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ABSTRACT
Temporal annotations of facts are a key component both for
building a high-accuracy knowledge base and for answering
queries over the resulting temporal knowledge base with high
precision and recall. In this paper, we present a temporal-
probabilistic database model for cleaning uncertain temporal
facts obtained from information extraction methods. Specif-
ically, we consider a combination of temporal deduction rules,
temporal consistency constraints and probabilistic inference
based on the common possible-worlds semantics with data
lineage, and we study the theoretical properties of this data
model. We further develop a query engine which is ca-
pable of scaling to very large temporal knowledge bases,
with nearly interactive query response times over millions
of uncertain facts and hundreds of thousands of grounded
rules. Our experiments over two real-world datasets demon-
strate the increased robustness of our approach compared to
related techniques based on constraint solving via Integer
Linear Programming (ILP) and probabilistic inference via
Markov Logic Networks (MLNs). We are also able to show
that our runtime performance is more than competitive to
current ILP solvers and the fastest available, probabilistic
but non-temporal, database engines.

1. INTRODUCTION
Recent advances in the field of information extraction (IE)

have enabled for the automatic construction and growth
of large, semantic knowledge bases (KBs) from structured
and semistructured Web sources. Some well-known play-
ers in this field, which mostly employ Wikipedia infoboxes
as source for their extraction techniques, include DBpedia1,
Freebase2, and YAGO2 [17]; while, for example, the Webta-
bles project [8] or Google’s Fusion Tables3 more generally

1
dbpedia.org

2
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3
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focus on large-scale IE and integration techniques for arbi-
trary Web domains. Knowledge bases like DBpedia 3.8 or
YAGO2 today contain hundreds of millions of facts about
real-world entities and their relationships. However, due
to the very nature of the underlying (largely automatized)
extraction and integration strategies, these KBs may still
contain a significant amount of erroneous facts, and they
are inherently incomplete. It remains highly unlikely that
we will ever be able to extract, for example, all birth places,
marriages, graduation dates, etc., of people mentioned in
Wikipedia with 100 percent accuracy, regardless of how so-
phisticated the extraction tools may become.

From a data-management perspective, deduction rules and
consistency constraints are two well studied means in order
to address both incompleteness and inconsistencies arising
due to missing and erroneous tuples in a database, respec-
tively. While deduction rules may be employed to derive
new facts from existing ones (e.g., by inferring the marriage
of two people from their common engagement), consistency
constraints may help to resolve conflicts among query an-
swers which may be imposed over both the input facts and
facts derived from the deduction rules (e.g., by restricting
the possible birth places of a person to just one allowed an-
swer). In this work, we focus on supporting both the tasks
of building a temporal knowledge base from the output of IE
tools and on the task of answering queries over an existing
temporal knowledge base. Initially, all of the aforementioned
KBs ignored temporal knowledge and captured only static
facts. However, when looking at the extracted data, we find
that a majority of facts are only valid for a specific time span
(such as marriages or political positions). Thus, with respect
to knowledge-base building, the temporal dimension of facts
is a crucial aspect when multiple extractions of the same
fact are aggregated into a single fact; while, for query an-
swering, these temporal annotations play a major role when
multiple facts are put into correlation with each other by
a query or constraint. Moreover, this ephemeral nature of
facts is reflected already by recent extensions to some of the
Wikipedia-based KBs, such as YAGO2 which currently pro-
vides temporal annotations—in the form of “valid-at” time
intervals—for several millions of its core facts.

Despite the vast amount of recent developments in the
context of temporal databases (TDBs), on the one hand, and
probabilistic databases (PDBs), on the other hand, we are
not aware of any unified temporal and probabilistic database
approach that natively supports the kinds of data and con-
straints we aim to apply to our setting. As information ex-
traction techniques inherently deliver uncertain data, they
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have often been considered as one of the main motivating
applications for PDBs (see, e.g., [4, 6, 7, 35] for recent sys-
tems). Likewise, TDBs (see [18, 24] for an overview of data
models and query languages) have been an active field of
research for many years, but so far there exists no tempo-
ral database system that also supports probabilistic data,
and vice versa. In this paper, we develop a unified database
model (and query engine) that integrates these two aspects
into a closed and complete extension of the relational data
model. We motivate for combining the two worlds of tempo-
ral and probabilistic databases by introducing the following
running example.

Example 1. Our running example is centered around the
actor “Robert De Niro”, where the following temporal-pro-
babilistic database captures a number of facts about him.

Id Fact T p
f1 BornIn(DeNiro,Greenwich) [1943-08-17, 1943-08-18) 0.9
f2 BornIn(DeNiro,Tribeca) [1998-01-01, 1999-01-01) 0.6
f3 Wedding(DeNiro,Abbott) [1936-11-01, 1936-12-01) 0.3
f4 Wedding(DeNiro,Abbott) [1976-07-29, 1976-07-30) 0.7
f5 Divorce(DeNiro,Abbott) [1988-09-01, 1988-12-01) 0.8

Fact f1 expresses that DeNiro was born in Greenwich Vil-
lage (New York) on 1943-08-17, which is encoded into the
time interval [1943-08-17, 1943-08-18) using the ISO stan-
dardized Internet date/time format. This fact is true for
the given time interval with probability 0.9, and it is false for
this interval with probability 0.1.4 Notice that another fact,
f2, states that DeNiro could have also been born in Tribeca
in the interval [1998-01-01, 1999-01-01) with probability 0.6.
We assume that base facts are independent, i.e., these two
facts are not correlated in any way at this point. Given fur-
ther facts about both DeNiro’s wedding with Dianne Abbott,
we next aim to deduce the time interval of their marriage
(as captured by the intensional relation AreMarried) by the
following two deduction rules. The first rule states that a
couple stays married from the begin time point of their wed-
ding (denoted by the variable Tb1) until to the last possible
time point we consider (denoted by the constant tmax ), un-
less there is a Divorce fact at any other time interval.

AreMarried(X,Y )[Tb1
,tmax )←

(
Wedding(X,Y )[Tb1

,Te1 )∧
¬Divorce(X,Y )[Tb2

,Te2 )

)
(1)

The second rule states that a couple stays married from the
begin time point of their wedding till the end time point of
their divorce. f5 describes the divorce of DeNiro and Abbott.

AreMarried(X,Y )[Tb1
,Te2 )←

Wedding(X,Y )[Tb1
,Te1 )∧

Divorce(X,Y )[Tb2
,Te2 ) ∧

Te1≤T Tb2


(2)

Thereby, we consider only weddings that took place before
divorces. This is expressed by the temporal arithmetic predi-
cate ≤T which compares the order of two time points. Also,
we can see that f1 and f2 state possibly different birth places
for DeNiro. We counter this by the following consistency
constraint.

¬
(

BornIn(X,Y )[Tb1
,Te1 )∧

BornIn(X,Z)[Tb2
,Te2 )∧

Y ̸= Z

)
(3)

4
Facts are always false outside their attached time intervals.

When grounded, this constraint correlates the two possible
BornIn facts about DeNiro, which now become mutually ex-
clusive, regardless of their time intervals. Thus, for this con-
straint to hold, at least one of the two BornIn facts has to
be set to false in all the possible instances that this temporal-
probabilistic DB may take. Similarly, the next consistency
constraint uses a temporal condition to express that a mar-
riage should begin after the respective person was born.

¬
(

BornIn(X,Y )[Tb1
,Te1 )∧

AreMarried(X,Z)[Tb2
,Te2 )∧

Tb2≤
T Te1

)
(4)

This constraint includes both base facts and facts derived by
the deduction rules for the intensional relation AreMarried.
Specifically, this constraint enforces all pairs of BornIn and
AreMarried facts, where Tb2 ≤T Te1 , to be mutually exclu-
sive. ⋄

We summarize the contributions of this paper as follows.

• We present a unified temporal-probabilistic database mo-
del in which both time and probability are considered as
first-class citizens.

• Specifically, we define a class of temporal deduction rules
and temporal consistency constraints, and we study their
properties from a theoretical perspective. We show that
data computations for this class of temporal deduction
rules and consistency constraints are polynomial in the
size of the database, while confidence computations re-
main #P-hard (in the general case) also for our setting.

• We present efficient algorithms for data computations
in temporal-probabilistic databases, which we comple-
ment by improved strategies for confidence computa-
tions. By determining the sweet-spot in the trade-off
between Shannon expansions and possible-world decom-
positions, we are able to perform exact probabilistic in-
ference for lineage formulas with partly more than 105

variables.

