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ABSTRACT
Finding the optimal execution order of join operations is a crucial
task of today’s cost-based query optimizers. There are two ap-
proaches to identify the best plan: bottom-up and top-down join
enumeration. But only the top-down approach allows for branch-
and-bound pruning, which can improve compile time by several
orders of magnitude while still preserving optimality. For both op-
timization strategies, efficient enumeration algorithms have been
published. However, there are two severe limitations for the top-
down approach: The published algorithms can handle only (1) sim-
ple (binary) join predicates and (2) inner joins. Since real queries
may contain complex join predicates involving more than two rela-
tions, and outer joins as well as other non-inner joins, efficient top-
down join enumeration cannot be used in practice yet. We develop
a novel top-down join enumeration algorithm that overcomes these
two limitations. Furthermore, we show that our new algorithm is
competitive when compared to the state of the art in bottom-up pro-
cessing even without playing out its advantage by making use of its
branch-and-bound pruning capabilities.

1. INTRODUCTION
For a DBMS that provides support for a declarative query lan-

guage like SQL, the query optimizer is a crucial piece of software.
The declarative nature of a query allows it to be translated into
many equivalent evaluation plans. Essential for the execution costs
of a plan is the order of join operations, since the runtime of plans
with different join orders can vary by several orders of magnitude.
The search space considered here consists of all bushy join trees
without cross products [16].

In principle, there are two approaches to find an optimal join
order: bottom-up join enumeration via dynamic programming and
top-down join enumeration through memoization. Both approaches
face the same challenge: to efficiently find for a given set of rela-
tions all partitions into two subsets, such that both induce connected
subgraphs and there exists an edge connecting the two subgraphs.

Currently, the following algorithms have been proposed: DPC-
CP, an efficient dynamic programming-based algorithm [12], TD-
MINCUTLAZY [3], as well as TDMINCUTBRANCH and TDMIN-
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CUTCONSERVATIVE), two competitive top-down join enumeration
strategies [4, 7, 5].

However, all four algorithms (DPCCP, TDMINCUTLAZY, TD-
MINCUTBRANCH, TDMINCUTCONSERVATIVE) are not ready
yet to be used in real-world scenarios because there exist two se-
vere deficiencies in all of them. First, as has been argued in several
places, hypergraphs must be handled by any plan generator [2, 17,
19]. Second, plan generators have to deal with outer joins and anti-
joins [8, 17]. In general, these operators are not freely reorderable:
some orderings produce wrong results. The non-inner join reorder-
ing problem can be correctly reduced to hypergraphs [2, 13, 17].
Consequently, Moerkotte and Neumann [13] extended DPCCP to
DPHYP to handle hypergraphs. Since DPHYP is a bottom-up join
enumeration algorithm, it cannot benefit from branch-and-bound
pruning. On the other hand, branch-and-bound pruning can signifi-
cantly speed up plan generation [3, 7], while still guaranteeing plan
optimality.

In this paper, we present a novel generic framework that can be
used by any existing partitioning algorithm for top-down join enu-
meration to efficiently handle hypergraphs. The central idea is to
smartly convert hypergraphs to simple graphs and introduce effec-
tive means to avoid inefficiencies. This way, any existing parti-
tioning algorithm for simple graphs can be used. We show that
TDMCBHYP, resulting from instantiating our framework with the
partitioning algorithm MINCUTBRANCH, is more efficient than ex-
isting partitioning algorithms for hypergraphs and as efficient as
DPHYP even without pruning. With pruning, TDMCBHYP out-
performs DPHYP by a factor of 1.1 − 11.5.

This paper is organized as follows. Sec. 2 recalls some pre-
liminaries. Sec. 3 shows a naive approach called TDBASICHYP
for handling hyperedges. Sec. 4 presents our generic framework.
Sec. 5 contains the experimental evaluation, and Sec. 6 concludes
the paper.

2. PRELIMINARIES
Before we give the formal definitions necessary for our algo-

rithm, let us demonstrate by means of a very simple example why
hypergraphs (apart from the case where join predicates span more
than two relations) are necessary when reordering more than plain
joins. Consider the query

select * from (R0 left outer join R1 on R0.A = R1.B)
full outer join R2 on R1.C = R2.D

In a first step, it is translated into an initial operator tree:
(R0 R0.A=R1.BR1) R1.C=R2.DR2

For this query, no valid reordering is possible. To prevent reorder-
ing, conflicts need to be detected and represented. At the core of
every conflict presentation is a set of relations, called TES, associ-
ated with each operator in the initial operator tree [13, 17, 11]. To
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describe the calculation of TES is beyond the current paper, but the
intuition behind it is rather simple: before an operator can be ap-
plied to join two subplans, all relations in the TES must be present in
the two subplans. For our example, we have TES( R0.A=R1.B) =
{R0, R1} and TES( R1.C=R2.D) = {R0, R1, R2}. For non-
commutative operators, it is important to distinguish between the
relations contained in the left and right branch of the initial operator
tree 1. Intersection of the TES with the set of relations contained in
the left and right branch of the operator tree gives a pair (L-TES, R-
TES) of sets of relations. For p1,2 , this pair is ({R0, R1}, {R2}).
As we will see, this is a complex hyperedge.

2.1 Hypergraphs
Let us begin with the definition of hypergraphs.

DEFINITION 1. A hypergraph is a pair H = (V, E) such that

1. V is a non-empty set of nodes, and

2. E is a set of hyperedges, where a hyperedge is an unordered
pair (v, w) of non-empty subsets of V (v ⊂ V and w ⊂ V )
with the additional condition that v ∩ w = ∅.

We call any non-empty subset of V a hypernode. We assume that
the nodes in V are totally ordered via an (arbitrary) relation ≺.

A hyperedge (v, w) is simple if |v| = |w| = 1. A hypergraph
is simple if all its hyperedges are simple. We call all non-simple
hyperedges complex hyperedges and all non-simple hypergraphs
complex hypergraphs.

Take a look at the complex hypergraph in Fig. 4(a) with V =
{R0, R1, R2, R3}. Here, we have two simple edges ({R0},
{R2}), ({R1}, {R2})) and two complex hyperedges ({R0, R2},
{R3}), ({R1, R2}, {R3}). Fig. 4(b) depicts a simple hypergraph.

To decompose a join ordering problem represented as a hyper-
graph into smaller problems, we need the notion of subgraph. More
specifically, we only deal with node-induced subgraphs.

DEFINITION 2. Let H = (V, E) be a hypergraph and V ′ ⊆
V a subset of nodes. The node-induced subgraph H |V ′ of H is
defined as H |V ′ = (V ′, E′) with E′ = {(v, w)|(v, w) ∈ E, v ⊆
V ′, w ⊆ V ′}. The node ordering on V ′ is the restriction of the
node ordering of V .

Next, we define connectedness.

DEFINITION 3. Let H = (V, E) be a hypergraph. H is con-
nected if |V | = 1 or if there exists a partitioning V ′, V ′′ of V and
a hyperedge (v, w) ∈ E such that v ⊆ V ′, w ⊆ V ′′, and both
H |V ′ and H |V ′′ are connected.

The node-induced subgraph H |{R0,R2,R3} gained from the hyper-
graph of Fig. 4(a) with E = {({R0}, {R2}), ({R0, R2}, {R3}) is
connected, whereas H |{R0,R1,R3} with E = ∅ is not.

If H = (V, E) is a hypergraph and V ′ ⊆ V is a subset of
the nodes such that the node-induced subgraph H |V ′ is connected,
we call V ′ a connected subgraph or csg for short. The number
of connected subgraphs is important: it directly corresponds to the
number of entries in the memotable.

We assume that all hypergraphs used here are connected. If not,
we introduce complex hyperedges with a selectivity of one that join
two disconnected subgraphs at a time.

For our framework, the notion of an articulation hyperedge is
essential. We give its definition.

1For commutative operators it does not harm.

DEFINITION 4. Let H = (V, E) be a connected hypergraph,
then we call a hyperedge (v, w) an articulation hyperedge if re-
moving (v, w) from E would disconnect the graph H .

All edges of the hypergraph shown in Fig. 5(a) are articula-
tion hyperedges. The graph given in Fig. 4(a) has no complex
articulation hyperedges, but two simple ones: ({R0}, {R2}) and
({R1}, {R2}). The graph in Fig. 4(b) has none. We observe that
an articulation hyperedge cannot be part of any cycle. Hence, we
call a hypergraph whose complex hyperedges are all articulation
hyperedges a complex cycle-free hypergraph. Example cycle-free
graphs are shown in Fig. 4(c) and Fig. 16(a).

