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ABSTRACT
Online types of expression in the form of social networks,
micro-blogging, blogs and rich content sharing platforms
have proliferated in the last few years. Such proliferation
contributed to the vast explosion in online data sharing we
are experiencing today.

One unique aspect of online data sharing is tags manually
inserted by content generators to facilitate content descrip-
tion and discovery (e.g., hashtags in tweets). In this paper
we focus on these tags and we study and propose algorithms
that make use of tags in order to automatically organize and
categorize this vast collection of socially contributed and
tagged information. In particular, we take a holistic ap-
proach in organizing such tags and we propose algorithms
to partition as well as rank this information collection. Our
partitioning algorithms aim to segment the entire collection
of tags (and the associated content) into a specified number
of partitions for specific problem constraints. In contrast
our ranking algorithms aim to identify few partitions fast,
for suitably defined ranking functions.

We present a detailed experimental study utilizing the full
twitter firehose (set of all tweets in the Twitter service) that
attests to the practical utility and effectiveness of our overall
approach. We also present a detailed qualitative study of our
results.
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1. INTRODUCTION
In recent years, the explosion of data available through

online communities and social networks (such as facebook,
google plus, twitter) created a pressing need for their man-
agement and analysis. Extracting valuable information buried
in such massive data is a real problem of vast significance in
diverse industries (marketing, advertising, market research,
finance, public relations, journalism to name a few). Mil-
lions of individuals around the world update their statuses,
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post millions of tweets, share links and interact with each
other exchanging messages, images, videos etc. The num-
bers are staggering: over 330M tweets on a daily basis on
twitter, 3.5B pieces of content shared on facebook every
week and in excess of 130M blog posts generated daily.

Given such volumes, it is imperative to impose some form
of categorization or grouping of this information as a first
step towards understanding and consuming it. Understand-
ing trending topics, discussions or identifying groups of re-
lated content is a major challenge. In this paper we utilize
one unique aspect of such socially contributed information
namely manual tagging inserted by humans. For example,
millions of tweets on a daily basis contain human inserted
tags (commonly known as hashtags) that aim to best de-
scribe the content of the tweet in order to facilitate dis-
covery. This makes online discussion and referencing eas-
ier. In a similar fashion, popular social networks such as
google+ adopt such human assisted tagging. This concept
has also been prevalent from the early days of the blogo-
sphere. In all cases humans insert one or more tags when
they generate a piece of content; such tags are available
along with the content, commonly precisely describing it in
a concise manner or attributing it to a certain set of the-
matic or topical entities. As an example, a tweet about the
Oscars event (e.g., “I am confident the Descendants will win
an award tonight!”) can be tagged via a hashtag “#oscars”
or “#oscars #nomination” or “#oscars #award”. Although
there are no standards in the generation of tags, they are
commonly highly descriptive of the content. Given the sim-
ilarity in the use of tags in various services, we will use the
terms hashtag and tag interchangeably in the remainder of
this paper. Also to focus our presentation, we will carry our
discussion using the popular micro-blogging service Twit-
ter as an example. The same concepts and techniques carry
over in all services utilizing human or machine inserted tags.

We present algorithms that operate on tags in order to
group pieces of related content together. In particular, given
the set of all tweets (messages generated on Twitter) for a
specific time period (say a day), we develop algorithms to
partition such tweets into meaningful groups utilizing the
tags of the tweets. In addition, we develop notions of impor-
tance in each group so that instead of identifying all groups,
only a selected subset of those can be identified fast. Given
the volume of information involved ( 330M tweets on disk
is over 500 GB), as a design principle we are seeking fast
algorithms to conduct these operations.

Simple approaches such as ranking individuals or sets of
tags by their frequency in the entire collection of tweets will
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fail to adequately provide a solution. In the former case, a
lot of context is lost; the latter case introduces the need for
principled approaches to determine when it is beneficial to
merge collections of tags into a single representation which
is the by-product of our approach. Perhaps, the first solu-
tion that comes to mind is to model tweets and hashtags
as a bipartite graph G = (V,U,E) where V is the set of
tweets, U is the set of tags and (i, j) ∈ E if tweet i con-
tains hashtag j. Utilizing this graph model, we can employ
several graph partitioning or clustering techniques (e.g., bi-
clustering techniques [3,4,7]) to create groups of associated
tweets and hashtags. The most crucial problem with this
approach (and the bipartite graph approach in general) is
that it assumes that hashtags are independent, something
that does not hold in reality.

