
but more usefully about equivalent expressions. The key in-
sight comes from the observation that it is enough to com-
pute the expected value and variance for any query plan.
Then either the conservative Chebychev bounds or the op-
timistic1 normal-distribution based bounds can be used to
produce confidence intervals. Note that confidence intervals
are the end goal, and, preserving expected value and vari-
ance is enough to guarantee the same confidence interval
using both CLT and Chebychev methods.

Thus, for our purposes, two query plans are equivalent if
their result has the same expected value and variance. This
equivalence relation between plans already allows significant
progress. It is an extension of the classic plan equivalence
based on obtaining the same answer to randomized plans.
From an operational sense, though, the plan equivalence is
not sufficient to provide interesting characterizations. The
main problem is the fact that the equivalence exists only
between complete plans that compute aggregates. It is not
clear what can be said about intermediate results–the equiv-
alent of non-aggregate relational algebra expressions.

The key to extend the equivalence of plans to equivalence
of expressions is to first design such an extension for the clas-

1While the CLT does not apply due to the lack of IID
samples, the distribution of most complex random variables
made out of many loosely interacting parts tends to be nor-
mal.

1801



sic relational algebra. To this end, assume that we can only
use equality on numbers that are results of SUM-like aggre-
gates but we cannot directly compare sets. To ensure that
two expressions are equivalent, we could require that they
produce the same answer using any SUM-aggregate. In-
deed, if the expressions produce the same relation/set, they
must agree on any aggregate computation using these sets
since aggregates are deterministic and, more importantly,
do not depend on the order in which the computation is
performed. The SUM-aggregates are crucial for this defi-
nition since they form a vector space. Aggregates At that
sum function ft(u) = δtu are the basis of this vector space;
agreement on these aggregates ensures set agreement. Ex-
tending these ideas to randomized estimation, we obtain the
following.

Definition 2 (SOA-equivalence). Given (possibly
randomized) expressions E(R) and F(R), we say

E(R)
SOA⇐⇒ F(R)

if for any arbitrary SUM-aggregate Af (S) =
∑
t∈S f(t),

E[Af (E(R))] = E[Af (F(R))]

V ar[Af (E(R))] = V ar[Af (F(R))].

From the above discussion, it immediately follows that
SOA-equivalence is a generalization and implies set equiva-
lence for non-randomized expressions, as stated in the fol-
lowing proposition.

Proposition 1. Given two relational algebra expressions
E(R) and F (R) we have:

E(R) = F (R)⇔ E(R)
SOA⇐⇒ F (R).

The next proposition establishes that SOA-equivalence is
indeed an equivalence relation and can be manipulated like
relational equivalence.

Proposition 2. SOA-equivalence is an equivalence rela-
tion, i.e., for any expressions E ,F ,H and relation R:

E(R)
SOA⇐⇒ E(R)

E(R)
SOA⇐⇒ F(R)⇒ F(R)

SOA⇐⇒ E(R)

E(R)
SOA⇐⇒ F(R) ∧ F(R)

SOA⇐⇒ H(R)⇒ E(R)
SOA⇐⇒ H(R).

SOA-equivalence subsumes relational algebra equivalence.
The strength of SOA-equivalence is the fact that it does
not depend on a notion of randomized set equivalence, an
equivalence that would be hard to define especially if it has
to preserve aggregates.

Proposition 3. Given two relational algebra expressions
E(R) and F(R) we have:

E(R)
SOA⇐⇒ F(R)

⇔
∀t ∈ R, P [t ∈ E(R)] = P [t ∈ F(R)] and

∀t, u ∈ R, P [t, u ∈ E(R)] = P [t, u ∈ F(R)].

Proposition 3 provides a powerful alternative to SOA-
equivalence. This equivalence is in terms of first and second

Sampling method GUS parameters
Bernoulli(p) a = p, b∅ = p2, bR = p

WOR (n, N) a = n
N
, b∅ = n(n−1)

N(N−1)
, bR = n

N

Figure 1: GUS parameters for known sampling methods

on a single relation

order probabilities, and we refer to it as SOA-set equiva-
lence. Another way to interpret the result above is that
SOA-set equivalence is the same as agreement on all SUM-
like aggregates. More importantly for this paper, SOA-set
equivalence provides an alternative proof technique to show
SOA-equivalence. Often, proofs based on SOA-set equiva-
lence are simpler and more compact.

Section 6 contains a recipe for expected value and vari-
ance computation for a specific situation, when there is a
single overall GUS sampling on top. Starting with the given
query plan that contains both sampling and relational op-
erators, if we find a SOA-equivalent plan that is equivalent
and has no sampling except a GUS at the top, we readily
have a way to compute the expected value and variance of
the original plan. In the rest of this section we pursue this
idea further and show how SOA-equivalent plans with the
desired structure can be obtained from a general query plan.