2.2 Connected Subgraph and Its Complement
Pairs

Our focus is on determining an optimal join order for a given
query. The execution order of join operations is specified by an
operator tree of the physical algebra. For our purposes, we want
to abstract from that representation and give the notion of a join
tree. A join tree is a binary tree where the leaf nodes specify the
relations referenced in a query, and the inner nodes specify the two-
way join operations. The edges of the join tree represent sets of
joined relations. Two input sets of relations that qualify for a join so
that no cross products need to be considered are called a connected
subgraph and its complement pair (ccp) [12].

DEFINITION 5. Let H = (V, E) be a connected hypergraph,
(S1, S2) is a connected subgraph and its complement pair (or ccp
for short) if the following holds:

• S1 with S1 ⊂ V induces a connected graph H|S1 ,

• S2 with S2 ⊂ V induces a connected graph H|S2 ,

• S1 ∩ S2 = ∅, and

• ∃(v, w) ∈ E | v ⊆ S1 ∧ w ⊆ S2.

The set of all possible ccps is denoted by Pccp. We introduce the
notion of ccp for a set to specify all those pairs of input sets that
result in the same output set, if joined.

DEFINITION 6. Let H = (V, E) be a connected hypergraph
and S a set with S ⊆ V that induces a connected subgraph H|S .
For S1, S2 ⊂ V , (S1, S2) is called a ccp for S if (S1, S2) is a ccp
and S1 ∪ S2 = S holds.

Note that if (S1, S2) is a ccp for S, then (S2, S1) is one as well.
We call them symmetric pairs. By Pccp(S), we denote the set of
all ccps for S. Pccp({R0, R1, R2, R3}) for the hypergraph of Fig.
4(a) consists of 6 ccps: {({R0}, {R1, R2, R3}), ({R0, R1, R2},
{R3}), ({R0, R2, R3}, {R1})} (symmetric counter pairs left out).

2.3 Neighborhood
The main idea to generate ccps is to incrementally expand con-

nected subgraphs by considering new nodes in the neighborhood
of a subgraph.

We start with the definition of a simple neighborhood that relies
only on simple edges and returns one set of vertices.

DEFINITION 7. Let H = (V, E) be a connected hypergraph
and C be a subset of V . Then, the simple neighborhood of C ⊆ V
is defined as:

Ns(C) = {x | x ∈ w ∧ (v, w) ∈ E ∧ v ⊂ C ∧
w ⊂ (V \ C) ∧ |v| = 1 ∧ |w| = 1}.

We now give the definition of neighborhood for all edges, in-
cluding hyperedges.
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DEFINITION 8. Let H = (V, E) be a connected hypergraph,
S a set of nodes (S ⊆ V ) such that H|S is connected. Then the
neighborhood of C ⊂ S is defined as:

N (S, C) = {w | (v, w) ∈ E ∧ v ⊆ C ∧ w ⊆ S \ C}.
For the hypergraph of Fig. 4(a) with S = V = {R0, R1, R2, R3},

N (S, {R0, R2}) = {{R1}, {R3}} and Ns({R0, R2}) = {R1}
holds. Furthermore, N (S, {R3}) = {{R0, R2}, {R1, R2}} and
Ns({R3}) = ∅ holds.

2.4 Path, Cycles and Compound Relations
The following two definitions are important for the description

of the structure of a simple hypergraph.

DEFINITION 9. Let G = (V, E) be a simple hypergraph, then
a path x →∗ y with the length l between vertices x and y is defined
as a sequence of vertices 〈z0, z1, z2, ..., zl〉 in V such that x = z0

and y = zl and ({zi−1}, {zi}) ∈ E for i = 1, 2, ...l.

With the definition of a path, we can define cycles.

DEFINITION 10. Let H = (V, E) be a simple hypergraph.
Then a cycle is a path 〈z0, z1, z2, ..., zl〉 with ∀0≤i≤lzi ∈ V where
z0 = zl holds.

DEFINITION 11. Let H = (V, E) be a simple hypergraph. A
node a ∈ V is an articulation vertex iff there exist two vertices
x ∈ V and y ∈ V , such that every path x

∗→ y in V contains a.

The articulation vertices of a connected simple hypergraph H =
(V, E) are important when determining the biconnected compo-
nents of a simple hypergraph.

DEFINITION 12. Let H = (V, E) be a connected simple hy-
pergraph. A biconnected component is a connected subgraph
HBCC

i =(Vi, Ei) of H with Hi = {v | (v = u ∨ v = w) ∧
(v, w) ∈ Ei}, where the set of edges Ei ⊆ E is maximal such that
any two distinct edges (u, w) ∈ Ei and (x, y) ∈ Ei lie on a cycle
〈v0, v1, v2, ..., vl〉, where u = v0∧u = vl ∧w = v1∧x = vj−1 ∧
y = vj ∧ 0 < j < l and ∀0≤i<j<lvi, vj ∈ V ∧ vi �= vj holds. If
for an edge (u, w) ∈ Ei no such cycle exists, the nodes u, w ∈ Vi

induce a biconnected component HBCC
i = ({u, w}, {(u, w)}).

The simple graph of Fig. 4(b) has just one biconnected component.
Hence, there exists no articulation vertex and HBCC = (V, E)
holds. Fig. 4(c) consists of 3 biconnected components: HBCC

1 =
H |{R0,R2}, HBCC

2 = H |{R1,R2}, and HBCC
3 = H |{R2,R3}.

Thereby, R2 is the only articulation vertex. Next, we define com-
pound relations:

DEFINITION 13. Let H = (V, E) be a hypergraph. A com-
pound relation u represents a group of nodes V ′ = {v0, v1, ...vn},
where vi ∈ V and u �∈ V holds.

3. BASIC MEMOIZATION
Although the basic variant of memoization has been discussed

extensively elsewhere [3], we repeat it here since it requires some
modifications in order to deal with hypergraphs [6]. It consists of
three parts. The first part contains the top-level invocation together
with the main recursion (Fig. 1). Its input consists of a hypergraph
G and a set of (join) operators O. Both are derived from some in-
put SQL query (see [11] for details). Like dynamic programming,
TDPLANGENHYP first initializes the building blocks for single re-
lations and adds them to the lookup table BestTree. It then calls the

recursive routine TDPGSUB for the whole set V of nodes. TDPG-
SUB checks for the presence of an already derived best plan for any
input set of nodes S. If such a plan does not exist, TDPGSUB it-
erates over all ccps (S1, S2) of S. If an operator is applicable (see
below), the subroutine BUILDTREE generates the according plans
and adds them to the lookup table (Fig. 2). BUILDTREE also con-
siders interesting orders the usual way [15, 14]. The applicability
test (Line 4) includes L-TES ⊆ S1 ∧ R-TES ⊆ S2 and ensures cor-
rectness of the generated plan [11].

Whereas Line 2 declaratively specifies the set of ccps to be con-
sidered, any real implementation must provide a procedure to gen-
erate them explicitly. This is the third and exchangeable part of
TDPLANGENHYP. One possibility is the naive partioning algo-
rithm (Fig. 3). In its Line 1, all 2|S| − 2 possible non-empty
and proper subsets of S are enumerated (see [20] for the efficient
enumeration). Three conditions have to be met so that a partition
(C, S \ C) is a ccp. We check the connectivity of H|C and H|S\C

in line 2 (for a connection test see [6]). The third condition that C
needs to be connected to S \ C is implied by the requirement that
the (sub)graph handed over as input is connected. The frequent
failure of this test is the main source of inefficiency of the basic
partitioning algorithm.
TDPLANGENHYP(H, O)

� Input: connected H = (V, E), O set of operators
� Output: an optimal join tree for H

1 for i← 1 to |V |
2 BestTree[{Ri}]← Ri

3 return TDPGSUB(V )

TDPGSUB(S, O)

� Input: H|S connected
� Output: an optimal join tree for H|S

1 if BestTree[S] = NULL
2 for all (S1, S2) ∈ Pccp(S)
3 for ◦ ∈ O
4 if APPLICABLE(◦,S1,S2)
5 BUILDTREE(◦, TDPGSUB(S1), TDPGSUB(S2))
6 return BestTree[S]

Figure 1: Pseudocode for TDPLANGENHYP

4. GRAPH-BASED JOIN ENUMERATION
This section describes our generic framework that enables any

existing partitioning algorithm for top-down join enumeration to
deal with hypergraphs. In particular, we use it to enhance MIN-
CUTBRANCH, which results in a novel partitioning algorithm that
we call MINCUTBRANCHHYP. We call the instantiated top-down
join enumeration variant TDMCBHYP. In [6], we constructed
MINCUTCONSERVATIVEHYP as a derivative of MINCUTCON-
SERVATIVE that is part of TDMCCHYP. But the techniques we
used there cannot be applied to other partitioning algorithms. This
section presents an approach which is generic, more efficient in
terms of performance and, thus, superior.