In response to the raised concerns, we model the set of
tweets using a lattice. Such a lattice aims to maintain tag
correlations and at the same time provide a natural group-
ing of sets of related tags (Section 2). In this paper, we
introduce and study two sets of problems in this lattice:
(1) partitioning problems (Section 3) that segment the en-
tire lattice into a number of partitions based on problem
specific constraints and (2) ranking problems that produce
only a specific number (specified as input) of “top” parti-
tions for suitably defined measures of partition importance
(Section 4).

We discuss two types of partitioning problems: the first
aims to create the maximum number of partitions, while
each one contains at least c tweets (for some constant c).
The size constraint (at least c tweets in each partition) is
introduced to ensure that we do not create small parti-
tions; the objective (maximize the number of partitions),
on the other hand, prevents from merging unrelated tweets
into one single partition. We show that this problem is
NP-complete and propose a 2-approximation algorithm (al-
gorithm AMSP) to approximate its solution (Section 3.1).
The second problem (Problem 2) aims to create k partitions
such that the minimum size of a partition is maximized. In
a sense, even though we fix the desired number of parti-
tions, we aim to produce partitions balanced in size. Sec-
tion 3.2 shows that this problem is NP-complete and present
a heuristic approach (algorithm MMP) to address it.

The second class of problems we introduce (Section 4)
aims to extract the “best” k partitions from the lattice. To
quantify the goodness of a partition, we introduce a weight
function. We refine our study by introducing two problems
in this case as well: the first (Problem 3) aims to identify k
partitions that in aggregate produce the maximum weight
among all possible combinations of k partitions; we present
an optimal linear algorithm (algorithm MST) to solve this
problem. The second (Problem 4) identifies k partitions
with the highest weight values. We show that this problem
is NP-complete (Section 4.2) and present an approximation
algorithm (algorithm AMWT, Section 4.2.1) as well as a
faster heuristic algorithm (algorithm HMWT, Section 4.2.2).

To evaluate our developments, we utilize the Twitter fire
hose, namely the set of all tweets flowing through the Twit-
ter service. In Section 5, we evaluated our algorithms at
full scale for days worth of twitter data (not samples of it).
This is the first study we are aware of utilizing the entire
Twitter fire hose and stresses the practical utility of our de-
velopments as evident in our experimental section. All of our
algorithms can operate on the days worth of full fire hose, in
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Figure 1: A sample lattice.

minutes for all reasonable instances in the worst case, and in
seconds typically. In addition we deploy a qualitative study
demonstrating the goodness of our findings and compared
our partitioning algorithms with some baseline techniques
(Section 5.2). A literature review is provided in Section 6,
followed by Section 7 concluding our discussion.

2. MODELING
Let T = (t1, t2, · · · , tn) be a collection of tweets (n tweets),

H = {h1, h2, · · · , hm} be the set of hashtags (m hash-
tags), and S = (s1, s2, · · · , sn) be the collection of hash-
tag sets (tagsets) corresponding to tweets. A tagset si is
the set of all hashtags appearing in tweet ti. For instance,
the tagset associated to tweet “#usa #election #obama vis-
its #chicago campaign headquarters” is {#usa, #election,
#obama, #chicago}. Moreover, let d denote the maximum
number of tags in tweets; i.e., d = maxi:1≤i≤n |si|. We model
this tweet dataset by a lattice L = (V,E) s.t.:

• There is a unique vertex in V corresponding to each
non-empty tagset s ∈ S and each subset of s.

∀s ∈ S ∀s′ ⊆ s, ∃!v ∈ V : TS(v) = s′

We associate each vertex v with a tagset TS(v) and a
size N(v) where N(v) identifies the number of tweets
in the dataset having TS(v) as their tagsets (the exact
tagset not a superset/subset of it).