• We perform an extensive experimental evaluation over
two real-world data sets obtained from current informa-
tion extraction tools, which demonstrates that our ap-
proach scales to a temporal KB over millions of facts
and hundreds of thousands of grounded rules, while our
query answering times remain nearly interactive. We
provide detailed comparisons to several state-of-the-art
techniques.

2. RELATED WORK
A large body of literature in formal logics, artificial in-

telligence (AI), probability theory, and databases consid-
ers temporal data-management issues from various perspec-
tives. One of the most seminal works is constituted by
Allen’s interval algebra [2] and has found many adoptions
in the above fields [38]. In the following, we focus mostly on
a database-oriented view of managing temporal and proba-
bilistic data. We thus refer the reader to [15] for a detailed
overview of temporal aspects in logics and AI.
Probabilistic Databases. A number of PDB systems, in-
cluding MystiQ [7], Trio [6], MayBMS [4] and SPROUT [28],
have been released as open-source prototypes and found a
wide recognition in the database community. None of these
systems however natively supports temporal data. The ma-
jor challenge in PDBs remains the confidence computation
step for query answers, which has been shown to be #P-hard
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already for fairly simple select-project-join (SPJ) queries [9].
Seminal work by Dalvi and Suciu [10] proposed a notion
of safe query plans which allow confidence computations in
polynomial time for a restricted class of hierarchical query
plans. Sen et al. [34] investigated a class of so-called read-
once lineage formulas for which confidence computations are
of polynomial runtime. For a comprehensive overview of re-
search in the field of PDBs, we refer the reader to [35].
Temporal Databases. Managing temporal data in da-
tabases has been an active research field for many years,
with a particular focus on designing appropriate data mod-
els and SQL-based query languages for time-annotated tu-
ples. Jensen’s seminal work [18] provides the basis for most
temporal database approaches today. Recently, Dignös et
al. [12] described how to enable the usage of sequenced se-
mantics in temporal databases using lineage information.
Intuitively, the sequenced semantics reduces a temporal op-
eration to corresponding non-temporal operations over the
individual snapshots of the database at each point in time.
However, the non-sequenced semantics [24], which we fol-
low in this paper, is strictly more expressive than the se-
quenced one (Rules (1) and (2) are non-sequenced). Also,
none of the currently available temporal database systems
supports probabilistic data. Dedalus [3], which is based on
Datalog, is a language for programming and reasoning about
distributed systems, but does not support constraints.
Constraints in Databases. An important work by Koch
and Olteanu [22] introduced constraints into a PDB setting
(which we also adopt for our work). Intuitively, this work
aimed to “condition” a PDB by removing all the possible
worlds that do not satisfy any of the given consistency con-
straints. In contrast to our work, conditioning in [22] is
performed as an offline process and, as such, constraints can
be formulated only over the base tuples and not over any
of the derived tuples or the query answers. The class of
constraints we consider is formally referred to as denial con-
straints [5] and specifies sets of tuples that cannot co-exist in
the database. Denial constraints have been broadly studied
in the context of database repairs in deterministic DBs.
Temporal Probabilistic Databases. Relatively few works
exist so far in the intersection of temporal and probabilistic
DBs. Dekhtyar et al. [11] introduced temporal-probabilistic
relations by adding time to a PDB. Relations are defined
via discrete probability distributions over time, and they
also consider consistency constraints. However, [11] does not
provide a closed PDB model since they do not support lin-
eage information and approximate probabilities using only
upper and lower bounds. Wang et al. [40] performed a simple
form of probabilistic deduction of temporal annotations us-
ing time histograms. They employ lineage but allow no con-
straints and have limited deduction capabilities. LIVE [33],
which is an offspring of the Trio [6] PDB system, employs
a temporal DB model by considering transaction-time an-
notations (i.e., the time point when a fact is recorded or
modified) thus focusing on efficiently supporting data mod-
ifications and versioning. In contrast, valid-time annota-
tions, which we consider, refer to a time interval during
which a fact is considered to be valid [24]. Research in un-
certain spatio-temporal databases, such as [14], focuses on
stochastically modeling trajectories through space and time,
rather than utilizing concepts known from PDBs (such as a
possible-worlds model with data lineage [35]), as we do.
Temporal Information Extraction. Traditionally, work

on temporal aspects of text focuses on detecting temporal
relationships in text rather than the extraction of temporal
factual knowledge. Commonly, these relationships are speci-
fied by TimeML [30], where SemEval’s temporal track [37] is
used as training data. Ling and Weld [23] propose a method
for binding time intervals of events occurring in text by lever-
aging MLNs [31]. Still, our experiments show the superior
scalability of our approach. Also, in [36, 39], ILPs were
employed to enforce constraints on temporal facts extracted
from text, but do not allow the deduction of new facts. The
emerging interest in temporal aspects in the context of In-
formation Retrieval (IR) is also demonstrated by the recent
TREC Knowledge-Base-Acceleration (KBA) [16] and TAC
Knowledge-Base-Population (KBP) [20] challenges. While
these strongly motivate for the usage of temporal IE tech-
niques, such as time annotations and inference via temporal
constraints, none of these provide a solution for managing
and querying this kind of data in a scalable DB architecture.

3. PRELIMINARIES
We start by briefly reviewing the key concepts from both

temporal and probabilistic databases, which serve as the
basis for our data model. That is, all the assumptions made
in this section will hold also for our combined temporal-
probabilistic database model, as it is defined in Sec. 4.

3.1 Temporal Database
We consider the time domain ΩT as a linearly ordered,

finite sequence of time points. A time interval consists of a
contiguous and finite set of time points over ΩT , which we
denote by a half-open interval [tb, te), where tb, te ∈ ΩT , tb <
te. We employ the two constants tmin, tmax to denote the
earliest and latest time point in ΩT , respectively5. A tem-
poral relation RT is represented as RT (A1, . . . , Am, Tb, Te),
or equivalently as RT (A1, . . . , Am)[Tb,Te), where R

T denotes
the relation name, A1, . . . , Am is a finite set of attributes
of RT with domains Ωi, and Tb, Te are attributes denoting
the begin and end time points of the time intervals that are
attached to each tuple. This definition of temporal relations
employs tuple timestamping [24], i.e., each tuple is annotated
by a single time interval that specifies its valid-time. The
database schema S then consists of all the relation schemas
RTi . A relation instance RT of schema RT is a finite set of
tuples that each contain for every Ai a value ai ∈ Ωi, and
for each pair Tb, Te a time interval [tb, te) ⊆ ΩT . Further, we
will use F to denote the set of all base tuples (henceforth we
refer to it as the set of “base facts”) captured in all the input
instances RT

i over S. These we will also call the extensional
relations. Finally, we define a temporal database (S,F ,ΩT )
as a triple consisting of a database schema S, a finite set of
base tuples F , and the time domain ΩT .

3.2 Probabilistic Database
In its most general form, a probabilistic database [35] is

defined as a discrete probability distribution over a finite
number of database instances (the “possible worlds”). In
the case of a tuple-independent probabilistic database, this
distribution can very compactly be described (i.e., be factor-
ized) by attaching a probability value to each base fact f in
F . Formally, we thus define a tuple-independent probabilistic

5
We do not consider the finiteness of ΩT to be any limitation of

our model in practice, since we can always choose tmin, tmax as the
earliest and latest time points we observe among the facts and rules.
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database DBp = (S,F , p) as a triple consisting of a database
schema S, a finite set of base facts F , and a probability mea-
sure p : F → (0, 1], which assigns a probability value p(f) to
each uncertain base fact f ∈ F . A probabilistic relation Rp

is represented as Rp(A1, . . . , Am, p), where R
p denotes the

relation name, A1, . . . , Am denote a finite set of attributes of
Rp with domains Ωi, and p is an attribute which denotes the
probability value that is attached to each fact in a relation
instance Rp of Rp. The probability value p(f) denotes the
confidence in the existence of the fact in the database, i.e.,
a higher value p(f) denotes a higher confidence in f being
valid. Formally, this uncertainty is modeled by associating
a Boolean random variable with each base fact f ∈ F . For
ease of notation, we will replace the identifiers for the ran-
dom variables by the fact identifiers.
Assuming independence among all the Boolean random

variables associated with the base facts F , the probability
P (W) of a possible world W ⊆ F is then defined as follows.