4.2 GUS Quasi-Operators
Except under restrictive circumstances, the sampling op-

erators will not commute with relational operators. This,
as we mentioned is the main reason previous work made
limited progress on the issue. As we will see later in this
section, GUS sampling does commute in a SOA-equivalence
sense with most relational operators. The reason we can
commute GUS (but not specific sampling methods) is that,
due to its generality, it can capture the correlations induced
by the relational operators. The first step in our analysis has
to be a translation from specific sampling to GUS-sampling.

Before we talk about the translation from sampling to
GUS operators, we need to clarify and refine the Defini-
tion 1 of GUS sampling. As part of the definition, terms of
the form ti = t′i or tj 6= t′j are used. Intuitively, they cap-
ture the idea that tuples (or parts) are the same or different.
Since in this paper we will have multiple GUS operators in-
volved, it is important to make the meaning of such terms
very clear. We do this through a notion that proved useful
in probabilistic databases (among other uses): lineage[11].
Lineage allows dissociation of the ID of a tuple from the
content of the tuple, for base relation, and tracking the com-
position of derived tuples. With this, ti = t′i means that the
two tuples are the same – have the same ID/lineage – not
that they have the same content.

Representing and manipulating lineage is a complex sub-
ject. In this work, since we only accommodate selection
and joins the issue is significantly simpler. The selection
leaves lineage unchanged, the lineage of the result of the join
is the union of the lineage of the matching tuples. Thus,
lineage can be represented in relational form with one at-
tribute for each base relation participating in the expres-
sion. We can thus talk about lineage schema L(R), a syn-
onym of the set of base relations participating in the ex-
pression of R. The lineage of a specific tuple t ∈ R will
have values for the lineage of all base relations constitut-
ing R. A particularly useful notation related to lineage is:
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T (t, t′) = {Rk|tk = tk
′, k ∈ L (R)}, the common part of the

lineage of tuples t and t′, i.e. the base relations on which
the lineage of t and t′ agree.

SUM

1

WOR1000

o

B0.1

l

SUM

1

G(aW ,b̄W )

o

G(aB ,b̄B)

l

SUM

G(aBW ,b̄BW )

1

ol
(a) (b) (c)

Figure 2: Query 1

Example 2. The query from the introduction uses two
sampling methods: Bernoulli sampling with p = 0.1 on
lineitem and sampling 1K tuples without replacement from
orders(150K tuples). These methods can be expressed in
terms of GUS as G(aB ,b̄B) and G(aW ,b̄W ) as follows: For

G(aB ,b̄B): aB = 0.1 and b̄B = {bB,∅, bB,l; bB,∅ = 0.01, bB,l =

0.1}. For G(aW ,b̄W ): aW = 6.667× 10−3 and b̄W = {bW,∅,
bW,o; bW,∅ = 4.44× 10−5, bW,o = 6.667× 10−3}

It is important to note that the GUS is not an operator
but a quasi-operator. While it corresponds to a real oper-
ator when the translation from specific sampling to GUS
happens, it will not correspond to an operator after trans-
formations. There is no need to provide or even to consider
an implementation of a general GUS operator since GUS
will only be used for the purpose of analysis.

In the rest of this section, we will assume that all specific
sampling operators were replaced by GUS quasi-operators,
thus will not be encountered by the re-writing algorithm.
We designate by G(a,b̄)(R), a GUS method applied to a rela-
tion R, and the resulting sample by R. When multiple GUS
methods are used, the i’th GUS method and its resulting
sample will be denoted by G(ai,b̄i)

and Ri respectively.

4.3 Interaction Between GUS and Rel Ops
As we stated in Section 4.1, SOA-equivalence is the key

for deriving an analyzable plan that is equivalent to the one
provided by the user. The results in this section provide
equivalences that allow such transformations that lead to a
single, top, GUS operator. The results in this section make
use of the notation in Table 4.2.

Proposition 4 (Identity GUS). The quasi-operator
G(1,1̄), i.e. a GUS operator with a = 1, bT = 1, can be

Notation Meaning
R Random subset of R
a P [t ∈ R]
L (R) Lineage schema of R
L (t) Lineage of tuple t
T Subset of L (R)
T (t, t′) {Rk|tk = tk

′, k ∈ L (R)}
bT P [t, t′ ∈ R|T = T (t, t′)]
b̄ {bT |T ∈ P(n)}
G(a,b̄) GUS method with parameters a and b̄
G(a,b̄)(R) G(a,b̄) applied to relation R

Figure 3: Notation used in this section

inserted at any point in a query plan without changing the
result.

Proof. Since a = 1, all input tuples are allowed with
probability 1, i.e., no filtering happens.

Proposition 5 (Selection-GUS Commutativity).
For any R, selection σC and GUS G(a,b̄),

σC(G(a,b̄))(R)
SOA⇐⇒ G(a,b̄)(σC(R)).

Proof. Let R′ = σC(R). On computing R ∩ R′ we see
that

∀(t ∈ R′), P [t ∈ R ∩R′] = P [t ∈ R]I{t∈R′} = a.