• There is an edge between two vertices u, v ∈ V if and
only if the tagset of one is a subset of the other and
the difference between the length of their tagsets is 1.
The length of a tagset is the number of hashtags in it.
For instance, the length of the tagset (#usa#nyc) is 2.

(u, v) ∈ E ⇔ TS(u) ⊂ TS(v)∧(|TS(v)|−|TS(u)| = 1)

Consider the hashtags of three tweets: s1 = (#oscars

#bestactor#theartist), s2 = (#usa#election), and s3 =
(#oscars#bestmovie#theartist). Figure 1 depicts the
corresponding lattice.

The lattice framework aims to capture a natural property
of the tagging process: humans use multiple tags to describe
more specifically the content they produce (the tweet). In
general, a tag set s1 (e.g., #usa #politics #democrats) aims
to describe more specific content than a tag set s2 (e.g., #usa
#politics) if s2 ⊂ s1. The lattice of Figure 1 lends itself to
a very natural interpretation. Looking from top to bottom,
higher level descriptions (as expressed by humans providing
the tags) are at the top, becoming more specific as we follow
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paths emanating from the node. Moreover siblings are la-
beled with tags corresponding to related descriptions. Thus,
such a lattice by construction has the property to group to-
gether related descriptions (as siblings) as well as impose
ancestor-descendant relationships among general and more
specific descriptions.

As the first phase to create the lattice, we perform some
preprocessing steps to clean data. On Twitter, there are
some hashtags that appear very frequently almost every-
day such as #oomf (one of my followers), #np (now play-
ing), #nw(now watching), #rt (retweet), #nf (now following),
#tfb (teamfollowback), #yolo(you only live once), #aries,
#capricorn, and #libra (the cardinal signs) as well as a
few others. We consider those stop words and filter them.
Moreover, we apply stemming techniques to merge hashtags
with the same stem (e.g., #oscars and #oscar).

For each arriving tweet ti, we need to update the lattice
by adding vertices corresponding to the ti’s tagset si and all
of its subsets s′ ⊂ si. The number of these new vertices is at
most 2d−1. By utilizing proper hash functions, the addition
and search processes can be done in O(1). If the number of
distinct tagsets is l, and each tagset contains at most d tags,
the lattice contains at most (2d−1)× l vertices. On average,
many subsets are shared between tagsets hence the size of
the lattice is much smaller in practice. In real datasets, d
is small. For instance, among 300 million tweets of Feb 26,
there is essentially no legitimate tweet with more than 10
hashtags. Thus, the size of this lattice is easily manageable.
In this paper, we assume d is a constant.

3. PARTITIONING
We utilize user-generated hashtags to partition the lattice

generated from a collection of tweets. A partitioning of
a lattice is a division of the lattice nodes into several con-
nected disjoint sublattices such that the union of the vertices
in these sublattices generates the vertex set of the original
lattice. We call each sublattice, a partition and represent
each partition by a tree (one of its spanning trees). More-
over, we refer to the size of a partition (tree) as the sum
of its nodes’ sizes; i.e., for a partition p: |p| =

∑
u∈pN(u),

where |p| denotes the size of p and u is a node in p.
Generally in a partitioning problem, it is desirable to cre-

ate partitions having suitable sizes. In extreme undesirable
cases, one may assign each tweet/tagset to a separate par-
tition resulting in many small partitions; or may assign all
tweets/tagsets to one single partition resulting in spurious
merging of irrelevant tweets. Intuitively, a good partition is
the one that satisfies the following properties.

Property 1. (Size) It is desirable to create partitions
that are not small in size.

Property 2. (Less number of nodes) It is desirable
to create partitions with a small number of nodes (distinct
tagsets). Existence of many nodes in a reported partition
means that tweets with different tagsets are placed together.
Thus, that partition may group tweets about different events
and this can lead to poor partitions. Since we represent each
partition with a spanning tree, the number of nodes in a
partition is related to the number of edges in its spanning tree
and is conversely related to the total number of partitions.