P (W) :=
∏
f∈W

p(f)
∏
f /∈W

(1− p(f)) (5)

That is, in the absence of any further constraints restricting
the possible worlds, any subset W of base facts in F forms
a valid possible world (i.e., a possible instance) of the PDB.
Hence, there are exponentially many such possible worlds.

3.3 Conditioning a Probabilistic Database
As illustrated above, there are intriguing analogies be-

tween temporal and probabilistic databases, which both em-
ploy annotations to relations to express at which time inter-
val—or with which confidence—a fact is considered to be
valid. We now review a third concept, called condition-
ing [22], which allows for additionally incorporating con-
sistency constraints into a possible-worlds-based represen-
tation formalism.
Formally, we can compute the marginal probability of any

Boolean formula ϕ over variables in F as the sum of the
probabilities of all the possible worlds W ⊆ F that entail ϕ,
which is denoted as W |= ϕ.

P (ϕ) :=
∑

W|=ϕ,W⊆F

P (W) (6)

Conditioning a formula ϕ on another formula ψ, which also
ranges over variables in F , then simply denotes the process
of computing the following conditional probability:

P (ϕ | ψ) := P (ϕ ∧ ψ)
P (ψ)

(7)

Intuitively, conditioning removes the possible worlds from
a probabilistic database, in which the constraints are not
satisfied, and thus reweighs the remaining worlds to again
form a probability distribution.

4. TEMPORALPROBABILISTIC
DATABASE MODEL

We now combine and extend the above two, prevalent
database models into a unified temporal-probabilistic data-
base model, in order to facilitate both rule-based and prob-
abilistic inference over uncertain temporal knowledge. Our
extensions employ the following two key concepts: temporal
deduction rules, in the form of Datalog-style logical implica-
tions, allow us to represent all of the core operations known

from relational algebra over these temporal and probabilis-
tic relations; and temporal consistency constraints, in the
form of denial constraints, allow us to constrain the possible
worlds at which query answers are considered to be valid.

4.1 Temporal Deduction Rules
Temporal deduction rules are represented analogously to

Datalog notation (see Rules (1) and (2) of Example 1). Syn-
tactically, these rules have the shape of logical implications,
with exactly one positive head literal and a conjunction of
both positive and negative literals in the body.

Definition 1. A temporal deduction rule over a database
schema S is a first-order logical rule of the form

RT0 (X̄0)[Tb0
,Te0 ) ←

(∧
i=1,...,n RTi (X̄i)[Tbi

,Tei
) ∧∧

j=1,...,m¬R
T
j (X̄j)[Tbj

,Tej
) ∧

Φ(X̄)

)
(8)

where:

(1) RT0 denotes the head literal’s intensional temporal rela-
tion in S, while RTi , R

T
j refer to extensional or inten-

sional temporal relations in S;
(2) n ≥ 1, m ≥ 0, thus requiring at least one positive rela-

tional literal;

(3) Φ(X̄) is a conjunction of literals over the arithmetic
predicates =, ̸=, and ≤T , whose arguments are in X̄;

(4) X̄0, X̄i, X̄j denote tuples of non-temporal variables and
constants, such that Var(X̄0) ⊆

∪
iVar(X̄i) and Var(X̄j)

⊆
∪
iVar(X̄i);

(5) X̄ denotes a tuple of both temporal and non-temporal
variables and constants, such that Var(X̄) ⊆

∪
iVar(X̄i)∪∪

i{Tbi , Tei};
(6) Tb0 , Te0 are the head’s temporal arguments, such that

Tb0 , Te0 ∈
∪
i{Tbi , Tei} ∪ {tmin , tmax}.

Predicates. Following (1), the predicates occurring in the
head literals of all deduction rules define a set of so-called
intensional relations which must not overlap with any of
the extensional ones. The predicates in the body literals
of a deduction rule may however relate to both extensional
and intensional relations. In (2), we require at least one
non-negated relational literal (n ≥ 1) to exist. As denoted
by (3), we allow the two arithmetic predicates = and ̸=,
and we additionally support the single temporal arithmetic
predicate ≤T which compares the order of two time points
in the sequence ΩT .
Variables. The positive non-temporal variables X̄i bind
the non-temporal variables in the head literal X̄0 (see (4)),
in the negated body literals X̄j (see (4)), and in the lit-
erals relating to arithmetic predicates X̄ (see (5)). Hence,
our Datalog rules are always safe with respect to the non-
temporal arguments [1]. Regarding temporal arguments,
(5), (6) require the temporal variables of the head literal
and the arithmetic literals in the body of a rule to be bound
by a positive relational literal in the body. We emphasize
that the temporal arguments of a negated relational body
literal, i.e., Tbj , Tej , may be unbound. A proof of the safe-
ness of our temporal arguments is available in Appendix A.
Expressiveness. With respect to the non-temporal argu-
ments of the rules, we consider only safe, non-recursive Dat-
alog programs, which allows us to capture all of the core
operations that are expressible in relational algebra (apart
from grouping and aggregations) [1]. Moreover, by utilizing
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conjunctions of ≤T predicates over the temporal arguments
of each rule, we are able to express all the 13 relationships
between time intervals defined by Allen [2], such as overlaps,
disjoint or startsWith, via this form of interval arithmetic.
Lineage. Instead of evaluating the deduction rules over
each individual possible world, we utilize data lineage to rep-
resent the logical dependencies between the base facts and
the deduced facts, i.e., the query answers. In analogy to [13,
35], we consider lineage as a Boolean formula which relates
each deduced fact with the base facts via the three Boolean
connectives ∧, ∨ and ¬, in order to reflect the semantics of
the relational operations that were applied to derive that
fact. Specifically, we employ:

• a conjunction (∧) that connects the relational literals in
the body of a deduction rule;

• a negation (¬) for a negated relational literal in the body
of a deduction rule;

• a disjunction (∨) whenever the same fact is obtained
from the head literals of two or more deduction rules.

We refer the reader to [13] for a formal definition of lineage
in combination with Datalog rules. We write ϕ(f) to refer
to the lineage of a fact f . Moreover, if f is a base fact,
we set ϕ(f) := f , where f stands for the Boolean (random)
variable that represents this fact.
Grounding. In the following, we formally consider a ground-
ing function G which, when applied to a conjunction of first-
order literals Ψ, resolves the first-order literals to base facts
or lineage formulas in the case of intensional relations. This
is achieved by binding the first-order literals’ variables to
constants obtained from the base facts in F .

Definition 2. Let Ψ be a conjunctive first-order formula
and F a set of facts. Then, the grounding function G(Ψ,F)
instantiates Ψ over F into a set of propositional lineage for-
mulas {ψ0, . . . , ψn}.

Example 2. Applying G to the body of Rule (2) and the
set of facts {f3, f4, f5} yields the lineage formulas {f3 ∧
f5, f4∧f5}. By further instantiating Rule (2)’s head with the
arguments of f4∧f5, we obtain the new fact f ′ = AreMarried
(DeNiro,Abbott)[1976-07-29,1988-12-01). Regarding the lineage,
we have ϕ(f ′) = f4∧f5. All facts which can be deduced from
Rules (1) and (2) are shown together with their lineages and
time intervals in the middle part of Fig. 1. ⋄

For a non-recursive (non-temporal) Datalog program D,
the iterative application of G over the rule bodies in D can
be computed in polynomial time in |F| and |D| [1]. In Ap-
pendix B, we provide a polynomial-time reduction of our
temporal deduction rules to non-temporal Datalog.
Duplicates. All four deduced facts in Fig. 1 state the mar-
riage of DeNiro and Abbott, but with different lineages and
overlapping time intervals. Following prior work on tempo-
ral DBs with data lineage [12], we next define duplicate-free
temporal relations. We refer to the arguments of a fact f
in a relation instance RT as RT (ā)[tb,te), where R

T is the
relation name, and ā and tb, te are constants denoting the
non-temporal and temporal arguments of f , respectively.

Definition 3. A temporal relation instance RT is called
a duplicate-free relation [12], if for all pairs of facts f =
RT (ā)[tb,te), f

′ = RT (ā′)[t′
b
,t′e)

in RT it holds that:

ā = ā′ ⇒ [tb, te) ∩ [t′b, t
′
e) = ∅

Figure 1: Deducing & deduplicating temporal facts with
lineage

In other words, facts with equivalent non-temporal argu-
ments must have non-overlapping time intervals.
Deduplicating Facts. In order to convert a temporal re-
lation with duplicates (as shown in the middle box of Fig. 1)
into a duplicate-free temporal relation (as shown on the top
of Fig. 1), we provide the following definition.