∀(t, t′ ∈ R′), P [t, t′ ∈ R ∩R′|T =T
(
t, t′
)
]

= P [t, t′ ∈ R|T =T
(
t, t′
)
] = bT

The above results are somewhat expected and have been
covered for particular cases in previous literature. The fol-
lowing result, though, overcomes the difficulties in [10].

Proposition 6 (Join-GUS Commutativity). For
any R, S, join 1θ and GUS methods G(a1,b̄1),G(a2,b̄2),
if L (R1) ∩ L (R2) = ∅

G(a1,b̄1)(R1) 1θ G(a2,b̄2)(R2)
SOA⇐⇒ G(a,b̄)(R1 1θ R2),

where, a = a1a2, bT = b1,T1b2,T2

with T1 = T ∩ L (R1) and T2 = T ∩ L (R2).

Proof. We proved in Proposition 5 that a GUS method
commutes with selection. Thus, it is enough to prove com-
mutativity of a GUS method with cross product. Let R =
R1 × R2 and t = (t1, t2), t′ = (t′1, t

′
2) ∈ R. Thus, L (R) =

L (R1) ∪ L (R2). We have:

a = P [t ∈ R] = P [t1 ∈ R1 ∧ t2 ∈ R2]

= P [t1 ∈ R1 ∧ t2 ∈ R2] = a1a2.

Since L (R1) ∩ L (R2) = ∅, for an arbitrary T ∈ L (R),
T1 = T ∩ L (R1) and T2 = T ∩ L (R2) we have, T1 ∩ T2 = ∅
(disjunct lineage). With this, we first get:

T
(
t, t′
)

=T ⇔ E1 ∩ E2,

where E1 = {T (t1, t
′
1) = T1} and E2 = {T (t2, t

′
2) = T2}.

Using the above and independence of GUS methods,

bT = P [t ∈ R ∧ t′ ∈ R|T
(
t, t′
)

=T ]

= P [t1, t
′
1 ∈ R1 ∧ t2, t′2 ∈ R2|E1, E2]

= P [t1, t
′
1 ∈ R1|E1]P [t2, t

′
2 ∈ R2|E2]

= b1,T1b2,T2 .

Example 3. Applying the above results to the GUS co-
efficients obtained in Example 2, we can derive the following
co-efficients for G(a,b̄) in Fig 4.2:

a = a1a2 = 0.1× 6.667× 10−3 = 6.667× 10−4.

b∅ = b1,∅b2,∅ = 0.01× 4.44× 10−5 = 4.44× 10−7.

bo = b1,∅b2,o = 0.01× 6.667× 10−3 = 6.667× 10−5.

bl = b1,lb2,∅ = 0.1× 4.44× 10−5 = 4.44× 10−6.

blo = b1,lb2,o = 0.1× 6.667× 10−3 = 6.667× 10−4.
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Example 4. In this example we provide a complete walk-
through for a larger query plan. The input is the query plan
in Figure 4.a that contains 3 sampling operators, 3 joins
and refers to relations lineitem, orders, customers and
part. To analyze such a query, the first step is to re-write
the sampling operators as GUS quasi-operators G(a1,b̄1),
G(a2,b̄2), G(a3,b̄3) as in Figure 4.b. The second step, shown
in Figure 4.c is to apply Proposition 6 to commute G(a1,b̄1)

and G(a2,b̄2) with the join resulting in G(a12,b̄12) . This step
also shows the application of Proposition 4 above customers.
The next step in Figure 4.d again uses Proposition 6 to com-
mute G(a12,b̄12) and G(1,1̄)resulting in G(a121,b̄121). Figure 4.e
shows the final transformation that uses the same proposi-
tion to get an overall GUS method G(a123,b̄123) just below the
aggregate and on the top of the rest of the plan. Theorem 1
can now be used to obtain expected value and variance of the
estimate. Using this and either the normal approximation
or the Chebychev bounds, we obtain confidence intervals for
the estimate. The computed coefficients for the GUS meth-
ods involved are depicted in Figure 4.

5. PROPERTIES OF GUS OPERATORS
In the previous section we explored the interaction be-

tween GUS operators and relational algebra operators. In
this section, we investigate interactions between GUS oper-
ators when applied to the same data. Intuitively, this will
open up avenues for design of sampling operators, since it
will indicate how to compute GUS quasi-operators that cor-
respond to complex sampling schemes.

Proposition 7 (GUS Union). For any expression R
and GUS methods G(a1,b̄1), G(a2,b̄2),

G(a1,b̄1)(R) ∪ G(a2,b̄2)(R)
SOA⇐⇒ G(a,b̄)(R)

where, a = a1 + a2 − a1a2

bT = 2a− 1 + (1− 2a1 + b1T )(1− 2a2 + b2T )

Union of GUS methods can be very useful when samples
are expensive to acquire, thus there is value in reusing them.
If two separate samples from relation R are available, Propo-
sition 7 provides a way to combine them.

Proposition 8 (GUS Compaction). For any expres-
sion R, and GUS methods G(a1,b̄1),G(a2,b̄2),

G(a1,b̄1)

(
G(a2,b̄2)(R)

) SOA⇐⇒ G(a,b̄)(R),

where, a = a1a2, bT = b1,T1b2,T2

Compaction can be also viewed as intersection. It allows
sampling methods to be stacked on top of each other to
obtain smaller samples. We will make use of this in the
next section.