We introduce two complementary partitioning problems
that attempt to satisfy these properties by fixing one prop-
erty and trying to optimize the other one. The first problem

is referred to as MinSize Partitioning; for a given minimum
partition size, it aims to maximize the number of qualified
partitions. Thus, given an a priori expectation of how many
tweets (at least) should belong to a partition, we seek to
maximize the number of all qualified partitions. In the lat-
ter, the number of partitions is provided and the goal is to
create partitions with suitable sizes, namely the size of the
lightest partition is maximized. We refer to this problem
later as MaxMin Partitioning.

In Section 3.1, we formally define the MinSize Partition-
ing problem and show that it is NP-complete. Moreover,
we present a 2-approximation algorithm to approximate its
optimal solution. Section 3.2, formally defines the MaxMin
Partitioning problem, demonstrates that this problem is NP-
complete as well, and presents a heuristic solution.

3.1 MinSize Partitioning (MSP)
We aim to decompose the lattice into a number of parti-

tions (represented by spanning trees) of size at least c such
that the number of partitions is maximized (or equivalently
the sum of the number of edges in all representing trees is
minimized). Recall that the size of a tree is the sum of the
sizes of its nodes. Since the only parameters that are im-
portant in a partition are the size of the partition and the
number of edges in its spanning trees (equivalently the num-
ber of nodes in that partition), the choice of the spanning
tree to represent a partition does not make a difference in
this paper’s problem definitions and algorithms.

Problem 1. Let c be an (input) integer. Partition the
given lattice L = (V,E) to an unknown number of trees
>1,>2, · · · ,>r where >i = (Vi, Ei), such that:

1.
⋃

1≤i≤r Vi = V ,
2. ∀i, j : 1 ≤ i < j ≤ r;Vi

⋂
Vj = ∅,

3. ∀i : 1 ≤ i ≤ r; |>i| ≥ c (|>i| =
∑
u∈>i

N(u)),
4.

∑
1≤i≤r |Ei| is minimized (equivalently r is maximized).

Theorem 1. Minimizing the total number of edges in trees
is equivalent to maximizing the number of created trees 1.

Theorem 2. Problem 1 is NP-complete.

We propose an algorithm to approximate Problem 1 that
generates high quality trees. An approximation bound for
this algorithm is provided in Theorem 3. The main intuition
is to separate lattice nodes (tagsets) with size larger than c
from the rest of the lattice and consider them as potential
partitions. In the remaining lattice, we randomly merge the
nodes to create bigger partitions and stop when all parti-
tions created contain at least c tweets. The pseudo code is
provided in Algorithm 1.

Theorem 3. The approximation bound of the solution
discovered by Algorithm 1 is 2.

Theorem 4. The run time of Algorithm 1 is Θ(l) where
l is the number of distinct tagsets.

3.2 MaxMin Partitioning (MMP)
A variation of Problem 1 is the situation where one wants

to decompose the lattice into a specified number of large
partitions. In this scenario, the number of required parti-
tions is given (say q) and we aim to segment the lattice into
q partitions such that each partition is as large as possible.
In other words, we intend to create q partitions such that
the minimum size is maximized.
1Proofs are omitted due to space limitations. Please See the
technical report [5] for complete proofs.
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Algorithm 1: Approximation MSP (AMSP)

1 Build a new lattice L′ by removing all nodes with a size
not smaller than c and their adjacent edges;

2 Make a single-node output tree for each node in L− L′;
3 Identify the connected components of L′ and determine

a spanning tree for each component;
4 Create a single-node output tree for each vertex in L′;
5 while There exists at least one unexamined edge in the

spanning trees of the connected components of L′ AND
an output tree with a weight smaller than k do

6 Choose an unexamined edge e, and merge output
trees at both sides of e if at least one of them has
size smaller than c;

7 end
8 foreach output tree > with a weight smaller than c do
9 find and insert an edge between > and an output

tree of L− L′;
10 end
11 return output trees;
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Figure 2: Cuts and sublattices.

Problem 2. Let q be an input integer and L = (V,E) be
a lattice containing r (1 ≤ r ≤ q) connected components.
Segment L into q partitions >1, · · · ,>q, delineated by span-
ning trees, where >i = (Vi, Ei) st.