4.1 High-Level Overview

BUILDTREE(◦, S, T ree1, T ree2)

� Input: induced graph H|S , two optimal partial plans
1 CurrentTree← CREATETREE(Tree1, T ree2)
2 if BestTree[S] = NULL ||

cost(BestTree[S]) > cost(CurrentTree)
3 BestTree[S]← CurrentTree
4 if ◦ is commutative
5 CurrentTree← CREATETREE(Tree2, T ree1)
6 if cost(BestTree[S]) > cost(CurrentTree)
7 BestTree[S]← CurrentTree

Figure 2: Pseudocode for BUILDTREE
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PARTITIONnaive(H|S)

� Input: a connected (sub) graph H|S)
� Output: Pccp(S)

1 for all C ⊂ S ∧ C �= ∅
2 if ISCONNECTED(H|C) ∧ ISCONNECTED(H|S\C)
3 Pccp ← Pccp ∪ {(C, S \ C)}

Figure 3: Pseudocode for naive partitioning

To explain our main ideas, let us make four important obser-
vations. These will highlight the problems we face and indicate
solutions.

First, assume that we have two simple connected graphs Hv =
(v, Ev) and Hw = (w, Ew) with |v| > 1∨|w| > 1. Now we want
to connect both graphs. Introducing a complex hyperedge (v, w)
covering the whole vertex sets on both sides is more restrictive than
introducing a simple edge ({x}, {y}) where x ∈ v ∧ y ∈ w holds.
Here, we use the term more restrictive in the sense that partitioning
the resulting set v∪w into all possible ccps (Sec. 2.2) leaves us with
much fewer choices if a complex hyperedge (|P ccp(v ∪ w)| = 1)
is introduced instead of a simple edge. Consider the disconnect-
ed graph H = (V = v ∪ w, E = {({R0}, {R1})}) with
v = {R0, R1} ∧ w = {R2}. On the one hand, if we connect
v and w by the complex hyperedge (v, w), then P ccp(v ∪ w) has
two ccps: ({R0, R1}, {R2}) and ({R2}, {R0, R1}). One the oth-
er hand, if we choose ({R0}, {R2}), this gives rise to two addi-
tional ccps: ({R0, R2}, {R1}) and ({R1}, {R0, R2}). Hence, the
latter case is less restrictive.

For the second observation, we take a look at the naive parti-
tioning strategy (Fig. 3). Line 1 of PARTITIONnaive enumerates
2|v∪w| − 2 subsets of S = v ∪ w. Adding the complex hyperedge
to H , only C = v or C = w make it past Line 2. This is clearly in-
efficient, since all other generated subsets of S = v∪w are rejected.
Assume that we substitute the complex hyperedge (v, w) by a sim-
ple edge ({x}, {y}). Then, the graph becomes simple again. As a
consequence, we can reuse a highly efficient graph-aware partition-
ing algorithm for simple graphs (e.g. MINCUTBRANCH). How-
ever, we have to be careful, since complex hyperedges are more
restrictive and, thus, by converting hyperedges to simple edges,
invalid ccps might be generated. Therefore, we need to check
the ccps resulting from simple graphs for connectivity within the
original hypergraph. We call partitions that are not valid ccps of
the original complex hypergraph false ccps. In the example used
in the first observation, the false ccps are ({R0, R2}, {R1}) and
({R1}, {R0, R2}).

Third, if we represent a complex hyperedge (v, w) by a simple
edge, there are |v| ∗ |w| possibilities to do so. For the graph pre-
sented in Fig. 4(a), the call to PARTITIONnaive({R0, R1, R2, R3})
generates 14 subsets assigned to C, but only C = {R0},
{R0, R1, R2} and {R0, R2, R3} survive the test in Line 2. Thus,
there exist only six valid ccps as listed in Sec. 2.2. For the hy-
pergraph given in Fig. 4(b), a graph-aware partitoning algorithm
generates 12 partitions and therefore 6 false ccps. Since the two
hyperedges of Fig. 4(a) overlap, the mapping of Fig. 4(c) is one of
the 4 possible combinations. Here, not a single false ccp is gener-
ated. We conclude that in certain cases, there are good (restrictive)
and bad (less restrictive) mappings.

In Sec. 4.3, we present COMPUTEADJACENCYINFO and show
how it exploits the first three observations.

Now, take a look at Fig. 5(a). A call to PARTITIONnaive({
R0, R1, R2, R3, R4}) results in the generation of 30 subsets as-
signed to C where just C = {R0, R1, R2, R3} makes it past Line
2. Invocating COMPUTEADJACENCYINFO (Sec. 4.3) produces the
simple graph of Fig. 5(b). Taking that graph as an input for a call

R0 

R2

R1

R3

R0 

R2

R1

R3

R0 

R2

R1

R3

Figure 4: (a) overlapping hyperedges, (b) and (c) simple graphs

R0

R1

R2 R3

R4

R0

R1

R2

R3

R4 R4

R8
Figure 5: (a) hypergraph, (b) simp. graph and (c) final graph

to any graph-aware partitioning algorithm would return four pairs:
({R0, R1, R2, R3}, {R4}), ({R0, R2, R3, R4}, {R1}), ({R0, R1,
R3}, {R2, R4}) and ({R0, R1, R2, R4}, {R3}) (symmetric count-
er pairs left out). But only the first partition is a valid ccp. Hence,
the produced simple graph of Fig. 5(b) is less restrictive than the
original one. In Fig. 5(a) we can see that R1 cannot be separated
from R0, since otherwise, the connection to R2 would be lost. Fur-
thermore, R2 cannot be separated from R0, R1, or the connection
to R3 would be lost. On top of that, R2 and R3 have to remain
in the same subgraph, or the connection to R4 breaks up. Con-
cluding, it is only possible to separate R4 from the rest, because
all other combinations would end up in more than two connected
subsets and therefore false ccps.

From the example, we can draw our fourth observation: If a
complex hyperedge (v, w) is essential for the connectedness of the
hypergraph, i.e., it is an articulation hyperedge, then it is impossi-
ble to partition the graph by separating one or two of its complex
hypernodes v or w. In other words: There exists no minimal cut
involving an edge (s, t) with s ⊂ v ∧ t ⊂ v within a hypernode v
that is part of an articulation hyperedge (v, w).

In order to benefit from observation 4, we propose the concept
of a compound relation (Def. 13). The basic idea is to group those
vertices that compose a non-separable hypernode into a new artifi-
cial vertex. Particularly, we remove those vertices from the vertex
(sub)set S ⊆ V that have been grouped and introduce the com-
pound relations as a new v by adding it to S (actually to some S′,
as we will see). In case that non-separable hypernodes are overlap-
ping, we group all overlapping vertex sets together. Those steps are
performed through COMPOSECOMPOUNDRELATIONS (Sec. 4.4).
The result of this step is shown in Fig. 5(c), where R8 is the com-
pound relation representing R0, R1, R2, R3 of Fig. 5(a-b).

4.2 Embedding into the Framework
Fig. 6 gives PARTITIONX , which contains calls to all main func-

tions of our framework. Line 1 calls COMPUTEADJACENCYINFO
in order to map complex hyperedges temporarily to simple edges.
Line 2 transforms certain hypernodes into compound relations in
order to (1) regain some of the restrictiveness of the transformed
hyperedges and to (2) speed up processing, since less vertices are
involved. Line 3 determines whether the relatively expensive con-
nection test assessing connectivity based on the original hypergraph
is needed. The partitioning algorithm called in Line 4 only sees a
simple graph with intermixed original and artificial vertex nodes
(compound relations). Importantly, it does not needs any knowl-
edge about the vertices representing compound relations. Finally,
we loop through the emitted partitions of the simple graph (L. 5).
We decode the emitted partitions (Sec. 4.4.3) by substituting the
compound relations with the original vertices (L. 6, 7) and apply
the connection test (L. 9) if needed (L. 8). Note that if a connec-
tion test is necessary (Sec. 4.5.1), the last step is very important
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PARTITIONX(H|S)

� Input: H|S
1 COMPUTEADJACENCYINFO(H|S) � Sec. 4.3
2 S′ ← COMPOSECOMPOUNDRELATIONS(H|S) � Sec. 4.4
3 con← do we need connections tests � Sec. 4.5.1
4 P sym

partitions ← graph-aware partitioning algorithm (S′)
5 for all (l′, r′) ∈ P sym

partitions
6 l← DECODE(S, l′) � Sec. 4.4.3
7 r ← DECODE(S, r′) � Sec. 4.4.3
8 if con = TRUE
9 if ISCONNECTED(H|l) ∧ ISCONNECTED(H|r)

10 Pccp ← Pccp ∪ {(l, r)} ∪ {(r, l)}
11 else Pccp ← Pccp ∪ {(l, r)} ∪ {(r, l)}

Figure 6: Pseudocode for PARTITIONX

in order to filter out false ccps. Missing to filter out false ccps re-
sults in the generation of (sub)plans that rely on cross products and
might be invalid [11]. Let Ecomp = {(v, w) | v, w ∈ E ∧ (|v| >
1 ∨ |w| > 1)} be the set of complex hyperedges, then the com-
plexity of the preprocessing step is in O(|Ecomp| ∗ |V |2

2
). The

complexity of the enumeration algorithm in Line 4 remains un-
changed. The complexity of the two additional connectivity tests is
in O(|V |+ | |Ecomp|2

2
) per emitted ccp (false ccps included). Note

that in many cases the two tests can be avoided (see Sec. 4.5.1).