Interestingly, union behaves like + with the null element
G(0,0̄) (the sampling method that blocks everything), the
compaction/intersection behaves like ∗ with the null element
G(1,1̄)(the sampling method that allows everything). Over-
all, the algebraic structure formed is that of asemi-ring, as
stated in the following.

Theorem 2. The GUS operators over any expression R,
form a semiring structure with respect to the union and com-
paction operations with G(0,0̄) and G(1,1̄) as the null elements,
respectively.

The semi-ring structure of GUS methods can be exploited
to design sampling operators from ingredients.

Proposition 9 (GUS Composition). For any
expressions R1, R2 and G(a1,b̄1), G(a2,b̄2),

G(a1,b̄1)(R1) ◦ G(a2,b̄2)(R2)
SOA⇐⇒ G(a,b̄)(R)

a=a1a2, bT = b1,T b2,T .

GUS composition is very useful for design of multi-
dimensional sampling operators. We use it here to design a
bi-dimensional Bernoulli.

Example 5. Suppose that we designed a bi dimensional
sampling operator B0.2,0.3(l,o) that combines Bernoulli
sampling operators B0.2(l) and B0.3(o). Using the above
result, the GUS operator G(a,b̄) corresponding to the bi di-
mensional Bernoulli is G(a1,b̄1)(l) ◦ G(a2,b̄2), where G(a1,b̄1)

is the GUS of B0.2(l) and G(a2,b̄2) is the GUS of B0.3(o).
Working out the coefficients using Proposition 9 - the pro-
cess is similar to the process in Example 3 we get: a3 = 0.06,
b3,∅ = 0.0036, b3,o = 0.012, b3,l = 0.018, b3,lo = 0.06.

6. EFFICIENT VARIANCE ESTIMATION
In this section we present the major challenges in im-

plementing an efficient variance estimator and demonstrate
how the theoretical ideas in the previous section can be used
to tackle those challenges. Due to space constraints we are
unable to include details on the implementation. These can
found in the extended version of the paper [2].

6.1 Estimating yS Terms
The computation of the variance of the sampling estima-

tor in Theorem 1 uses the coefficients yS defined as:

yS =
∑

ti∈Ri|i∈S

 ∑
tj∈Rj |j∈SC

f(ti, tj)

2

.

The terms yS essentially require a group by lineage followed
by a specific computation. This is better understood through
an example – Query 1 – and equivalent expressions in SQL:

CREATE TABLE unagg AS

SELECT l_orderkey*10+l_linenumber as f_l,

o_orderkey as f_o, l_discount*(1.0-l_tax) as f

FROM lineitem TABLESAMPLE (10 PERCENT),

orders TABLESAMPLE(1000 ROWS)

WHERE l_orderkey = o_orderkey AND

l_extendedprice > 100.0;

SELECT sum(f)^2 as y_empty FROM unagg;

SELECT sum(F*F) as y_l FROM ( SELECT sum(f) as F

FROM unagg GROUP BY f_l);

SELECT sum(F*F) as y_o FROM ( SELECT sum(f) as F

FROM unagg GROUP BY f_o);

SELECT sum(f*f) as y_lo FROM unagg;

The computation of the yS terms using the above code
is harder than the evaluation of the exact query, thus re-
sulting in an impractical solution. We can use the sample
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GUS method Parameters
G(a1,b̄1) a1 = 0.1, b1,∅ = 0.01, b1,l = 0.1
G(a2,b̄2) a2 = 6.667× 10−3, b2,∅ = 4.44× 10−5, b2,o = 6.667× 10−3

G(a3,b̄3) a3 = 0.5, b3,∅ = 0.25, b3,p = 0.5
G(a12,b̄12) a12 = 6.667×10−4, b12,∅ = 4.44×10−7, b12,o = 6.667×10−5, b12,l = 4.44×10−6, b12,lo = 6.667×10−4

G(a121,b̄121) a121 = 6.667 × 10−4, b121,∅ = 4.44 × 10−7, b121,c = 4.44 × 10−7, b121,o = 6.667 × 10−5, b121,oc =
6.667×10−5, b121,l = 4.44×10−6, b121,lc = 4.44×10−6, b121,lo = 6.667×10−4, b121,loc = 6.667×10−4

G(a123,b̄123) a123 = 3.334 × 10−4, b123,∅ = 1.11 × 10−7, b123,p = 2.22 × 10−7, b123,c = 1.11 × 10−7, b123,cp =
2.22 × 10−7, b123,o = 1.667 × 10−5, b123,op = 3.335 × 10−5, b123,oc = 1.667 × 10−5, b123,ocp = 3.335 ×
10−5, b123,l = 1.11× 10−6, b123,lp = 2.22× 10−6, b123,lc = 1.11× 10−6, b123,lcp = 2.22× 10−6, b123,lo =
1.667× 10−4, b123,lop = 3.334× 10−4, b123,loc = 1.667× 10−4, b123,locp = 3.334× 10−4

Figure 4: Transformation of the query plan to allow analysis

to estimate these terms essentially replacing the entire base
relations in the above queries by their samples. These esti-
mates, YS can be used to obtain unbiased estimates ŶS of
terms yS using the formula [22]

ŶS =
1

cS,∅

YS − ∑
T⊂SC ,T 6=∅

cS,T ŶS∪T


where

cS,T =
∑
U⊂T

(−1)|U|+|S| bS∪U .