•
⋃

1≤i≤q Vi = V ,

• ∀i, j : 1 ≤ i < j ≤ q;Vi
⋂
Vj = ∅,

• mini∈{1,··· ,q} |>i| is maximized (|>i| =
∑
u∈>i

N(u)).

Theorem 5. Problem 2 is NP-complete.

We propose a generalized algorithm to address Problem 2
on a lattice (Algorithm 2). Our goal is to select q − 1
edges (cuts) inside the lattice that create a max-min q-
partitioning. At the end of the algorithm, the partitions,
represented by spanning trees, would be the sublattices un-
der the selected cut edges. Figure 2 depicts sublattices corre-
sponding to two sample cuts. The most critical concern with
these sublattices is that they are not disjoint. To avoid this
inconsistency, we define disjoint run-time sublattices (RSL)
for cuts. The sublattice of a cut ζ (SL(ζ)) is the set of
all lattice vertices that are descendant of ζ, while the run-
time sublattice of ζ (RSL(ζ)) is the set of all descendant
vertices that are not a current member of any other cut’s
run-time sublattice. We define the size of a cut as the size
of its run-time sublattice (the sum of the sizes of all nodes

in that RSL). The pseudo code for modifying RSL sets is
illustrated in Function RSL Updater in Algorithm 2.

Algorithm 2: MaxMin Partitioning (MMP)

input : lattice L, int q
output: q partitions
// Initialization:

1 if |children(root(L))| > 1 then
2 Insert a new single edge on top of the root;
3 end
4 Assign all q cuts to the single edge adjacent to the root;
5 foreach cut c do
6 RSL(c) = Null; // RSL: run-time sublattice

7 end
8 For the first cut f : RSL(f) = L;

// Iterations:

9 Calculate Smin (the size of the current lightest cut);
10 Identify a move of a cut c (downward to a neighboring

edge with no cuts) leading to a run-time sublattice with
maximum size (Sc);

11 if Sc ≥ Smin then
12 Execute the identified movement of cut c;
13 Execute Function RSL updater for cut c;
14 Go to 9;

15 end

// Function Definition:

16 Function RSL updater:
17 Update RSL(c) = RSL old(c)

⋂
SL(c); // RS old(c)

is the RSL of cut c prior to its movement

18 Update size(c) =
∑
u∈RSL(c)N(u);

19 Let c′ be the lowest predecessor cut of c;
20 Update RSL(c′) = RSL(c′)

⋃
{RSL old(c)−RSL(c)};

21 Update size(c′) =
∑
u∈RSL(c′)N(u);

Theorem 6. The run time of Algorithm 2 is Θ(ql) where
l is the number of lattice nodes.

Example 1. Consider the lattice in Figure 3(a). We aim
to divide this lattice into q = 3 partitions utilizing Algo-
rithm 2. The first step is to insert an extra edge on top of
the root and assign 3 cuts to it (Figure 3(b)). Initially, all
vertices are assigned to the first cut, A. Thus: SA = 20,
and SB = SC = 0. Hence, Smin = 0. In the first step, there
are 3 options (3 available edges downward) to move cut A
with new sizes of 13, 12, 9. We move this cut to the leftmost
edge (size: 13). Therefore, four vertices remain in partition
A and the rest are assigned to its first predecessor cut, B.
Thus, SA = 13, SB = 7, and SC = 0. Hence Smin = 0
(Figure 3(c)). In the next step, 4 options exist to move
cuts. Cut A can move downward to two edges with new
sizes 8 or 4 and cut B can move to 2 edges with new sizes
4 or 5. The max value is 8 (for cut A) that is greater than
the current Smin. Thus, we move cut A downward to the
left edge (size: 8) and update run-time sublattices and sizes
SA = 8, SB = 12, SC = 0. Thus, Smin = 0 (Figure 3(d)).
In the next step, cut B is moved to the rightmost edge with
size 6 (Figure 3(e)). Therefore, SA = 8, SB = 6, SC = 6,
and Smin = 6. The last options are moving cut A (size: 3),
moving cut B (size: 1 or 2), and moving cut C (size: 4 or
2). The maximum value (4) is less than Smin (6). Thus, the
algorithm terminates with a minimum size of 6 (Figure 3(f)).
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Figure 3: Running MMP on the lattice in (a).