4.3 Generating the Adjacency Information
All graph-aware partitioning algorithms like MINCUTBRANCH

[4], MINCUTAGAT [5], MINCUTLAZY [3] or MINCUTCONSER-
VATIVE [7] utilize the neighborhood information to extend con-
nected sets. For our generic framework, we have to provide this
information to the graph-aware partitioning algorithms. We there-
fore introduce the global variables shown in Fig. 7. Essentially,
the algorithms have to rely only on the associative arrays Ns, Nh,
which contain a representation of precomputed simple and hyper
neighbourhoods. The other variables mainly exist for performance
reasons and are explained below. The initial setup is done by COM-
PUTEADJACENCYINFO given in Fig. 9. First, we compute the sim-
ple neighborhood by iterating over all simple edges (L. 3 to 5). For
Lines 6 and 7, we refer to Sec. 4.4.1, 4.4.2.

To understand Lines 10 to 37, recall the third observation. We
solve the problem illustrated there by first pretending to substitute
every complex hyperedge (v, w) with all possible combinations
(= |v| ∗ |w|) of simple edges (L. 3 to 5). For every overlapping
edge, we increase card (L. 15). For every combination of indices
i of xi ∈ v and j of yj ∈ w, we compute an entry in the ar-
ray Ovlp (L. 1) by a call to COMPUTELOOKUPIDX (L. 14). The
formula used in Line 1 of COMPUTELOOKUPIDX (Fig. 8) guaran-
tees space efficiency (SIZEOF(Ovlp) = |V |∗(|V |−1)

2
). In Line 20

and 21 of COMPUTEADJACENCYINFO, we keep track of the sim-
ple edge and its array entry that is generated most frequently. Af-
ter the generation of simple edges (they are not materialized yet),
we check if we have found overlapping hyperedges (L. 22). If so,
we materialize the simple edge that was generated most frequently
(L. 29). At this point, we remove all other combinations of sim-
ple edges (L. 25 to 28) for the set of overlapping edges stored in
Ovlp[idx].E (L. 23). Lines 32 to 35 spot the next largest set of
overlapping hyperedges, and the process is started again. Those
complex hyperedges that do not overlap are substituted with one
simple edge in Lines 36 and 37 through a call to STOREADJACEN-
CYINFO (Fig. 10). We decided to store the substituted complex hy-
peredges not within the simple neighborhood Ns, but within Nh,
where h stands for hyperneighborhood, although it is not an exact
translation (Def. 8). Besides setting Nh, STOREADJACENCYIN-

1 declare Ns associative array of vertex sets
2 declare Nh associative array of vertex sets
3 declare HEdgeLkp array of hyper edge references
4 declare Labelmap a map<vertex set→ vertex set>
5 declare RevLabelmap a map<vertex set→ vertex set>
6 declare Compoundmap a map<vertex set→ vertex set>

Figure 7: Global Variables
COMPUTELOOKUPIDX(xi, yj)

� Input: vertex labels i, j with xi ∈ S ∧ yj ∈ S

1 return MAX(i,j)∗(MAX(i,j)−1)
2

+ MIN(i, j)

MAINTAINLABELS(v)

� Input: vertex set v ∈ S
1 if KEYDOESNOTEXIST(Labelmap, v)
2 zk ← new vertex labeled k ← SIZE(Labelmap)
3 Labelmap[v]← {zk}
4 RevLabelmap [{zk}]← v

Figure 8: Additional Pseudocode
COMPUTEADJACENCYINFO(H|S)

� Input: vertex (sub)set S ⊆ V
1 declare Ovlp as an array of a struct (E, card, x, y)
2 declare HEdgesset ← ∅ as a set of hyper edges
3 for all ({x}, {y}) ∈ E
4 Ns[x]← Ns[x] ∪ {y}
5 Ns[y]← Ns[y] ∪ {x}
6 for all v : (v, w) ∈ E ∨ (w, v) ∈ E
7 MAINTAINLABELS(v) � adding artificial nodes
8 max ← 0
9 idx← 0

10 for all (v, w) ∈ E | |v| > 1 ∨ |w| > 1
11 HEdgesset ← HEdgesset ∪ {(v, w)}
12 for all xi ∈ v
13 for all yj ∈ w
14 lkp← COMPUTELOOKUPIDX(xi, yj)
15 Ovlp[lkp].card← Ovlp[lkp].card + 1
16 Ovlp[lkp].E← Ovlp[lkp].E ∪ {(v, w)}
17 Ovlp[lkp].x← xi

18 Ovlp[lkp].y← yj

19 if Ovlp[lkp].card > max
20 max← Ovlp[lkp].card
21 idx← lkp
22 while max > 1 � for overlapping hyperedges
23 for all (v, w) ∈ Ovlp[idx].E
24 HEdgesset ← HEdgesset \ {(v, w)}
25 for all xi ∈ v
26 for all yj ∈ w
27 lkp← COMPUTELOOKUPIDX(xi, yj)
28 Ovlp[lkp].card← Ovlp[lkp].card− 1
29 STOREADJINFO(Ovlp[idx].x,Ovlp[idx].y,Ovlp[idx].E)
30 max← 0
31 idx← 0
32 for all i : 0 ≤ i < SIZEOF(Ovlp) � find next max
33 if Ovlp[i].card > max
34 max← Ovlp[i].card
35 idx← i
36 for all (v, w) ∈ HEdgesset � |v| = 1 ∧ |w| = 1 holds
37 STOREADJINFO(x ∈ v, y ∈ w, {(v, w)})

Figure 9: Pseudocode for COMPUTEADJACENCYINFO

FO also updates HEdgeLkp, which keeps track of which (set of)
complex hyperedges is mapped to a given simple edge ({x}, {y}).

4.4 Composing Compound Relations
This section discusses how the information of non-separable hy-

pernodes is encoded into the simple graph to make it more restric-
tive by preventing false ccps (fourth observation Sec. 4.1).
4.4.1 Merging Compound Relations

In the following, we focus on the details of finding non-separable
hypernodes and merging them into compound relations. The pro-
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STOREADJINFO(xi, yj , E)

� Input: vertex xi, yj with xi ∈ S ∧ yj ∈ S
1 Nh[xi]← Nh[xi] ∪ {yj}
2 Nh[yj ]← Nh[yj ] ∪ {xi}
3 lkp← COMPUTELOOKUPIDX(xi, yj)
4 HEdgeLkp[lkp]← HEdgeLkp[lkp]∪ REFERENCES(E)

Figure 10: Pseudocode for STOREADJACENCYINFO

cess is started by invoking COMPOSECOMPOUNDRELATIONS. In
Lines 2 to 11, the variables for the recognition of biconnected
components are initialized. Hereby, only S′ will be used later
on. Line 12 invokes the recognition of the non-separable hyper-
nodes. Upon GETBCCINFO’s completion, S′ will hold only orig-
inal vertices that are not part of any non-separable hypernode and
Compoundmap will store for the rest of the nodes v ∈ S \ S′

the mapping to their corresponding compound relations. Note
that a given v can be mapped to more than one compound rela-
tion. Through the information stored in Compoundmap, we merge
overlapping hypernodes to a new compound relation that represents
the union of hypernodes (L. 13 to 31).

Therefore, we loop in Line 14 through S′′, which contains all
original vertices that are represented by at least one compound re-
lation. We declare h in order to store the union of overlapping hy-
pernodes and initialize it in Line 15. With Z and I , we keep track of
the compound relations that represent the overlapping hypernodes.
I maintains those we already have investigated and Z those we
still have to consider. Z is initialised (L. 18) with the compound
relations that represent v (which was arbitrary chosen from S′′ in
Line 16). Within the loop in Lines 20 to 27, we investigate all
compound relations contained in Z by incrementally removing re-
lations in Line 22 and possibly adding relations in Line 26. Line 24
applies a reverse lookup (through RevLabelmap) of the compound
relation u that was chosen out of Z (L. 21). We add to h the result
of the lookup, which are the vertices represented by u. For every
vertex x (L. 25) contained in one of the hypernodes in question, we
consult Compoundmap (L. 26) to enlarge Z with compound re-
lations that correspond to x minus those already investigated (and
kept in I). That way, all compound relations in question have to
be added at one point to Z either in Line 18 or Line 26. By in-
crementally taking one element at a time out of Z and adding the
vertices it encompasses to the new hypernode h, we ensure that h
gets maximally enlarged. Line 27 removes all vertices contained in
h from S′′, and the process continues until the last h of overlapping
non-separable hypernodes is found.