Yet again, the major effort is in evaluating YS terms over
the sample. The number of terms to be evaluated is 2n,
where n is the number of base relations and each term con-
sists of a GROUP BY query that is possibly expensive. To this
end, we observe that the computation of the variance of the
sampling estimator depends, in orthogonal ways, on prop-
erties of the data through terms yS and on properties of the
sampling through cS . The base theory does not require any
particular way to compute/estimate terms yS . Using the
available sample for estimating yS terms is only one of the
possibilities. While many ways to estimate terms yS can be
explored, a particularly interesting one in this context is to
use another sampling method for the purpose. More specif-
ically, we could use a sub-sample of the available sample
for estimation of the terms yS and the full sample for the
estimation of the true value.

To understand what benefits we can get from this idea,
we observe that we do not need very precise estimates of
the terms yS . Should we make a mistake, it will only affect

the confidence interval by a small constant factor but will
still allow the shrinking of the confidence interval with the
increase of the sample. Based on the experience in DBO
and TurboDBO, using 100K result tuples for the estimation
of yS terms suffices. Moreover, only for these 100K samples
the system needs to provide lineage information2; samples
used for evaluation of the expected value need no lineage.

6.2 Sub-Sampling
There are two alternatives when it comes to reducing the

number of samples used for estimation of terms yS : select
a more restrictive sampling method, or further sample from
the provided sample. The latter approach can be applied
when needed, in case the size of the sample is overwhelming
for the computation of terms yS . Specifically, we can use
a multi-dimensional Bernoulli GUS on top of the existing
query plan for result tuples. This can be obtained by ap-
plying Proposition 9 until the desired size is reached. The
extra results in Section 5 together with the core results in
Section 4 provide the means to analyze this modified sam-
pling process. Example 6 and the accompanying Figure 5
provide such analysis for Query 1 and exemplifies how the
extra Bernoulli sampling can be dealt with.

Example 6. This example shows how the query plan from
the introduction can be sampled further to efficiently ob-
tain yS terms. Figure 5.a shows the original query plan.
Figure 5.b shows the sampling in terms of a GUS quasi-
operator. Figure 5.c shows the placement of a bi-dimensional

2By lineage, we mean the list of base relations that have
participated in forming a given tuple.
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Bernoulli sampling method. Figures 5.d, 5.e, 5.f make use
of propositions in Section 4 to obtain a SOA-equivalent plan,
suitable for analysis.

7. EXPERIMENTS
We have two main goals for this empirical study. Our first

goal is to provide some experimental confirmation of our
theory. Our second goal is to evaluate the efficiency of the
estimation process and study how sub-sampling affects the
running times and the variance estimates. More specifically:

• How does the running time depend on the selectivity
of the query?

• How useful is the sub-sampling process? How does the
running time depend on the sub-sampling?

• Does sub-sampling significantly reduce the precision of
the confidence interval estimates?

As we will see in this section, the experiments validate
the theory and the sub-sampling is invaluable for efficient
estimation. In particular, sub-samples of size 100K to 400K
tuples provide correct and meaningful confidence intervals
and require less than 2% to the overall running time.

7.1 Experimental Setup
Data Sets. For our experiments, we use two versions of
TPC-H [8] data—a small sized data set (scale factor 0.1,
100MB) for verification of confidence intervals, and a large
one (scale factor 1000, 1TB) to benchmark the efficiency of
the for the estimation process. We use following parameter-
ized query:

SELECT SUM(l_discount*(1.0-l_tax))

FROM lineitem TABLESAMPLE (x PERCENT),

orders TABLESAMPLE(y ROWS),

part TABLESAMPLE(z PERCENT)

WHERE l_orderkey = o_orderkey AND

l_partkey = p_partkey AND o_totalprice < q AND

p_retailprice < r;

where the parameters x, y and z govern the inclusiveness of
the sampling methods and parameters q and r govern the
selectivity.

Code. The analysis of the sampling query plan, as de-
scribed in Section 4, is coded using SWI-Prolog [27]. When
presented with the specific query plan that contains both
the relational and sampling operators, the code derives the
a, bT coefficients. The sub-sampling operator and the confi-
dence interval prediction based on the coefficients a, bT from
the symbolic analysis is implemented in C++. For the sub-
sampling operator, we can specify a lower (L) and an upper
(U) bound on the number of tuples to maintain. The im-
plementation uses an adaptive algorithm that changes the
probability of the Bernoulli sampling to meet these goals.
In all the experiments we specify the range used to config-
ure the sub-sampling – the actual number of tuples in the
sub-sample is specified in some of the experiments.