Definition 4. Let a temporal relation RT , non-temporal
constants ā, a time point t ∈ ΩT , and a set of facts F be
given. Then, L is defined as the set of lineages of fact RT (ā)
that are valid at time point t:

L(RT, ā, t,F) := {ϕ(f) | f = RT (ā)[tb,te) ∈ F , tb ≤ t < te}

We create duplicate free facts f ′ = RT (ā)[tb,te), such that
for any pair of time points t0, t1 ∈ [tb, te) it holds that:

L(RT, ā, t0,F) = L(RT, ā, t1,F) (9)

Furthermore, we define the new facts’ lineage to be:

ϕ(f ′) :=
∨

ψi∈L(RT,ā,tb,F)

ψi (10)

In other words, for a given relation instance and a fact’s
non-temporal arguments, L is the set of all facts’ lineages
that share the same non-temporal arguments and which are
valid at time point t. In Eq. (9), we require a new duplicate-
free fact to have identical lineage sets L at all time points in
its time interval. We remark that for the equality check of
Eq. (9), we focus on syntactical equivalence checks between
the lineage formulas obtained from our grounding algorithm.
We however refrain from full logical equivalence checks be-
tween lineage formulas (which are NP-hard). This defi-
nition is similar to change preservation in [12], which also
iteratively compares sets of lineages along a query plan.

Example 3. Applying Definition 4 to the facts in the
middle of Fig. 1 yields the facts shown at the top of the
figure. For instance, if we inspect the time points 1976-
07-28 and 1976-07-29, we notice that {f3 ∧ f5, f3 ∧ ¬f5} ̸=
{f3 ∧ f5, f3 ∧¬f5, f4 ∧ f5, f4 ∧¬f5}, so two differing facts f6
and f7 have to be kept in the relation. Thus, the resulting
duplicate-free facts are the following.

Id Fact T p
f6 AreMarried(DeNiro,Abbott) [1936-11-01, 1976-07-29) 0.3
f7 AreMarried(DeNiro,Abbott) [1976-07-29, 1988-12-01) 0.79
f8 AreMarried(DeNiro,Abbott) [1988-12-01, tmax ) 0.158

Following Eq. (10), their lineages are as follows.

ϕ(f6) = (f3 ∧ f5) ∨ (f3 ∧ ¬f5)
ϕ(f7) = (f3 ∧ f5) ∨ (f3 ∧ ¬f5) ∨ (f4 ∧ f5) ∨ (f4 ∧ ¬f5)
ϕ(f8) = (f3 ∧ ¬f5) ∨ (f4 ∧ ¬f5) ⋄
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An algorithmic approach to obtain the above facts and time
intervals is described in Sec. 6.2, while confidence computa-
tions based on lineage are discussed in Sec. 6.3.

4.2 Temporal Consistency Constraints
We now introduce a second type of rules to our setting, re-

ferred to as temporal consistency constraints. Syntactically,
these constraints resemble denial constraints [5] in non-tem-
poral databases (see Constraints (3) and (4) of Example 1).
Consistency constraints do not generate new facts, but they
condition the marginal (i.e., posterior) probabilities of both
the base and the derived facts from the deduction rules.

Definition 5. A temporal consistency constraint over a
database schema S is a first-order logical rule of the form

¬

(∧
i

RTi (X̄i)[Tbi
,Tei

) ∧ Φ(X̄)

)
where:

(1) RTi denote extensional or intensional temporal relations
in S;

(2) Φ(X̄) is a conjunction of literals relating to the arith-
metic predicates =, ̸=, and ≤T with arguments in X̄;

(3) The X̄i denote tuples of non-temporal variables and con-
stants, and Tbi , Tei are temporal variables and constants,
such that Var(X̄) ⊆

∪
i(Var(X̄i) ∪ {Tbi , Tei}).

Predicates and Variables Constraints may range over
both intensional and extensional temporal relations (see (1)).
For example, in Constraint (4) of Example 1, AreMarried
refers to an intensional relation. Similarly to the deduction
rules, we allow conjunctions of literals over the arithmetic
predicates =, ̸=, and ≤T (see (2)). Additionally, (3) en-
forces that all variables of arithmetic literals, i.e., the ones
contained in X̄, must also be bound by at least one rela-
tional literal. In Constraint (3), for example, the variables
of the arithmetic predicate (X = Y ) are both arguments of
a relational BornIn literal as well.
Conditioning. Similar to [22], we apply conditioning to
adjust the probabilities of query answers with respect to
our temporal consistency constraints. However, as opposed
to [22], we include conditioning into the query processing
step which is applied after grounding the deduction rules.

Definition 6. Let C = {C0, . . . , Cn} be a set of tempo-
ral consistency constraints, and let F+ be a set containing
both base facts F and facts deducible from a set of temporal
deduction rules D. Then, we define C to be the conjunction
of all grounded constraints over F+.

C :=
∧

ψi∈G(Ci,F+),Ci∈C

ψi (11)

The confidence of a fact f ∈ F+ with lineage ϕ(f) and with
respect to the grounded constraints C is then calculated as:

P (ϕ(f) | C) :=
P (ϕ(f) ∧ C)

P (C)
(12)

If no constraints have been returned by the grounding func-
tion G, we define C := true. Consequently, we obtain
P (ϕ(f) ∧ C) = P (ϕ(f)) and P (C) = P (true) := 1, such
that we fall back to the unconditioned semantics. Also, if
the constraints are unsatisfiable (i.e., no possible worlds ex-
ist over which the conjunction C is satisfied), then we define
C := false and P (ϕ(f)) := 0 for all facts f ∈ F+. We

remark that, in grounding the consistency constraints, we
are making the same closed-world assumption that we also
make for grounding the deduction rules, and which is also
common in Datalog. That is, all relational atoms that do
not match any of the grounded facts are assumed to be false.

Example 4. Grounding the Constraint (3) against the
facts of Example 1 yields ¬(f1 ∧ f2), where the arithmetic
literal is omitted from the grounded formula, since it evalu-
ates to true. Altogether, grounding Constraints (3) and (4)
results in C = ¬(f1 ∧ f2) ∧ ¬(f1 ∧ ϕ(f6)) ∧ ¬(f2 ∧ ϕ(f6)) ∧
¬(f2 ∧ ϕ(f7)), where all arithmetic predicates have already
been evaluated correspondingly. ⋄

4.3 TemporalProbabilistic Database
By gathering all the preconditions we established, we now

define a temporal-probabilistic database as follows.

Definition 7. A temporal-probabilistic database DBTp =
(S,F ,D, C,ΩT , p) is a six-tuple consisting of a database sche-
ma S, a set of base facts F , a set of temporal deduction rules
D, a set of temporal consistency constraints C, a time do-
main ΩT , and a probability measure p.

In Sec. 5, we investigate the basic properties of this model.

4.4 Queries
In analogy to the afore defined rules, we consider a query

over a temporal-probabilistic database DBTp as a conjunc-
tion of literals, each of which may relate to both relational
and arithmetic predicates. Thus, for a query, similar con-
ditions as for the deduction rules regarding safeness hold.
That is, every non-temporal variable that occurs in a negated
relational literal or in an arithmetic literal must also occur
in at least one of the positive relational literals. Every tem-
poral variable that occurs in an arithmetic literal must also
occur in at least one of the relational literals.

Example 5. Using Example 1, we can query for the fol-
lowing conjunction of literals, thus asking for pairs of facts
about the birth places of married people:

BornIn(X,Y )[Tb1
,Te1 ) ∧AreMarried(X,Z)[Tb2

,Te2 )

5. PROPERTIES
In this section, we describe the properties of our tempo-

ral-probabilistic database model with respect to grounding,
confidence computations, and its representational power.

Theorem 1. For a temporal-probabilistic database DBTp
= (S,F ,D, C,ΩT , p) with a fixed set of temporal deduction
rules D, grounding D has polynomial data complexity in |F|
and |ΩT |.
The proof is available in Appendix B and provides a reduc-
tion to non-temporal Datalog with inequalities. The reduc-
tion also properly preserves the lineages of the derived facts.