We call MAINTAINLABELS (L. 28) in order to ensure that h gets
a representative in form of an artificial vertex assigned. Note that
if h contains just one hypernode and is no merger of overlapping
ones, there is already a compound relation assigned to h. This is be-
cause then MAINTAINLABELS was already invoked with the same
argument in Line 7 of COMPUTEADJACENCYINFO. In Line 29,
the new vertex set S′ (as returned later on in Line 33) is enlarged
with the compound relation that represents the new h. Lines 30 and
31 make the compound relation known to the vertices it represents.
Finally, we call MANAGEADJACENCYINFO in order to set up the
precomputed neighborhoods Ns and Nh.

The pseudocode for MANAGEADJACENCYINFO is given in
Fig. 12. Within the first loop (L. 1 to 7), we enhance the precom-
puted neighbourhoods by adding the corresponding compound re-
lation for each (L. 3, 6) adjacent vertex that is represented by one
(L. 4, 7). The second loop iterates over the compound relations and
adds an entry into Ns and Nh for each of them. The correspond-
ing value is set to the union of the precomputed neighbourhoods
of all the vertices that are represented by the compound relation in
question.

COMPOSECOMPOUNDRELATIONS(H|S)

� Input: connected (sub)graph H|S
� Output: S′ a set of vertex sets

1 declare Compound′map a map<vertex set, vertex set>
2 declare stack of edges Estack
3 for each vertex x ∈ S
4 color[x]← WHITE
5 low[x]← |S|+ 1
6 π[x]← NIL
7 parent[x]← NIL
8 desc[x]← {x}
9 S′ ← S

10 count← 0
11 t←arbitrary x ∈ S
12 GETBCCINFO(t)
13 S′′ ← S′′ \ S′ � cont. only vertices represented by artificial v.
14 while S′′ �= ∅
15 h← ∅ � h stores the new hypernode
16 v ← {y} : y ∈ S′′
17 S′′ ← S′′ \ v
18 Z ← Compoundmap[v]
19 I ← ∅
20 while Z �= ∅
21 u← {z} : z ∈ Z
22 Z ← Z \ u
23 I ← I ∪ u
24 h← h ∪ RevLabelmap[u]
25 for all x ∈ h
26 Z ← Z ∪ (Compoundmap[{x}] \ I)
27 S′′ ← S′′ \ h
28 MAINTAINLABELS(h) � adding artificial node for h
29 S′ ← S′ ∪ Labelmap[h]
30 for all x ∈ h
31 Compound′map[{x}]← Labelmap[h]
32 MANAGEADJACENCYINFO
33 return S′

Figure 11: Pseudocode for COMPOSECOMPOUNDRELATIONS

MANAGEADJACENCYINFO

1 for all x ∈ S
2 neighs← Ns[x]
3 for all y ∈ neighs
4 Ns[x]← Ns[x] ∪ Compound′map[{y}]
5 hyperneighs← Nh[x]
6 for all y ∈ hyperneighs
7 Nh[x]← Nh[x] ∪ Compound′map[{y}]
8 for all x ∈ S′ \ S
9 h← RevLabelmap[{x}]

10 for all y ∈ h
11 Ns[x]← Ns[x] ∪Ns[y]
12 Nh[x]← Nh[x] ∪Nh[y]

Figure 12: Pseudocode for MANAGEADJACENCYINFO

4.4.2 Discovering Non-Separable Hypernodes
As has been said, GETBCCINFO is responsible for discover-

ing the non-separable hypernodes. This is done by determining
the complex articulation hyperedges. During the transformation of
a complex hypergraph into a simple hypergraph, the complex ar-
ticulation hyperedges are mapped to simple hyperedges. Now, if
the complex hyperedge’s substitute is recognized as a biconnect-
ed component (Def. 12) in the simple graph, this indicates that the
complex hyperedge must be an articulation hyperedge. Actually,
it is possible that there are overlapping hyperedges mapped to the
same simple edge, but we will take care of this case. Thus, in order
to determine non-separable hypernodes, we have to discover the bi-
connected components of the simple graph. Due to lack of space
we cannot detail on the recognition of biconnected components and
refer to [1, 5].

The condition in Line 10 of GETBCCINFO indicates, if evaluat-
ed to TRUE, that a biconnected component was found. More pre-
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GETBCCINFO(x)

� Input: vertex x ∈ S
1 color[x]← GRAY
2 count← count + 1
3 df [x]← count
4 low[x]← df [x]
5 for all y ∈ (Ns[x] ∪Nhyp[x]) : y ∈ S
6 if color[y] = WHITE
7 PUSH(Estack, ({x}, {y}))
8 π[y]← x
9 GETBCCINFO(y)

10 if low[y] ≥ df [x]
11 desc← ∅
12 repeat ({e1}, {e2})← POP(Estack)
13 if e1 �= x
14 desc← desc ∪ desc[e1]
15 parent[e1]← x
16 if e2 �= x
17 desc← desc ∪ desc[e2]
18 parent[e2]← x
19 until ({e1}, {e2}) = ({x}, {y})
20 if low[x] = low[y] � is t articulation vertex?
21 parent[x]← x
22 if low[x] �= low[y] ∧ y ∈ NHyp[x]∧

desc ∩NSimp[x] = ∅
23 FINDINITIALCOMPOUNDS(x,y)
24 desc[x]← desc[x] ∪ desc
25 low[x]← MIN(low[x], low[y])
26 else if y �= π[x]
27 PUSH(Estack, ({x}, {y}))
28 low[x]← MIN(low[x], df [y])
29 color[x]← BLACK

Figure 13: Pseudocode for GETBCCINFO

cisely: It means that x is either the start node t (assigned in L. 11
and handed over in L. 12 of Fig. 11), or an articulation vertex was
found that is the only link to another biconnected component. In
Line 11, we declare desc to store the descendants of x, i.e., all ver-
tices z where every possible path z →∗ t would involve x. Those
descendants are gathered in Lines 14 and 17 and finally stored with
(possibly) other descendants of x (x can be the parent vertex for
several biconnected components) in Line 24.

Lines 12 to 19 will pop all edges ({e1}, {e2}) belonging to this
biconnected component from the stack of edges Estack. Thereby,
we update desc and set the parent for every vertex (L. 15, 18) in
the biconnected component. As has been mentioned, in case x = t
holds it is possible that x is not an articulation vertex but only a
member of the current biconnected component. In order to differ-
entiate between the two cases later on, we set x’s parent to itself (L.
21) if x is not an articulation vertex (L. 20).

Line 22 checks for several conditions: (1) if x is an articulation
vertex low[x] �= low[y] and not just t, (2) if ({x}, {y}) substitutes
an hyperedge and (3) if in the original hypergraph x is not connect-
ed to any other node z ∈ desc by a simple edge. Only if all three
conditions are met, FINDINITIALCOMPOUNDS is invoked in Line
23.

The pseudocode of FINDINITIALCOMPOUNDS is given in Fig.
14. Entering FINDINITIALCOMPOUNDS, we know that there must
exist at least one complex hyperedge (v, w) in the original graph
with x ∈ v ∧ y ∈ w. With the help of the lookup index computed
from the labels i, j (L. 1), we get the hyperedge references of the
original hypergraph via the global array HEdgeLkp (which was
set up by STOREADJINFO). At this point, it is possible that more
than one reference is returned. In this case, the referenced complex
hyperedges must overlap. Although not necessary, but for reasons
of simplicity, we demand that just one reference exists (L. 3) be-
fore FINDINITIALCOMPOUNDSSUB for the hypernode v and w is
called.

FINDINITIALCOMPOUNDS(xi, yj)

� Input: vertex set v ∈ S
1 lkp← COMPUTELOOKUPIDX(xi, yj)
2 if |HEdgeLkp[lkp]|= 1
3 (v, w)← HEdgeLkp[lkp]
4 FINDINITIALCOMPOUNDSSUB(v)
5 FINDINITIALCOMPOUNDSSUB(w)

FINDINITIALCOMPOUNDSSUB(v)

1 if |v| > 1
2 for all x ∈ v
3 S′ ← S′ \ {x}
4 Compoundmap[{x}]← Compoundmap[{x}]∪

Labelmap[v] � artificial v. as rep

Figure 14: Pseudocode for FINDINITIALCOMPOUNDS

FINDINITIALCOMPOUNDSSUB ensures that the handed over hy-
pernode v is really complex (L. 1). If so, for every vertex x we (1)
remove x from the vertex set S′ and (2) x as part of the hypernode
v is mapped to its corresponding compound relation Labelmap[v].