DBMSs. Two DBMSs were used for experiments in this
section. For the correctness experiments, we used Oracle
11g and made use of the SAMPLE operator. For the large
scale experiments we used the DataPath[6] parallel database

system and coded the sub-sampling and analysis as user-
defined aggregates.

Hardware. We run our experiments on a 48 core AMD
Magny-cours 1.9GHz with 256GB of RAM and 76 disks.
The machine is capable of sustained I/O rates of 3.0GB/s
through 3 Averatec RAID controllers. Oracle 11g used only
one disk and did not make use of all the cores (Oracle was
used only for the correctness experiments). DataPath usu-
ally makes use of all the resources and for most queries sus-
tained data processing speeds of 2-3GB/s.

We now describe the experiments undertaken to answer the
questions listed above. The detailed setup of each experi-
ment is specified in the respective subsections.

7.2 Correctness
In this experiment, we provide a sanity check for our the-

ory and measure how accurate the derived confidence inter-
vals are.

Setup. For this study, we use the 100MB TPC-H data
(lineitem has 600,000 tuples and orders has 150,000 tu-
ples). We selected the small size to allow us to perform many
experiments to empirically evaluate the variance through
Monte-Carlo simulation. We used the Oracle 11g database
since it supports the SAMPLE operator from SQL and thus
would support our claim that the theory in this paper can
readily be used to predict sampling queries from existing
commercial DBMSs.

Monte Carlo Validation. We validate the theoretically
computed expected value and variance of the sampling es-
timate using a Monte Carlo simulation. We use the query
as shown above with parameters q and r fixed at 106 and
4 × 105 respectively. This query is run for different values
of (x,y,z) as shown in Figure 6. For each value of (x,y,z),
we run the query 5000 times and obtain 5000 confidence in-
tervals each for ten different confidence levels, ranging from
5% to 95%. We then compute the achieved confidence lev-
els, i.e. for each of the ten desired confidence levels, we
compute the percentage of times the true value falls within
the corresponding confidence intervals. In Figure 6, we show
a comparison between the desired and achieved confidence
levels for 4 different sampling strategies. The achieved con-
fidence levels are very close to the desired values, across the
different sampling strategies and confidence levels. This pro-
vides strong empirical evidence that the confidence intervals
obtained by using the theory in Section 4 are accurate and
tight.

7.3 Running Time
The next goal is to evaluate the efficiency of the estima-

tion process. We are especially interested in evaluating the
variance of the estimators. This study performed with our
research prototype should give the practitioner some idea on
the overhead expected.

Setup. Intuitively, the analysis overhead will depend on
the sample size. To ensure that we stress the analysis with
large samples, we use the 1TB TPC-H instance and treat
the database as a sample of a 1PB database. More specifi-
cally we assume that the 6 billion tuples in lineitem are a
Bernoulli sample from the 6 trillion tuples in the same rela-
tion at 1PB scale (0.001 sampling fraction). Similarly, the
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Figure 5: Transformation of the query plan to allow analysis
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1.5 billion tuples in orders are a sample without replace-
ment from the 1.5 trillion tuples of the 1PB database and
the 200 million tuples in part are a Bernoulli sample (0.001
sampling fraction) from 200 billion tuples at 1PB scale. This
ensures that the sample sizes the analysis has to deal with
can be in the billions – a very harsh scenario for analysis
indeed.

Since the database is the sample, there is no sampling
needed in the execution of the query – the tuples that the
analysis has to make use of are the tuples that are aggre-
gated by the non-sampling version of the query. As de-
scribed in Section 6, maintaining the estimator is as easy as
performing the aggregation in the non-sampling query but
computing the variance is much more involved. The tech-
nique we proposed is to sub-sample from the sample to limit
the number of tuples used to estimate the variance. In our

experiments we studied the impact of the query characteris-
tics (various selection predicates) and sub-sampling size on
the running time. For each experiment, we measured three
running times. First, the running time of the non-sampling
query (no statistical estimation, just the aggregate). Second,
the running time of the query processing and sub-sampling
process. Sub-sampling is interleaved with the rest of the
processing and the two running times cannot be separated.
Third, the time to perform the analysis. The analysis is
single-threaded and starts only once the sub-sample is com-
pletely formed.

Impact of Selectivity with Fixed Sub-Sampling. In
our first experiment, we will vary the selection predicate
(thus indirectly the selectivity of the query) and set the
range for the sub-sampling at 100K-400K tuples (i.e. sub-
sampling obtains 100K-400K tuples that are a Bernoulli
sample from the data provided for analysis). Results are
depicted in Figure 7(a). We make three key observations;
First, for this sub-sampling target, the analysis adds an in-
significant amount of extra effort (about 2% of the overall
running time). Second, selectivity of the query has no signif-
icant effect on the running time for either the non-sampling
or for the sampling query. Last, the running time of the
sampling version of the query seems to be more stable than
the running time of the non-sampling version.3 It seems
that, when the size of sub-sample is below 500,000, the ex-
tra effort to perform sampling analysis is insignificant. We
show later that such sub-samples are good enough to pro-
duce stable variance estimates.