Corollary 1. For a temporal-probabilistic database DBTp
= (S,F ,D, C,ΩT , p) with a fixed set of temporal deduction
rules D and temporal consistency constraints C, grounding
C has polynomial data complexity in |F| and |ΩT |.
Due to space constraints, we resort to sketching this proof.
Formally, we may ground all constraints according to Eq. (11)
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by utilizing the polynomial-time grounding function G (see
Definition 2). Since |F+| (see Definition 6) is polynomial in
|F| and |ΩT | (due to Theorem 1), C can be constructed in
polynomial time in |F| and |ΩT |.

Lemma 1. For a temporal-probabilistic database DBTp =
(S,F ,D, C,ΩT , p) with a fixed set of temporal deduction rules
D and temporal consistency constraints C, confidence com-
putations are #P-hard in |F| and |ΩT |.
We sketch this proof by encoding a #P-hard query [9, 35] for
a tuple-independent (but non-temporal) probabilistic data-
base in our data model. First, we assign every tuple the
same time interval. Then, we translate the relational query
into Datalog rules as in [1]. By grounding these rules against
the temporal-probabilistic database, we receive the same lin-
eage formulas as in the original probabilistic database, where
confidence calculations are known to be #P-hard.

Theorem 2. A temporal-probabilistic database DBPT =
(S,F ,D, C,ΩT , p) with lineage is closed and complete under
all algebraic operations which are expressible by the temporal
deduction rules.

Generally, a representation system is complete, if it can
represent any finite instance of data, which is in our case
temporal and probabilistic. Since completeness implies clo-
sure [35], we provide a proof for the completeness of our
temporal-probabilistic database model in Appendix C.

6. ALGORITHMS
In this section, we describe our algorithms for data and

confidence computations in temporal-probabilistic databases.
Specifically, we describe the grounding step, the deduplica-
tion of facts with overlapping time intervals, lineage decom-
positions, and the final confidence computation step.

6.1 Grounding
We first cover how we ground deduction rules and con-

straints. Our main grounding procedure (Algorithm 1) is

Algorithm 1 Ground(F ,D, C)
Input: Facts F , deduction rules D, constraints C
Output: Closure of facts F+ with lineage, grounded constraints

C
1: Plan := Map[RT → {d | d ∈ D, headRelation(d) = RT }]
2: F+ := F ◃ Contains base and deduced facts.
3: for RT ∈ Keys(Plan) in bottom-up order do
4: FRT := ∅ ◃ Facts in relation RT .

5: for body → head ∈ Plan(RT ) do
6: FRT := FRT∪Instantiate(head , G(body,F+)) ◃ Def. 2

7: for ā ∈ {ā | RT (ā)[Tb,Te) ∈ FRT } do

8: F+ := F+ ∪Deduplicate(FRT ,ā) ◃ Alg. 2

9: C := true ◃ All facts are deduced now.
10: for c ∈ C do
11: C := C ∧

∧
g∈G(c,F+) g ◃ Eq. (11)

12: return F+, C

divided into two phases. The first phase (Lines 1-8) grounds
all deduction rules in a bottom-up manner while tracing the
lineage of derived facts. The second phase (Lines 9-11) in-
stantiates constraints against all facts (i.e., both the base
and the deduced facts).
In more detail, in Line 1 we use a map from intensional

relations (keys) to the sets of deduction rules with the corre-
sponding relational predicate as head literal (values). Next,

the loop of Line 3 iterates over the intensional relations in a
bottom-up manner [1]. That is, intensional relations, whose
rules have only extensional relations in their bodies, are
processed first. Then, we iterate over all deduction rules
with relation RT (Line 5) and instantiate their head liter-
als into new facts by using the variable bindings obtained
from the grounded body literals G(body ,F+) (see Defini-
tion 2). The following loop (Line 7) iterates over all tuples
of non-temporal arguments ā and calls Deduplicate(FRT ,ā)
for each. The call makes the set facts of FR conform with
Definition 3 and is described in Sec. 6.2. Here, FRT ,ā are

all facts in FTR whose non-temporal arguments are ā, or for-
mally FRT ,ā := {f | f = RT (ā′, t̄) ∈ FTR , ā′ = ā}. Finally,
in Line 11 we produce the conjunction of the groundings
of all constraints c ∈ C against the base and the deduced
facts F+. The runtime complexity of Algorithm 1 is poly-
nomial in |F|, since Lines 1 to 8 correspond to grounding
a non-recursive Datalog program, and in Lines 9 to 11 the
function G runs in polynomial time in |F+| and |c|.

Example 6. We initialize Algorithm 1 using F := {f1,
. . . , f5}, D comprising Rules (1) and (2), and C containing
Constraints (3) and (4) of Example 1. First, we initial-
ize Plan with [AreMarried → {(1), (2)}], and we set F+ =
{f1, . . . , f5}. The loop in Line 3 performs only one iteration
where RT = AreMarried. Assuming that the loop in Line
5 selects (2) first, we instantiate the head to two new facts
AreMarried(DeNiro,Abbott)[1936−11−01,1988−12−01) and Mar-
riage (DeNiro, Abbott)[1976−07−29,1988−12−01) with lineages
f3 ∧ f5 and f4 ∧ f5, respectively. Their lineage and that of
the two facts deduced by Rule (1) are shown in Example 3.
Fig. 1’s top part corresponds to the output of Deduplicate
(Line 8). When we reach Line 9, F+ = {f1, . . . , f8}. Next,
the constraints are grounded as shown already in Example 4.

6.2 Deduplicating Facts
Algorithm 2 outputs, for a given set of deduced facts,

duplicate-free facts as described in Definition 4. Fig. 1 again
illustrates this by our running example. For a set of facts
FRT ,ā with relation RT and non-temporal arguments ā, it
performs a loop over the limits of the facts’ time intervals. In

Algorithm 2 Deduplicate(FRT ,ā)

Input: Facts FRT ,ā of relation RT , non-temporal arguments ā

Output: Deduplicated facts according to Definition 4
1: Limits := {tb, te | RT (ā)[tb,te) ∈ FR,ā}
2: Begin := Map[t→ {f | f = RT (ā)[t,te) ∈ FRT ,ā}]
3: End := Map[t→ {f | f = RT (ā, tb, t) ∈ FRT ,ā}]
4: tlast := first(Limits)
5: Active := ∅
6: Result := ∅
7: for t ∈ Limits in ascending order do
8: if Active ̸= ∅ then
9: fnew := RT (ā)[tlast ,t)
10: ϕ(fnew ) :=

∨
f∈Active ϕ(f) ◃ Eq. (10)

11: Result := Result ∪ {fnew}
12: tlast := t
13: Activelast := Active

14: Active := (Active \ End(t)) ∪ Begin(t)

15: return Result

more detail, the set Limits contains all endpoints of intervals
in FRT ,ā. Begin and End are maps pointing from a time
point t to the set of facts beginning from t and ending at t,
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respectively. During the execution of the loop (Line 7), the
set Active contains all facts whose interval contains [tlast , t)
(Line 14). In Lines 9 and 10, we produce a new fact fnew
whose lineage is the disjunction of the lineage of all facts
in Active. The runtime complexity of Algorithm 2 is in
O(|FRT ,ā|log |FRT ,ā|), since the loop requires the sorting of
Limits. The worst-case size of the output is 2 · |FRT ,ā| − 1,
which occurs when all facts’ time intervals are stacked.

Example 7. We apply Algorithm 2 to the facts deduced
by Rules (1) and (2), hence constructing the lineage for the
facts presented in Example 3. First, we initialize Limits
as {1936-11-01, 1976-07-29, 1988-12-01, tmax}, set Begin to
[1936-11-01→ {f3∧f5, f3∧¬f5}, 1976-07-29→ {f4∧f5, f4∧
¬f5}], and assign [1988-12-01 → {f3 ∧ f5, f4 ∧ f5}, tmax →
{f3 ∧ ¬f5, f4 ∧ ¬f5}] to End. In the first iteration of the
loop, Active is empty. In the next iteration, we add f6 =
AreMarried(DeNiro,Abbott)[1936-11-01,1976-07-29) to Result and
set its lineage to ϕ(f6) = (f3 ∧ f5)∨ (f3 ∧¬f5). The last two
iterations produce f7, f8 as shown in Example 3. ⋄

6.3 Confidence Computations
Having obtained the lineage from the previously discussed

grounding steps, we now calculate the confidence of a fact
at each time interval by following a number of techniques
known from probabilistic databases [35]. We first define
the function F (ϕ) to deliver the set of base facts that are
contained in a lineage formula ϕ, e.g., F (f1 ∧ f2) = {f1, f2}.
Next, we define P (ϕ) over the structure of ϕ as follows:

Definition Condition
P (f) := p(f) f ∈ F

P (
∧
i ϕi) :=

∏
i P (ϕi) i ̸=j ⇒ F (ϕi)∩F (ϕj)=∅

P (
∨
i ϕi) := 1−

∏
i(1− P (ϕi)) i ̸=j ⇒ F (ϕi)∩F (ϕj)=∅

P (ϕ ∨ ψ) := P (ϕ) + P (ψ) ϕ ∧ ψ ≡ false
P (¬ϕ) := 1− P (ϕ)

(13)
The first line captures the case of a base fact, for which we
return its attached probability. The next two lines handle
independent-and and independent-or operations for conjunc-
tions and disjunctions of disjoint sets of base facts, respec-
tively. Then, we handle disjunctions for sub-formulas that
denote probabilistically disjoint events (known as disjoint-
or [35]). The last line finally addresses negation.