4.4.3 Decoding Compound Relations
As Sec. 4.1 explains, we need to substitute the compound rela-

tions in every emitted partition of the partitioning algorithm. This
is done by DECODE as given in Fig. 15. In Line 1, we initialize
decoded with the original vertices that are not represented by any
compound relation. After that, we loop over the compound rela-
tions (L. 2) contained in C′ and substitute them with the group of
vertices they represent (L. 3).

4.4.4 Compound Relations - An Example
Let us get back to our motivation example for compound

relations of Sec. 4.1. From the graph shown in Fig. 5(a),
we gained the simple graph of Fig. 5(b) by calling COM-
PUTEADJACENCYINFO with RevLabelmap ={.., ({R5} →
{R0, R1}), ({R6} → {R0, R1, R2}), ({R7} → {R2, R3})}.
But as it turned out, this was not restrictive enough, since
three of the four generated partitions were false ccps (symmet-
ric counter pairs ignored). By invoking GETBCCINFO, we
gain the initial mapping from members of non-separable hyper-
nodes to compound relations: Compoundmap ={({R0} →
{R5, R6}), ({R1} → {R5, R6}), ({R2} → {R6, R7}), ({R3}
→ {R7})} with S′ = {{R4}}. Once we reach Line 28 in COM-
POSECOMPOUNDRELATIONS, MAINTAINLABELS({R0, R1, R2,
R3}) is called. The resulting simple graph is given in Fig. 5(c).
Any graph-aware partitioning algorithm will produce only one par-
tition: ({R4}, {R8}) (and its symmetric partition ({R8}, {R4})).
And finally, a call to DECODE({R0, R1, R2, R3, R4}, {R8}) re-
turns {R0, R1, R2, R3}. Since both {R4} and the decoded set
{R0, ..., R3} are connected, the partition is proved to be a ccp and
is returned without generating false ccps.

4.5 Further Optimization Techniques
Let us briefly recall that non-inner joins are not freely re-

orderable because certain join reorderings result in different non-
equivalent plans that return different query results when executed.
Furthermore, it is well known that valid operator orderings can be

DECODE(S, C′)
� Input: vertex sets S, C′

1 decoded← S ∩ C′
2 for all x ∈ C′ \ S � only artificial nodes
3 decoded← decoded ∪ RevLabelmap [x]
4 return decoded

Figure 15: Pseudocode for DECODE
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Figure 16: (a) hypergraph, (b) simp. graph and (c) final graph

encoded by transforming simple edges into hyperedges [2, 11, 13,
17]. Complex hypergraphs that are a result of those transformations
can be mainly categorized as complex cycle-free hypergraphs (Sec.
2.1). We strongly believe that among all complex query graphs that
can be found in real-world scenarios, the majority belongs to this
category. The only common exception will be graphs that contain
complex hyperedges originating from complex predicates.

4.5.1 Avoiding Connection Tests
For complex cycle-free hypergraphs, there are certain scenarios

where we do not need a connection test. Since we have to run at
least one connection test for every emitted join partition, saving
the effort in doing so would increase efficiency significantly. In
general, two conditions have to be met in order to be able to avoid
the connection tests: (1) There are no vertices left in S′ emitted
by COMPOSECOMPOUNDRELATIONS which are also a member of
any complex hypernode. This is an even weaker condition than that
all complex hyperedges need to be articulation hyperedges. (2) All
complex hypernodes need to be connected.

Even if a complex hypernode is not connected, we might still be
able to enlarge it, i.e., by merging it with adjacent vertices. But we
cannot risk to restrict the graph by enlarging the complex hyper-
node too much so that we would miss to emit valid ccps. Thus, we
have to determine under which circumstances it is safe to enlarge
a hypernode. Note that enlarging a node has a positive side effect:
The number of nodes in S′ is decreased because more vertices are
represented by the same compound relation. That in turn increas-
es the graph-aware partitioning algorithms performance drastically,
since fewer vertices are to be partitioned.

Before we determine how to enlarge a hypernode, let us take a
look at Fig. 16(a). Here, R3 is only connected to the rest of the
graph through R2, R4. But the latter is not connected. The only
way to connect R2 with R4 is through R1 and R0, R5. Thus, there
exists only one valid ccp: ({R0, R1, R2, R4, R5}, {R3}) (and its
symmetric partition). In fact, if we do not include R0, R1, R5, we
have to partition the graph into at least three connected subgraphs.

Fig. 16(b) shows the transformed graph of Fig. 16(a) after ap-
plying COMPUTEADJACENCYINFO. We can can observe that R1

and R0 lie on every possible path R2 →∗ R4. We, can generalize
our observation: If there exists a non-separable hypernode that is
not connected, it can be enlarged with all vertices that lie on every
possible path (in the mapped simple graph) between the connected
subsets of the hypernode. Since the vertices that are candidates for
the enlargement have to lie on every path, all vertices that qualify
for the enlargement in the end are articulation vertices by definition.

4.5.2 Enlarging Disconnected Hypernodes
Non-connected hypernodes are enlarged by MAXIMIZECOM-

POUNDRELATIONS, as given in Fig. 17. Since this method relies
on the knowledge of the biconnected components of the graph, we
invoke it after calling GETBCCINFO, but before merging the over-
lapping hypernodes in COMPOSECOMPOUNDRELATIONS.

First, we gather the set of compound relations (L. 1 of MAX-
IMIZECOMPOUNDRELATIONS), which can actually be done in
FINDINITIALCOMPOUNDSSUB. Next, we check whether the cor-
responding hypernode h (L. 2) is connected (L. 3). The loop of

Lines 7 to 16 is responsible to enlarge the hypernode h. Therefore,
we use two sets Z and I , whereby Z holds the vertices of the initial
h (L. 5) and I keeps track of the already investigated vertices of the
intial h. Once all members of Z are investigated, the stop condition
of the loop is met.

The idea is as follows: We take an element of Z and assign it
to x. There are two possibilities either x is already part of h or
it is an ancestor of an element of h. In the latter case, it must be
an articulation vertex and/or the start vertex t (L. 11 of Fig. 11).
If it is an articulation vertex, we can add it to h (L. 10), since all
paths between desc[x] ∩ h and other members of the hypernode
h \ desc[x] must contain x. We choose the next x to be its parent
(L. 12). Note that the descendants of x are either already processed
or are part of different biconnected components. In the latter case,
they will be processed later on if they intersect with Z, or they are
of no interest. If they are not of interest, this is because they will
not be part of every path connecting the different subsets of h.

Before we continue with the next x, we have to check in Line 9 if
(1) x was not already processed, i.e., x �∈ Z or (2) the descendants
of x cover the whole hypernode h. In the latter case, we do not
need to go any further (following the parents), because we would
process other biconnected components that are not of interest. We
can discard the members of those components since they cannot be
part of every path between the disconnected members of the non-
connected hypernode h.

Since we might have interrupted the loop (L. 9) because h �
desc[x] holds, we still have to add x to h (L. 14). But there is the
chance that x = t holds where t is the start vertex. Now there
are two possibilities: either x is also an articulation vertex or it is
not (see Sec. 4.4.2). The differentiation between the two cases
was encoded through Line 21 of Fig. 13. Therefore, we have to
ensure that parent[x] = NIL holds first, otherwise x might not be
contained in every possible path between the disconnected parts of
h.

Finally, the condition of 17 checks if h was enlarged. If
so, we have to apply the changes by invoking MAXIMIZECOM-
POUNDRELATIONSSUB. Now there are two possibilities for the
new h: (1) either there is no compound relation assigned or (2)
there is one assigned because the new h is also the endpoint of a
different articulation hyperedge. In the Lines 1 to 5 and 6 to 10, we
change the assignments of the Compoundmap and the vertex set
S′ according to both cases. In Line 11, we update the correspond-
ing hyperedge.

Let us get back to our example of Fig. 16 with the discon-
nected hypernode {R2, R4}. Before invoking MAXIMIZECOM-
POUNDRELATIONS, the following holds: RevLabelmap ={..,
({R6} → {R0, R5}), ({R7} → {R2, R4})} and Compoundmap

= {({R0} → {R6}),({R2} → {R7}),({R4} → {R7}),({R5}
→ {R6})}. Once MAXIMIZECOMPOUNDRELATIONS returns,
RevLabelmap ={.., ({R7} → {R0, R1, R2, R4})} holds. Fur-
thermore, the entry for R0 in Compoundmap was changed to
{R6, R7} and ({R1} → {R7}) was inserted. Note that the en-
try for R5 remains the same. After merging the hypernodes, we
gain the simple graph of Fig. 16(c) with S′ = {R3, R8}. Note that
now all two conditions for avoiding the connection test are met.