Impact of Selectivity with No Sub-Sampling. An un-
resolved question from the previous experiment is what hap-
pens when no sub-sampling is performed, i.e. all the data
is used for analysis. The selectivity of the query will now
control the number of tuples used for analysis and give an

3A similar behavior was noticed in [6]: the execution is more
stable and somewhat faster at higher CPU loads.
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Figure 7: Plots of running time vs selection param-
eter with and without sub-sampling.

indication of the effort as a function of the size. Figure 7(b)
depicts result of such an experiment in which the selection
predicate was varied. Results reveal that, once the size of
the sample exceeds 1M the analysis cost becomes unman-
ageable and starts to dominate. At the end of the spectrum
(31M tuples) the analysis was 5 times slower than the the
rest of the execution – this is clearly not acceptable in prac-
tice. As we hinted above, targets of 100K-400K produce
good enough estimates of the variance; there is no need to
base the variance analysis on millions of tuples, thus running
time of analysis can be kept under control. Sub-sampling is
thus a crucial technique for applicability of sampling esti-
mation to large data.

7.4 Sub-Sample Size
This experiment sheds light on influence of sub-sampling
sizes on the estimate for the variance and thus the quality
of the confidence intervals.

Setup. Since we would like to get samples from all over
the data source, we use the 1TB TPC-H instance as the
data source and repeatedly derive samples from it. Remem-
ber that, according to Section 6, any estimates of the terms
yS can be used to analyze any of the sampling methods.
Sub-sampling is used to estimate the terms yS , but the en-
tire sample is used to compute the estimate. The user ex-
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Figure 8: Plot of fluctuation of confidence interval
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pects a confidence interval of the estimate that is computed
over the entire sample. An overly accurate estimate of vari-
ance does not help for any purpose. If the yS estimates are
based off a 10,000 times smaller sub-sample, it will produce
only a 10% error in the confidence interval. Thus a much
smaller sub-sample has only a secondary influence on the
confidence interval. The plot in Figure 8 shows this fact.
In this experiment we run around 250 instances of Query 1
for sub-sampling ranges of 10K-40K, 100K-400K and 1M-
4M tuples each. In all cases, we calculate the fluctuation of
the resultant confidence interval widths with respect to the
confidence interval width obtained from an analysis without
sub-sampling. In particular, we define error by ratio of the
difference between the 5th and the 95th percentile values to
the width of the confidence interval obtained without sub-
sampling. The plot in Figure 8 shows that this error is only
1% when 100K-400K tuples are used.
Note on number of relations As we have seen in this
section, for sampling over 3 relations, good confidence in-
tervals can be obtained with a mere 2% extra effort since
sub-samples of 100K tuples suffice. Since the analysis re-
quires the computation of 2n terms if n relations are sam-
pled, the influence of the number of relations on the running
time of the analysis is of concern. In practice, these concerns
can be easily addressed as follows: (a) the computation of
the yS terms from the sub-samples can be parallelized – on
our system this would result in a speedup of at least 32
(on 48 cores), (b) we noticed that foreign key joins result
in repeated values for certain terms – about half the values
are repeated, (c) we see no need to sample from more than
8 relations since there is no need to sample from small or
medium size relations. Notice that the parallelization alone
would allow us to scale from 3 to 3 + 5 = 8 relations since
25 = 32, the expected speedup.

8. CONCLUSIONS AND FUTURE WORK
While technically challenging to create, the theory in this

paper is in essence easy to use. Sampling is treated as a
quasi-operator. In order to incorporate sampling based ap-
proximations, such operators are introduced in the query
plans and the mechanisms described in Section 4 are used
to analyze the estimators. We have already seen an exam-
ple of use of the theory: the sub-sampling technique in Sec-
tion 6. With very little effort (introducing a final Bernoulli
sampling quasi operator), we dealt with a seemingly hard
problem: how to use a subsample to predict the behavior
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of the main sample. The straightforwardness of this pro-
cess encourages us to suggest that the theory presented here
will allow significant progress in a number of hard to solve
problems explored in the approximate query processing lit-
erature. We briefly mention such potential in the remaining
of this section.

Database as a sample. By viewing the database itself
as a sample, robustness analysis is possible. In particular,
if we assume that 1% of the tuples are mistakenly lost and
we wish to predict the impact on the query results we can
view the database as a 99% Bernoulli sample. A large vari-
ance will indicate that the query results are sensitive to such
perturbations and thus not robust.

Choosing sampling parameters. By using the unbiased
yS estimates from a single sampling instance, the theory al-
lows for plugging in coefficients for different sampling strate-
gies to predict the respective variances. This can give the
user insight on comparing different sampling strategies and
parameters to suit his/her needs.