Example 8. In Example 3 the lineage of f6 was defined
as (f3∧f5)∨ (f3∧¬f5). Now, let us compute its confidence:

P ((f3 ∧ f5) ∨ (f3 ∧ ¬f5))
= P (f3 ∧ f5) + P (f3 ∧ ¬f5)
= P (f3) · P (f5) + P (f3) · (1− P (f5))
= 0.3 · 0.8 + 0.3 · 0.2 = 0.3

The first equality utilizes a disjoint-or operation, followed by
applications of the definitions for independent-and and nega-
tion. Last, it looks up the confidence values from Example 1.

Eq. (13)’s definition of P (ϕ) runs in linear time in the size
of ϕ. However, in general, computing P (ϕ) is #P-hard [9,
35] and this becomes evident if we consider Eq. (14), called
Shannon expansion, which is always applicable:

P (ϕ) := P (f) ·P (ϕ[f→true])+(1−P (f)) ·P (ϕ[f→false]) (14)

Here, the notation ϕ[f→true] for a fact f ∈ F (ϕ) denotes that
we replace all occurrences of f in ϕ by true (and false, re-
spectively). Shannon expansion is based on the equivalence

ϕ ≡ (f ∧ ϕ[f→true]) ∨ (¬f ∧ ϕ[f→false]) (15)

such that the disjunction fulfills the disjoint-or condition
with respect to f . Repeated applications of Shannon ex-
pansions may result in an exponential increase of ϕ.

Example 9. If we apply Eqs. (13) and (14) to calculate
the confidences of f1, f2 (as of Example 1) and f6, f7, f8
(from Example 3) by following Eq. (12), while respecting the
constraints of Example 4 , we obtain:

f1 f2 f6 f7 f8
P 0.827 0.041 0.039 0.68 0.136

Comparing these confidences to their unconditioned version,
thus ignoring the constraints (see Example 1 and Exam-
ple 3), we note that the (in reality) incorrect facts f2, f6,
and f8 now indeed have significantly lower confidences (an
effect we exploit in the experiments in Sec. 7.1).

6.4 Lineage Decompositions
In practice, the necessity for Shannon expansions hin-

ders the scalability of the confidence computation step, for
which we can do exact probabilistic inference, to larger data
sets. Hence, we propose two methods for lineage decom-
position (executed before invoking the confidence compu-
tations), which drastically reduce the number of Shannon
expansions. Before describing our algorithm, we provide a
function for determining the number of required Shannon
expansions at the top-level operator of a lineage formula ϕ.

Definition 8. Let ϕ ≡ ϕ0 op . . . op ϕn be a lineage
formula with operator op ∈ {∧,∨}, and let ϕ0 to ϕn be sub-
formulas of ϕ. Then, we define the function S to return the
number of necessary Shannon expansions as follows:

S(ϕ) = |{f | ∃i ̸= j : f ∈ F (ϕi), f ∈ F (ϕj)}|

The above definition applies to ∧,∨ only, because ¬ cannot
induce new Shannon expansions. Moreover, if S(ϕ) = 0 then
Eq. (13)’s second or third line is applicable. If we attempt to
calculate P (ϕ) naively, then S(ϕ) characterizes the exponent
added by ϕ’s top level operator to P (ϕ)’s runtime.

Example 10. As an example, we apply S to ϕ(f7) (see
Example 3). That is op = ∨ and S((f3 ∧ f5) ∨ (f3 ∧ ¬f5) ∨
(f4 ∧ f5) ∨ (f4 ∧ ¬f5)) = |{f3, f4, f5}| = 3. Thus, a naive
computation of P (ϕ(f7)) takes 23 iterations.

Algorithm 3 implements two strategies for lowering the num-
ber of Shannon expansions, which are repeatedly invoked
by the loop in Line 1. Empirically, we found that reduc-
ing the Shannon expansions outperforms the alternative of
eagerly removing all of them, which is done in compara-
ble knowledge compilation techniques [19, 27]. This is why
we employ the threshold θ, which was set to 4 in our ex-
periments. The first strategy (Lines 2-7) aims to identify
sets Si of lineage subformulas ϕ′

0 to ϕ′
n such that there

are no Shannon expansions between each pair of sets Si,
Sj (as enforced by F (Si) ∩ F (Sj) = ∅). If the condition
in Line 6 returns true, then S(opi(opϕ′

j∈Si
ϕ′
j)) = 0, which

makes Eq. (13)’s second or third line applicable. Further-
more,

∑
i S(opϕ′

j∈Si
ϕ′
j) = S(ϕ′) which provides an exponen-

tial speed-up for the confidence computations since 2S(ϕ
′) >∑

i 2
S(opϕ′

j
∈Si

ϕ′
j)
. If the condition in Line 6 evaluates to

false, i.e., m = 0, we invoke the second strategy to remove
Shannon expansions. In Line 9, we pick the fact f which
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Algorithm 3 Decompose(ϕ, θ)

Input: Lineage formula ϕ, threshold θ
Output: Adapted formula ϕ with reduced Shannon expansions
1: while ∃ϕ′ ∈ ϕ : S(ϕ) > θ do
2: Select ϕ′ ∈ ϕ
3: s.t. ϕ′ ≡ ϕ′0 op . . . op ϕ′n, op ∈ {∧,∨}, S(ϕ′) > θ
4: Determine S0, . . . , Sm, Si ⊆ {ϕ′0, . . . , ϕ′n}
5: s.t.

∪̇
iSi = {ϕ′0, . . . , ϕ′n}, ∀i ̸= j : F (Si) ∩ F (Sj) = ∅

6: if m > 0 then
7: Replace ϕ′ in ϕ by opi(opϕ′

j∈Si
ϕ′j)

8: else
9: f := argmaxf |{ϕ′i | f ∈ F (ϕ′i), 0 ≤ i ≤ n}|
10: Replace ϕ′ in ϕ by (f ∧ϕ′

[f→true]
)∨ (¬f ∧ϕ′

[f→false]
)

11: return ϕ

occurs in the maximal number of lineage subformulas ϕ′
0

to ϕ′
n, such that ϕ[f→true], ϕ[f→false] have high chances to

be simplified. Then, in Line 10, we materialize a Shannon
expansion for f by following Eq. (15).
The inner part of the while loop can be implemented in

(nearly) linear time in the size of ϕ by utilizing the union-
find data structure for Line 4. We remark that repeated
applications of Line 10 may increase ϕ’s size exponentially.
We refer the reader to recent approximation techniques [29]
for the case when these expanded formulas become too large.

Example 11. We decompose Example 3’s ϕ(f7) = (f3 ∧
f5)∨ (f3 ∧¬f5)∨ (f4 ∧ f5)∨ (f4 ∧¬f5) by Algorithm 3 with
θ = 0. As discussed in Example 10, S(ϕ(f7)) = 3, so we set
ϕ′ = ϕ(f7). In Line 4, we receive m = 0 because f5 occurs
in all lineage subformulas. Hence, in Line 9, we choose f5
and rewrite ϕ(f7) to (f5 ∧ (f3 ∨ f4)) ∨ (¬f5 ∧ (f3 ∨ f4)) in
Line 10. Now, all Shannon expansions are gone, yielding
P (ϕ(f7)) = (0.8 · (1− (1− 0.3) · (1− 0.7))) + (0.2 · (1− (1−
0.3) · (1− 0.7))) = 0.8 which can be computed via Eq. (13).