4. TOP PARTITIONS
In this section, we consider ranking problems on the lat-

tice. We define notions of “important” sets of nodes on
the lattice and aim to quickly identify a number (provided
as input) of such partitions (represented by their spanning
trees). We define importance utilizing a weight measure.
Using such weight functions, we address two problems with
different objectives. Section 4.1 concentrates on identifying
k partitions with the maximum sum of weights (MaxSum
Top Partitions) and presents a linear algorithm to extract
the optimal partitions. In Section 4.2, we aim to find k par-
titions such that the minimum weight of them is maximized
(MaxWeighted Top Partitions). We formally define the
problem and show that it is NP-complete. In Section 4.2.1,
we propose an algorithm to approximate the optimal solu-
tion of this problem. A faster heuristic algorithm providing
results of similar quality is provided in Section 4.2.2.

We start by explaining desired properties in the quality
of partitions belonging to the final answer and then propose
a weight function to capture them. As mentioned in Sec-
tion 3, it is desirable to have large partitions (Property 1)
containing small number of lattice nodes (Property 2). Due
to the nature of ranking problems (not covering all tweets
and searching for very important ones), the mentioned prop-
erties are necessary but not sufficient. Hence, we explain two
extra desired properties for the ranking problems.

Property 3. (Maximizing coverage) The top parti-
tions should maximize the number of tweets they encompass;
this is a natural requirement in order to report as many un-
derlying events as possible. Thus, maximizing the fraction
of tweets that are covered by the reported partitions is im-
portant.

Property 4. (Complete importance) The goals of max-
imizing coverage and minimizing the number of lattice nodes
seems conflicting at first glance. When we add a node to
a partition, in one hand, we gain since tweet coverage in-
creases but on the other hand, we incur a penalty by in-
creasing the number of nodes. We call a partition “com-
pletely important” if the gain we achieve by adding each
single node, is bigger than the penalty we incur.
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Assume that for each edge e = (u, v) belonging to a par-
tition p, Se(u) denotes the largest connected component of
p containing u but not v and e. Formally, a partition p is
completely important if for each edge e = (u, v) ∈ p:

1. weight(Se(v)
⋃
{u})− weight(Se(v)) > 0

2. weight(Se(u)
⋃
{v})− weight(Se(u)) > 0

To illustrate why the complete importance property is de-
sired, we provide the following example. Consider the sub-
lattice in Figure 4(a). It contains 3 distinct tagsets (#usa),
(#politics), and (#usa, #politics). If we use sum of the
partition weights to measure the goodness of the results, the
best way to choose top-2 partitions for the lattice, as shown
in Figure 4(b), is to choose nodes #usa and #politics with
a total weight of 30 + 25 = 55.

If we want to select one top partition, however, the story
is different. Figure 4(c) shows a candidate top partition.
Although this partition has the largest weight among all
possible partitions in the lattice, it is not a proper choice
for us since it may group irrelevant tweets together. In this
example, the large size of #usa (N(#usa) = 30) means that
there is some attention to events related to #usa. The same
happens for #politics. But by the small size of (#usa,
#politics), we infer that there is less attention to politics
in USA. In fact, there are many tweets about USA but not
related to Politics (e.g. tweets about Oscars) and there are
many tweets related to Politics but not related to USA (e.g.
tweets about the Arab spring). Therefore, placing all these
tweets together creates a group of heterogeneous tweets. In
this situation, the candidate partition in Figure 4(d) that
groups all tweets about #usa together is preferred. However,
if the size of (#usa,#politics) is big enough, we can merge
all 3 nodes in a group since there are events about USA
politics that can play a connector role between USA tweets
and politics tweets.