4.5.3 Additional Considerations
Due to the nature of top-down join enumeration, a partitioning

algorithm is called many times, each time with a different subgraph
H|S . With PARTITIONX (Sec. 4.1, Fig. 6), we gave an overview of
our generic framework. It contains room for improvements. COM-
PUTEADJACENCYINFO only needs to be called once: if S = V
(i.e., the whole graph H = (V, E)) is handed over. In all other cas-
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MAXIMIZECOMPOUNDRELATIONS(S, S′)
� Input: vertex sets S, S′

1 for all v ∈ set of compounds relations
2 h← RevLabelmap [v]
3 if ISCONNECTED(h) = TRUE
4 continue
5 Z ← h
6 I ← ∅
7 while Z �= ∅
8 x← y ∈ Z
9 while h � desc[x] ∧ x �∈ I

10 h← h ∪ {x}
11 I ← I ∪ {x}
12 x← parent[x]
13 if parent[x] = NIL
14 h← h ∪ {x}
15 Z ← Z \ {x}
16 I ← I ∪ {x}
17 if h �= RevLabelmap [v]
18 MAXIMIZECOMPOUNDRELATIONSSUB(v, h)

MAXIMIZECOMPOUNDRELATIONSSUB(v, h)

1 if KEYDOESNOTEXIST(Labelmap, h) �= TRUE
2 zk ← new vertex labeled k ← SIZE(Labelmap)
3 S′ ← (S′ \ v) \ h
4 for all x ∈ h
5 Compoundmap[{x}]←

(Compoundmap[{x}] \ v) ∪ {zk}
6 else CHANGEKEY(Labelmap, RevLabelmap[v]→ h)
7 RevLabelmap [v]← h
8 S′ ← S′ \ h
9 for all x ∈ h \RevLabelmap [v]

10 Compoundmap[{x}]← Compoundmap[{x}] ∪ v
11 update alle hyperedges (v, w) where v ⊆ h ∨w ⊆ h holds

Figure 17: Pseudocode for MAXIMIZECOMPOUNDRELATIONS

es, we can reuse the information stored in the global variables (Fig.
7) by passing them down. In order to being able to modify them,
we make a copy, which is handed over to the child invocations of
TDPGSUB. Making a copy pays off, since we can eliminate edges
that are not fully contained in the vertex set S. Further, we cleanse
the array of precomputed hyperneighbours Nh. These two steps
increase the partitioning algorithm’s efficiency as well as the effi-
ciency of connection tests.

Additional to COMPUTEADJACENCYINFO, we need to call GET-
BCCINFO only once. We simply reuse its gathered information
stored in Compoundmap during all other calls of PARTITIONX .
For those invocations of PARTITIONX where S �= V and V is the
vertex set of the query graph, we need a modified version of COM-
POSECOMPOUNDRELATIONS. It has to be one that does not call
GETBCCINFO and MAXIMIZECOMPOUNDRELATIONS and that
invokes an adapted version of MANAGEADJACENCYINFO.

In case there are no complex hyperedges in the vertex subset S,
we can even skip the methods of our framework. Then we can call
the graph-aware partitioning algorithm right away. In that case, the
partitioning algorithm only needs to exploit the information stored
in Ns.

Finally, we propose to store the information whether a vertex
set C is connected or not into the memotable. Besides TRUE and
FALSE we need UNKNOWN. Now every time ISCONNECTED(H|C)
is called, we check whether an entry in the memotable for the given
vertex set C exists. If not, we create one and invoke the connection
test since its current value is UNKNOWN to set it to TRUE or FALSE.
In all other cases, we just return its value, which saves us additional
connection tests. Note that since our transformed hypergraphs are
relatively restrictive simple graphs, there will be only a few entries
in the memotable with the value FALSE.

5. EVALUATION
We compare the performance of the three top-down enumer-

ators TDMCBHYP (derived by instantiating our framework us-
ing MINCUTBRANCH), TDMCCHYP [6], and the naive partition-
ing TDBASICHYP. Further, to assess the potential of the opti-
mizations proposed (Sec. 4.5), we include the unimproved imple-
mentation (without the techniques of Sec. 4.4, 4.5) of TDMCB-
HYP called TDMCBHYPnaive. Last, we instantiated our framework
(without the techniques of Sec. 4.4, 4.5) with the algorithm pro-
posed by DeHaan and Tompa [3]. We call this variant TDMC-
CHYPnaive. In order to investigate the pruning benefits, we added
pruning to the first two algorithms, yielding TDMCBHYPpruning

and TDMCCHYPpruning, where we used the improved accumulated-
predicted cost bounding method [7]. Note that this pruning method
still guarantees plan optimality. Indeed, all algorithms guarantee
plan optimality.

All plan generators (no matter whether they work top-down or
bottom-up) use a common infrastructure (memotable, cardinality
estimation, cost functions, and the conflict detector CD-A [11]).
Consequently, the different plan generators differ only in those
parts responsible for enumerating ccps and for pruning (if applied).
For the cost estimation of joins, we decided to use the formulas
developed by Haas et al. [10], since they are very precise.

Our experiments were conducted on an Intel Pentium D with 3.4
GHz, 2 Mbyte second level cache and 3 Gbyte of RAM running
openSUSE 12.1. We used the Intel C++ compiler with option O3.

We present our results in terms of the quotient of the algorithm’s
execution time and the execution time of DPHYP. We refer to this
quotient as the normed time. For DPHYP we present the absolute
execution time.

This section is organized as follows. The first two subsections
evaluate the performance for random cyclic and acyclic graphs.
Then, we dissect the impact of pruning. After that, we take a look
at TPC-H and TPC-DS queries. Finally, we try to detect the possi-
ble overhead of the hypergraph handling mechanism compared to
an algorithm specialized on simple graphs.

5.1 Random Acyclic Query Graphs
There are two situations giving rise to complex hyperedges: (1)

the TES indicating non-reorderability of non-inner joins and (2)
complex predicates referencing more than two relations.

In order to distinguish these two cases, we first generated random
binary operator trees where the operators can be any join. Howev-
er, only simple predicates, i.e., those referencing exactly two re-
lations, were generated. From the operator trees we then gener-
ated the resulting hypergraphs using the method described in [11]
and sketched at the beginning of Sec. 2. We denote this case by
acyclic/non-inner/simple.

To clearly separate the second case from the first, we have to use
inner joins only. Thus, we generated random operator trees with
inner joins only and used the method described in [13] to extend
these with complex predicates to hypergraphs. We denote this case
by acyclic/inner/complex.

The results for both cases are shown in Fig. 19 and on the left
side of Table 1.

When comparing the performance results between acyclic/non-
inner/simple and acyclic/inner/complex, each algorithm retains its
unique trend. Further, we observe the following for acyclic query
graphs. The performance of TDBASICHYP is unacceptable. The
optimizations proposed in Sec. 4.5 result in an average improve-
ment of about a factor of two, as can be seen by comparing TDM-
CBHYP and TDMCBHYPnaive. Further, TDMCBHYP performs
best on average in all cases and has the lowest worst case normed
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Figure 18: Density plots for TDMCBHYPpruning

runtime. Comparing the performance of TDMCBHYP with that of
the state of the art bottom-up plan generator DPHYP, we see that
on average, their performance is about the same. Looking at the
max/min normed runtimes, we see that TDMCBHYP is slower by
a factor of at most 2.3 and sometimes faster by a factor of roughly
0.12−1 = 8.3.

5.2 Random Cyclic Query Graphs
Let us look at the performance for random cyclic queries. Again,

we distinguish between the case where complex hyperedges are on-
ly due to conflicts of non-inner joins and the case where they result
from complex predicates. We denote these cases by cyclic/non-
inner/simple and cyclic/inner/complex. The results are shown in
Fig. 20 and on the right side of Table 1.

Here, for any fixed number of relations, the variations in runtime
are enormous. More specifically, they heavily depend on the num-
ber of edges. This is obvious, as we imagine to add edges to a chain
until we get a clique. Hence, we fixed the number of relations to
some medium number (15) and varied the number of edges from
15 (cycle) to 40 in case of cyclic/no-inner/simple and up to 80 in
case of cyclic/inner/complex.

Considering Fig. 20, we observe that (except for TDBASICHYP)
the runtimes of all algorithms increase heavily with the number
of edges. This is due to the increased search space size. TDBA-
SICHYP only shows a slight increase in runtime if more edges are
present. This can easily be explained by observing that adding
edges leads to a higher connectivity within the graph and thus to
more ccps. Thus, the validity test of TDBASICHYP fails less fre-
quently, resulting in more calls to the cost function.