7. EXPERIMENTS
Our evaluation focuses on four different aspects. First, we

compare the quality of our extraction and inference tech-
niques against state-of-the-art IE systems. Next, we focus
on our runtime performance for query answering tasks over
a large temporal-probabilistic database instance, before we
study how we perform for the KB building task by material-
izing large queries. Finally, we analyze the detailed runtimes
of the individual algorithmic tasks involved in these steps.
Setup. We implement our engine (coined TPDB) in Java
7. TPDB employs a PostgreSQL 8.4 database for grounding
conjunctive queries (i.e., queries, bodies of rules, and consis-
tency constraints) via SQL statements and storing both the
extensional relations and the intermediate facts. We trans-
late the “≤T ” predicate into its SQL counterpart, using “<”
over time points encoded as integers. Since computing con-
fidences is a major bottleneck for a PDB, we perform lineage
decompositions and probabilistic inference (see Sec. 6.4) en-
tirely in main memory. We run all experiments on a 8-core
Intel Xeon 2.4Ghz machine with 48GB RAM, repeat each
query on each setting four times and report the average of
the last three runs. Due to space constraints, queries, rules
and constraints are provided as supplementary material6.

6
http://www.mpi-inf.mpg.de/∼mdylla/tpdbSupplementary.pdf

7.1 Extraction Quality
We first compare TPDB against four state-of-the-art meth-

ods for temporal fact extraction, two employing constraint
solving via ILP and two using probabilistic inference via
MLNs [31]. For ILP we use the Gurobi software7 imple-
menting the constraints from [36, 39] as well as cutting plane
inference [32] from “Markov thebeast”8 (Beast), which both
perform MAP inference, i.e., they return the single most
likely possible world, rather than computing marginals as
TPDB and MLNs do. As for MLNs, we compare against
Alchemy9 and Tuffy10, that latter of which improves the
grounding step of Alchemy by using a PostgreSQL opti-
mizer [26]. Since ILPs and MLNs do not natively support
time, we encode time intervals by adding two arguments on
the relational predicates denoting their begin and end time
points. All systems operate on the same set of deduction
rules and consistency constraints.
Data Set and Ground Truth. Our dataset consists of
1,817 base facts which we extracted from free-text biogra-
phies of 272 celebrities crawled from Wikipedia, imdb.com,
and biography.com. The facts correspond to nine temporal
relations, namely AttendedSchool, Born, Died, Divorce, Is-
Dating, Founded, GraduatedFrom, MovedTo, and Wedding.
Our extractor uses textual patterns from [25] to recognize
potential facts, regular expressions to find dates, and the
Stanford NER tagger11 to identify named entities. We as-
signed each pattern and extraction step a probability, such
that the confidence of each extracted fact is obtained by mul-
tiplying the probabilities of all steps involved in its extrac-
tion process. As for the ground truth, we manually labeled
100 randomly chosen facts from each relation by determining
their correct time intervals from the text and labeled them as
false if the extracted fact was erroneous. We equally divided
the labeled facts into a training set (for developing deduc-
tion rules and constraints) and a test set (used for precision
and recall). We employed a set of 11 hand-crafted temporal
deduction rules and 21 temporal consistency constraints, in-
cluding the ones shown in Example 1. The free-text sources,
both the extraction rules and facts are available online6.
Metrics. To evaluate the result quality, our precision and
recall metrics should reflect the overlap between the ob-
tained facts’ time intervals and the time intervals of the
ground-truth. For this, we define a function V that, for a
set of facts in a temporal relation instance RT with identical
non-temporal arguments ā and a probability threshold θp,
returns the set of time points at which these facts are valid
with a probability of at least θp.

V (RT , ā, θp) :=

{
t

∣∣∣∣ f = RT (ā)[tb,te) ∈ RT ,
t ∈ [tb, te), p(f) ≥ θp

}
We now define precision and recall as follows.

Precision(RT , ā, θp) :=
|V (RT , ā, θp) ∩ V (RT

truth , ā, θp))|
|V (RT , ā, θp)|

Recall(RT , ā, θp) :=
|V (RT , ā, θp) ∩ V (RT

truth , ā, θp))|
|V (RT

truth , ā, θp)|
For example, consider the ground truth fact fg : Divorce(
DeNiro,Abbott)[1988−09−01,1988−09−02), f5 from Example 1,

7
http://www.gurobi.com

8
https://code.google.com/p/thebeast/

9
http://alchemy.cs.washington.edu/

10
http://hazy.cs.wisc.edu/hazy/tuffy/download/

11
http://nlp.stanford.edu/ner/
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(a) F1 measure (best θp) (b) Precision/recall (varying θp) (c) Runtimes (grounding & inference)

Figure 2: Temporal fact extraction (Sec. 7.1)

Figure 3: Query answering task (Sec. 7.2) Figure 4: KB building task (Sec. 7.3)

(a) Grounding (Q3) (b) Decompositions (Q3) (c) Confidences (Q3) (d) Deduplication (Q6)

Figure 5: Detailed runtime analysis for the different steps of TPDB (Sec. 7.4)

and θp = 0.7, we obtain Precision(f5) ≈ 0.01 and Recall(f5) =
1.0. To establish precision and recall for sets of facts with
different non-temporal arguments, we report the macro-av-
erage of the individual facts’ values. F1 measure is computed
as the harmonic arithmetic mean of precision and recall.
Results. In Fig. 2(a), we report F1 as achieved by TPDB
with and without constraints (TPDB-c and TPDB+c re-
spectively) and the ILP competitors Gurobi and Beast. We
only include the best F1 value since different probability
thresholds θp produce difference results as shown in Fig. 2(b).
The MLN competitors Alchemy and Tuffy are not included,
since even after extensive tuning they either exceeded the
available memory, disk space, or ran for several days with-
out terminating. In the supplementary material, we report
their performance for a 3% sample of the data set, which
yielded reasonable running times.
Discussion. To demonstrate the challenges of the dataset,
about 700 of the 1,817 facts violated at least one constraint
and about 500 of the 700 facts contradicted more than one
constraint (i.e., requiring Shannon expansions). Considering
the F1 metric, TPDB performs best, where the addition of
constraints shifts the focus from recall towards precision and
sometimes yields major quality gains (see Fig. 2(b)).Gurobi
and Beast perform well, but the single possible world re-
turned for MAP inference makes the F1 values less stable
(see Fig. 2(a)). With respect to runtimes (Fig. 2(c)), Beast
and TPDB are competitive (however at a significant gap in
F1 between 65% and 75%), whereas Gurobi is slightly slower
(and performs worse in F1 with only 61%). Adding con-
straints slows down TPDB only moderately. MLNs, how-
ever, hardly scale for predicates of arity 4, which blow up
the internal data structures of both Alchemy and Tuffy.

7.2 Query Answering Task
We now focus on answering specific queries over uncertain

and temporal data. We employ a large data set to study
how scalable TPDB is in comparison to MayBMS [4]. Since
MayBMS has no native support for temporal data, we add
two integer attributes to represent the begin and end points
of time intervals, fill them with values, but do not perform
any kind of computations on them.
Dataset and Queries. We use YAGO2 [17] as our data set
that captures about 100 relations, holding 224.4 · 106 facts,
out of which 1.6 · 106 are temporal. Because YAGO2 comes
with constant confidences per relation, we randomly and
uniformly sampled confidence values from (0, 1]. We define
three query patterns for three established query classes in
PDBs, namely hierarchical [35], read-once [34] and general
unsafe [9] queries, which we each instantiate with different
constants. Each pattern yields 1,000 distinct queries with
varying numbers of answers and lineages. We report the
average runtime over the 1,000 queries for each class.
Results. Fig. 3 consists of two plots, the left one depicts
the runtimes for MayBMS and TPDB and the right one how
the runtime of TPDB is spent on the tasks performed by
Algorithm 1 (TPDB Ground), Algorithm 3 (TPDB Decom),
and on confidence computations (TPDB Conf).
Discussion. Confidence computations for hierarchical que-
ries (Q1) are polynomial, i.e., they are completely captured
by Eq. (13). Hence, both systems perform very well. Con-
sidering read-once formulas (Q2), confidence computations
are in polynomial time, however they might require a con-
version of the lineage formula using the algorithm provided
in [34]. This becomes evident by the time spent on confi-
dence computations (TPDB Conf). Also, MayBMS slows
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down slightly. Finally moving to unsafe queries (Q3), which
are #P-hard, our lineage decomposition step (TPDB De-
comp) becomes the key for achieving the major speed-ups
compared to MayBMS. For Q3, on average there are about
4,000 base facts in the lineage formula of each answer.