Estimating the size of intermediate relations. Query
execution engines maintain a sample of the data and evalu-
ate aggregates on it to predict the size of the intermediate
relations. Our theory allows for the evaluation of the pre-
cision of these, thereby preventing the selection of inferior
plans.

Data Streaming and Load Shedding. An interesting
problem in load shedding is determining a sampling rate so
that the system can keep up with fast-rate incoming data
while minimizing the error[7]. While such analysis was done
for single relations, our theory provides for similar analysis
with multiple relations.
Acknowledgements. Material in this paper was supported
by the National Science Foundation under Grant DIIS-1007062.

9. REFERENCES
[1] Sql-2003 standard, 2003.

[2] S. N. A Dobra, C Jermaine. A sampling algebra for
aggregate estimation. Technical Report 749260, Dept
of CISE, UF, 2013.

[3] S. Acharya, P. B. Gibbons, and V. Poosala. Aqua: A
fast decision support system using approximate query
answers. In In Proc. of 25th Intl. Conf. on Very Large
Data Bases, pages 754–755, 1999.

[4] S. Acharya, P. B. Gibbons, V. Poosala, and
S. Ramaswamy. The aqua approximate query
answering system. In Proceedings of the 1999 ACM
SIGMOD international conference on Management of
data, SIGMOD ’99, pages 574–576, New York, NY,
USA, 1999. ACM.

[5] S. Acharya, P. B. Gibbons, V. Poosala, and
S. Ramaswamy. Join synopses for approximate query
answering. In In SIGMOD, pages 275–286, 1999.

[6] S. Arumugam, A. Dobra, C. M. Jermaine, N. Pansare,
and L. L. Perez. The datapath system: a data-centric
analytic processing engine for large data warehouses.
In SIGMOD Conference, pages 519–530, 2010.

[7] B. Babcock, M. Datar, and R. Motwani. Load
shedding in data stream systems. In Data Streams -
Models and Algorithms, pages 127–147. 2007.

[8] T.-H. Benchmark. http://www.tpc.org/tpch/.

[9] S. Chaudhuri and R. Motwani. On sampling and
relational operators. IEEE Data Eng. Bull.,
22(4):41–46, 1999.

[10] S. Chaudhuri, R. Motwani, and V. R. Narasayya. On
random sampling over joins. In SIGMOD Conference,
pages 263–274, 1999.

[11] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance
in databases: Why, how, and where. Foundations and
Trends in Databases, 1(4):379–474, 2007.

[12] A. Dobra, C. Jermaine, F. Rusu, and F. Xu.
Turbo-charging estimate convergence in dbo. PVLDB,
2(1):419–430, 2009.

[13] P. B. Gibbons, V. Poosala, S. Acharya, Y. Bartal,
Y. Matias, S. Muthukrishnan, S. Ramaswamy, and
T. Suel. Aqua: System and techniques for
approximate query answering. Technical report, 1998.

[14] J. Gryz, J. Guo, L. Liu, and C. Zuzarte. Query
sampling in db2 universal database. In Proceedings of
the 2004 ACM SIGMOD international conference on
Management of data, SIGMOD ’04, pages 839–843,
New York, NY, USA, 2004. ACM.

[15] P. J. Haas. Large-sample and deterministic confidence
intervals for online aggregation. In SSDBM, pages
51–63. IEEE Computer Society Press, 1996.

[16] P. J. Haas and J. M. Hellerstein. Ripple joins for
online aggregation. SIGMOD Rec., 28:287–298, June
1999.

[17] P. J. Haas and J. M. Hellerstein. Online query
processing. In SIGMOD Conference, page 623, 2001.

[18] P. J. Haas, J. F. Naughton, S. Seshadri, and A. N.
Swami. Selectivity and cost estimation for joins based
on random sampling. Journal of Computer and
System Sciences, 52(3):550 – 569, 1996.

[19] P. J. Haas, J. F. Naughton, S. Seshadri, and A. N.
Swami. Selectivity and cost estimation for joins based
on random sampling. J. Comput. Syst. Sci.,
52:550–569, June 1996.

[20] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. SIGMOD Rec., 26:171–182, June 1997.

[21] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra.
Scalable approximate query processing with the dbo
engine. ACM Trans. Database Syst., 33(4), 2008.

[22] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra.
Scalable approximate query processing with the dbo
engine. ACM Trans. Database Syst., 33(4), 2008.

[23] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, and
A. Pol. The sort-merge-shrink join. ACM Trans.
Database Syst., 31(4):1382–1416, 2006.

[24] R. J. Lipton, J. F. Naughton, D. A. Schneider, and
S. Seshadri. Efficient sampling strategies for relational
database operations. Theoretical Computer Science,
116(1):195 – 226, 1993.

[25] F. Olken. Random sampling from databases, 1993.

[26] G. Piatetsky-Shapiro and C. Connell. Accurate
estimation of the number of tuples satisfying a
condition. In Proceedings of the 1984 ACM SIGMOD
international conference on Management of data,
SIGMOD ’84, pages 256–276, New York, NY, USA.

[27] SWI-Prolog. http://www.swi-prolog.org.

1809