Compared to the acyclic case, we observe the larger distance in
runtime between the algorithms with and without pruning. Taking
a look at the avg column of Table 1, we see that TDMCBHYPpruning

outperforms DPHYP by a factor of approximately 0.09−1 = 11
(on average!). In the best case, the TDMCBHYPpruning outperforms
DPHYP by a factor of 1/0.004 = 250. Only for a low number of
vertices, the runtimes are comparable with those of acyclic queries.
Further note that the optimizations proposed in Sec. 4.5 again result
in a profound runtime saving. As in the acyclic case, TDMCBHYP
clearly dominates all other algorithms, in both variants (without
and with pruning).

5.3 Dissecting Pruning Performance
Different queries together with different cardinalities and selec-

tivities embed different inherent pruning potentials. We thus decid-
ed to illustrate this potential using density plots (see. Fig. 18). The
x-axis gives the speed-up factor achieved by pruning. The y-axis
shows its frequency, i.e., how often a certain speed-up factor was

observed during our experiments with random cyclic and acyclic
queries.

The results are shown for TDMCBHYPpruning for the acyclic/
non-inner/simple (ANS), acyclic/inner/complex (AIC), cyclic/non-
inner/simple (CNS), and cyclic/inner/complex (CIC) workloads.
We observe that the pruning behavior for the different cases is
rather different. First, in the worst case (ANS), we have a steep
peak around 1. This means that the pruning potential is poor. It be-
comes larger in case of AIC, but still for cyclic queries in the cases
CNS and CIC we observe a much higher optimization potential. In
order to determine the pruning potential for realistic queries, we
turn to the TPC-H and TPC-DS benchmarks.

5.4 TPC-H and TPC-DS
As our initial plans, we used the plans generated by a commercial

DBMS. Thus, we could benefit from optimization techniques such
as unnesting and subplan sharing. We used complex hyperdeges
to prevent reordering conflicts. The runtimes reported here do not
include the preparation time for computing the query graphs.

We considered all TPC-H queries except for those that did not
contain any join (Q1 and Q6). Then, we summed up the runtimes
for all queries for each of DPHYP, TDMCBHYP, and TDMCB-
HYPpruning. For each algorithm, let us call this its H-total time.
Then, the ratio of DPHYP’s H-total time divided by TDMCB-
HYPpruning’s H-total time is 1.7. The ratio of TDMCBHYP’s H-total
time divided by TDMCBHYPpruning’s H-total time is 1.6. Without
pruning, TDMCBHYP beats DPHYP by roughly five percent for
the TPC-H workload. For those queries referencing more than 4
tables, detailed results are shown in Table 2. Hereby Q2, Q20 ref-
erence 5 tables, Q5, Q7, Q9, Q21 6 tables, and Q8 8 tables. The
number of join edges is given in Table 2 accordingly.

Again, for the TPC-DS queries, we summed up the plan gen-
eration times for all queries in TPC-DS for each of the above al-
gorithms. For a given algorithm, we call this its DS-total time.
Then, the ratio of DPHYP’s DS-total time divided by TDMCB-
HYPpruning’s DS-total time is 2.28. The ratio of TDMCBHYP’s DS-
total time divided by TDMCBHYPpruning’s DS-total time is 2.37.

5.5 Overhead Detection
In order to determine the possible overhead induced by hyper-

edges, we evaluated the algorithms on the standard cases of simple
query graphs: chains, cycles, and cliques. We included TDMCB,
an algorithm which is not capable of handling hypergraphs. We
run these three different query graph classes for different numbers
of relations (n). The results are shown in Table 3. Note that the
runtimes of TDMCB and TDMCBHYP are almost identical, indi-
cating that there is no measurable overhead. This may be due to
the fact that in both cases ccp enumeration is fast, compared to cost
function calculation.

6. CONCLUSION
We presented a generic framework which allows us to reuse any

top-down enumerator for simple graphs to handle hypergraphs. We
further demonstrated that one possible instantiation (TDMCBHYP)
outperforms existing enumerators for hypergraphs and is compa-
rable in performance to DPHYP even without pruning. It is also
faster than existing top-down enumerators and has zero measur-
able overhead compared to TDMCB. With pruning, TDMCBHYP
is currently unbeatable. Besides pruning, another advantage of top-
down plan generation is that it is easily parallelizable. A feature we
are likely to explore in the future.

Acknowledgment. We thank Simone Seeger for her help prepar-
ing this manuscript and the referees for their thorough feedback.
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Algorithm min max avg min max avg
acyclic/non-inner/simple cyclic/non-inner/simple

DPHYP 0.0001 s 0.0588 s 0.0007 s 0.0001 s 1.2638 s 0.0076 s
TDBASICHYP 1.1232 × 15396.4991 × 963.2282 × 0.8571 × 15755.3138 × 902.7267 ×
TDMCLHYPnaive 0.3333 × 13.9975 × 2.2518 × 0.2763 × 12.6669 × 2.0992 ×
TDMCBHYPnaive 0.2708 × 13.4980 × 1.9281 × 0.2105 × 11.7512 × 1.6415 ×
TDMCCHYP 0.1458 × 3.6001 × 1.1349 × 0.1169 × 3.4285 × 1.0932 ×
TDMCBHYP 0.1148 × 2.2992 × 0.9385 × 0.0921 × 2.0660 × 0.8806 ×
TDMCCHYPPruning 0.0641 × 4.5006 × 1.2055 × 0.0494 × 4.0007 × 0.7149 ×
TDMCBHYPPruning 0.0647 × 2.2495 × 0.9166 × 0.0306 × 1.8777 × 0.5057 ×
Algorithm min max avg min max avg

acyclic/inner/complex cyclic/inner/complex
DPHYP 0.0001 s 0.4359 s 0.0096 s 0.0002 s 43.3824 s 2.1668 s
TDBASICHYP 2.1001 × 36667.0371 × 973.5695 × 1.0243 × 49977.4253 × 19.8760 ×
TDMCLHYPnaive 0.6552 × 5.3914 × 1.4863 × 1.0910 × 8.0412 × 1.6961 ×
TDMCBHYPnaive 0.5345 × 4.8697 × 1.2344 × 0.7500 × 2.5111 × 1.1730 ×
TDMCCHYP 0.6207 × 3.2274 × 1.3606 × 0.8000 × 1.9246 × 1.3573 ×
TDMCBHYP 0.4310 × 1.7543 × 0.9978 × 0.6429 × 1.5828 × 1.0539 ×
TDMCCHYPPruning 0.0849 × 4.0002 × 0.9746 × 0.0056 × 1.9245 × 0.1384 ×
TDMCBHYPPruning 0.0352 × 1.7741 × 0.5837 × 0.0040 × 1.2536 × 0.0872 ×

Table 1: Results for random queries
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Figure 19: Left: acyclic/non-inner/simple. Right: acyclic/inner/complex
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APPENDIX
A. BRANCH AND BOUND PRUNING

As Sec. 3 has pointed out, TDPGSUB builds a join tree for a
(sub)set of relations S upon request through a recursive call of the
top-down join enumeration algorithm. Because the processing or-
der for the generation of (sub)plan is demand-driven, two branch
and bound pruning methods can be exploited: accumulated-cost
bounding and predicted-cost bounding. A comprehensive descrip-
tion can be found in [3, 7].

The main idea of accumulated-cost bounding is to pass a cost
budget to the top-down join enumeration procedure [9, 18]. Dur-
ing the recursive descent, each instance of the top-down procedure
subtracts costs from the handed-over budget as soon as they be-
come known. The descent is aborted once the budget drops below
zero. Every call that returns with a join tree has produced an op-
timal join tree. If no join tree is returned, then the handed-over
budget was not sufficient. The goal of accumulated-cost bounding
is to tighten the budget as much as possible, because this way the
search might be curtailed sooner and ultimately the compile time
decreases. There are three ways of adjusting the budget: (1) The
budget for the sub call with S1 (Fig. 1 L. 5) is set to the current
budget decreased by the cost of the join operator ◦, (2) the budget
for the sub call with S2 is set to the current budget decreased by
the cost of the join operator ◦ plus the cost of the join tree of S1

and (3) if a join tree is built for S1 and S2 the current cost budget
is set to the join tree’s costs (if it is cheaper than existing ones for
the same S). Some additional care has to be taken in the presence
of different properties.

Whereas accumulated-cost bounding prunes the search space by
passing budget information top-down, predicted-cost bounding fol-
lows the opposite approach by estimating what are the costs of the
subjoin trees that lie below in the recursive search tree [18]. So
the main idea is to find a lower bound in terms of join costs for a
given ccp (S1, S2) before actually requesting the two correspond-
ing optimal subjoin trees to be built through two different recursive
descents. If now the estimate which is specific for that ccp is larger
than the cost of a join tree already built for S, then the cheapest
join tree for S clearly cannot consist of a join between S1 and S2.
Hence, the effort of subcalls with S1 and S2 can be spared.

For our experiments we applied a combination of both methods
together with further improvements as described in [7]. With all
pruning techniques as applied in [7], plan optimality is preserved.
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