7.3 Knowledge Base Building Task
We now tackle queries with result sizes that occur when

we aim to materialize major parts of a temporal KB. We
designed two queries for the YAGO2 dataset by focusing
on two different challenges, namely producing large lineage
formulas and having constraints over many facts.
Large Lineage. Fig. 4 (left part) depicts the runtimes
of MayBMS and TPDB-c for query Q4, where each query
answer has a #P-hard subquery. When grounded, the sub-
query’s lineage alone involves about 150,000 base facts, where
TPDB-c’s lineage decompositions pay off by a large margin.
Many Constraints. In query Q5, we apply 8 constraints
to relations with a total size of 106 tuples, and run TPDB+c,
Gurobi and Beast+c. In Fig. 4 (right part), we report the
runtimes for the inference omitting grounding times. TPDB
solves the problem in less than 40 seconds while Gurobi was
not able to find the optimal solution anymore and finishes
only after 60 seconds. Last, Beast spent about 40 minutes.

7.4 Detailed Runtime Analysis
We conclude our evaluation by exploring how runtimes are

spent among the steps of TPDB, i.e., grounding, lineage de-
compositions, confidence computations, and deduplication.
Grounding. Fig. 5(a) depicts the grounding time (Algo-
rithm 1) of each query in Q3. We observe a smooth behavior
as the number of base facts grows (except for one outlier).
Decomposition. Fig. 5(b) shows the decomposition time
(Algorithm 3) for each of the 1,000 queries in Q3. The x-axis
shows the fraction of base facts participating in a Shannon
expansion. Hence, more difficult lineage formulas appear
towards the right-hand side of the x-axis.
Confidence. Using the same x-axis, Fig. 5(c) depicts the
runtime for confidence computation (using Eqs. (13) and
(14)) for each query of Q3. Most queries can be handled
very efficiently with just a few decomposition steps. For
more complex queries, the runtime grows as we perform
more Shannon expansions.
Deduplication. For Algorithm 2, we created query pattern
Q6 and instantiated it into 1,000 queries, such that varying
numbers of time intervals are involved in the single answer
of Q6. Fig. 5(d) depicts the runtime of TPDB over the
number of time intervals in the query answers. As pointed
out in Sec. 6.2, the runtime actually follows a n logn shape.

8. CONCLUSIONS
We presented a temporal-probabilistic database model that

supports both time and probability as first class citizens. We
introduced an expressive class of temporal deduction rules
and temporal consistency constraints allowing for a closed
and complete representation formalism for temporal uncer-
tain data, and analyzed the properties of our data model
from a theoretical perspective. Also, we proposed efficient
algorithms, which we evaluated on various information-ex-
traction tasks. As future work, we aim to investigate the
support for periodical temporal data and background knowl-
edge (e.g., presidential elections) and to extend our data
model to non-independent (i.e., correlated) base facts.

APPENDIX
A. NEGATIONS IN DEDUCTION RULES

We define temporal deduction rules (Definition 1) without
requiring temporal variables of negated relational literals to
be bound by a positive relational literal. In general, this
violates the definition of safe Datalog rules. We justify this
by the following reduction. First, we introduce an additional
relation Time(T ), which contains one base fact for every
time point t in the time domain ΩT . Since ΩT is finite,
Time will also be finite. Then, we rewrite Eq. (8) to

R0(X̄, Tb0 , Te0)←∧
iRi(X̄i, Tbi , Tei) ∧ Φ(X̄) ∧∧
j

(
¬Rj(X̄j , Tbj , Tej ) ∧ Time(Tbj ) ∧ Time(Tej )

)
The above rule meets all requirements of the definition for
safe Datalog rules. Also, the blow-up of the number of
grounded rules is polynomial in ΩT .

B. GROUNDING DEDUCTION RULES
We will reduce our temporal deduction rules (see Defini-

tion 1) to regular Datalog with inequalities in the rules’ bod-
ies, whose grounding has polynomial data complexity [21].
During grounding, we assume lineage tracing, as formally
defined in [13], to take place.

For this, let ΩT be isomorphic to a finite subset of the
natural numbers. For each temporal (and probabilistic) re-
lation R(X̄)[Tb,Te), we introduce an additional deterministic

relation Rd(X̄, Tb, Te). For extensional relations, we copy
all base facts, such that P (Rd(ā, tb, te)) = 1.0. We then
rewrite a general rule of Eq. (8) as follows. First, we create
a deterministic version of the rule:

Rd(X̄, Tb, Te)←∧
iR

d
i (X̄i, Tb,i, Te,i) ∧

∧
j ¬R

d
j (X̄j , Tb,j , Te,j) ∧ Φ

Applying this rule yields all facts as deterministic facts,
which are not necessarily duplicate-free. To counter this,
we emulate Algorithm 2 in Datalog. Therefore, we gather
all limits of time intervals by the following two rules over
the deterministic relations:

LimitdR(X̄, Tb)← Rd(X̄, Tb, Te)
LimitdR(X̄, Te)← Rd(X̄, Tb, Te)

Thus, the LimitdR relation corresponds to the set in Line 1 of
Algorithm 2. To ensure that intervals will be non-overlapping,
we create another deterministic relation that is instantiated
for each pair of time points (denoted by the variables T1,
T3), if there is at least one Limit fact in between:

BetweendR(X̄, T1, T3)←
LimitdR(X̄, T1) ∧ LimitdR(X̄, T2)∧
LimitdR(X̄, T3) ∧ T1 < T2 ∧ T2 < T3

Now, we deduce all adjacent, non-overlapping time intervals
(i.e., shown in Fig. 1’s upper part) by the following rule:

IntervaldR(X̄, Tb, Te)←
LimitdR(X̄, Tb) ∧ LimitdR(X̄, Te)
∧Tb < Te ∧ ¬BetweendR(X̄, Tb, Te)

These intervals are duplicate free as demanded by Defini-
tion 3. At this point, we are able to deduce the time inter-
vals as deterministic facts, however, we are missing rules to
induce the correct lineage in order to compute probabilities.
Thus, in the final step, we create another copy of Eq. (8)
where R′(X̄, Tb, Te) is a new relation.
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R′(X̄, Tb, Te)←∧
iRi(X̄i, Tb,i, Te,i) ∧

∧
j ¬Rj(X̄j , Tb,j , Te,j) ∧ Φ(X̄)

Again, its deduced time intervals correspond to the ones in
the middle box of Fig. 1. We add a final deduction rule
which combines the deduced facts with their correct time
intervals from IntervaldR and creates the logical disjunction
in the lineage as required by Definition 4, thus utilizing the
uncertain facts of R′:

R(X̄, T ′
b, T

′
e)←

(
R′(X̄, Tb, Te) ∧ Intervald(X̄, T ′

b, T
′
e)

∧Tb ≤ T ′
b ∧ T ′

e ≤ Te

)
We note that the head’s time interval [T ′

b, T
′
e) originates from

Intervald(X̄, T ′
b, T

′
e), hence the facts deduced from R′ are

duplicate-free. Also, all facts in R′(X̄, Tb, Te), whose time
interval contains [T ′

b, T
′
e), will deduce R(X̄, T ′

b, T
′
e), so the

logical disjunction of Eq. (10) is produced. Furthermore,
since Intervald is deterministic, the confidence of the de-
duced fact entirely depends on R′.
If we apply the above procedure to all temporal deduction

rules, we obtain a polynomial blow-up in the size of the data
and the number of rules. Since the data complexity of non-
recursive Datalog with inequalities is polynomial, also our
model has polynomial data complexity.

C. CLOSURE AND COMPLETENESS
We show that, given any finite instance D of temporal

and probabilistic relational data, we can represent it in our
temporal-probabilistic database model. In general, a rela-
tion instance R in D might not be duplicate-free (Defini-
tion 3). We counter this by adding unique fact identifiers to
R. Via the reduction of Appendix B, the proof in [35], stat-
ing the completeness of (non-temporal) tuple-independent
probabilistic databases extended with lineage under all op-
erations of the relational calculus, applies to our data model
as well. Hence, we conclude that completeness follows also
for our temporal-probabilistic database model.
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