To render things concrete, in this paper, we utilize the
weight function defined next, taking into account the prop-
erties established, to rank partitions.
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Definition 1. (Weight function): Let α ∈ [0, 1] determine
the importance of the coverage vs. the number of nodes, V
(Vp) be the set of vertices in the lattice (partition p), n be
the number of tweets, u be a node in partition p, and N(u)
be the size of u. We define:

weight(p) = α×
∑
u∈p

N(u)

n
− (1− α)× |Vp||V |

The weight function is a weighted average of the fraction
of coverage (Properties 1,3) and the negative of the fraction
of number of nodes in each partition (Property 2). Thus, it
aims to fulfill all three properties simultaneously. Moreover,
this weight function sets up a tool to establish Property 4
(Lemma 1).

Lemma 1. We define the weight of an edge e = (u, v) as
weight(e) = min(weight({u, v})−weight({u}) , weight({u, v})−
weight({v})). Here {u} is a partition with a single member
u and {u, v} is a partition with two members u and v. A
partition p is completely important iff for each edge e ∈ p:
weight(e) > 0. If the weight function is defined accord-
ing to Definition 1, the edges weights can be simplified as

weight(e) = αmin(N(u)
n
, N(v)

n
)− 1−α

|V | .

We define two complementary ranking problems attempt-
ing to satisfy the mentioned properties by fixing Property 4
and trying to optimize Properties 1,2,3 (by means of maxi-
mizing the weight function) in two possible directions. The
first direction maximizes sum of the weight values of top-k
partitions; the second one maximizes the minimum weight
among top-k partitions.

We stress, however, that the algorithms proposed in this
section do not exclusively operate using the weight function
of Definition 1. Any function satisfying the general Prop-
erty 5 can be utilized by our algorithms.

Property 5. ∀u ∈ V : sign(weight(p
⋃
{u})−weight(p))

is independent of p where p is a neighboring partition of u
and sign(x) determines if x is positive, negative, or zero.

Property 5 states that the sign of the marginal gain, achieved
by adding a node to a partition, depends on that node not
the partition. In other words, we will gain, by adding node
u to a neighboring partition p, iff we gain, by adding u to
any other neighboring partition.

Example 2. The following weight functions satisfy Prop-
erty 5.

• weight(p) = α
∑
u∈p

N(u)
n
− (1−α)

|Vp|
|V | ; (Definition 1)

• weight(p) = α
∑
u∈pN(u)x−y|Vp|; for some x, y ∈ R+

• weight(p) =
∑
u∈p e

N(u) − y|Vp|; (y ∈ R+)

• weight(p) =
∑
u∈p log(N(u) + x)− y|Vp|; (x, y ∈ R+)

4.1 MaxSum Top partitions (MST)
In this section, we intend to identify a set of k partitions,

satisfying Property 4, that jointly have the highest weight
among all combinations of k partitions. In other words, we
aim to identify k completely important partitions (Prop-
erty 4) such that the sum of their weights is maximized.

Problem 3. (Max-Sum Top partitions) Let the function
weight(.) : Partition → R assigns a weight value to each
partition. Moreover, let k be an input integer. Find k par-
titions P1, · · · , Pk on the given lattice L such that:

(a)

(b)

A : 2 E : 2D : 2C : 1B : 1

AB : 2 BD : 1AC : 3 AD : 1 BC : 2 CD: 1 CE : 1 DE : 5

ABC : 1 CDE : 1ABD : 1ACD : 1

ABCD : 6

BCD : 1

A : 2 E : 2D : 2C : 1B : 1

AB : 2 BD : 1AC : 3 AD : 1 BC : 2 CD: 1 CE : 1 DE : 5

ABC : 1 CDE : 1ABD : 1ACD : 1

ABCD : 6

BCD : 1

Figure 5: Finding 2 MST top partitions.

a. the objective Ψ =
∑k
i=1 weight(Pi) is maximized

b. for each edge e in a partition: weight(e) > 0 (Lemma 1).

We present an algorithm that optimally solves Problem 3.
We calculate the weights of edges in the lattice, remove all
edges with negative weights and compute the weight of each
connected component of the new lattice. We report k largest
in weight components, provided there exist k components
with a weight not smaller than the extra weight we achieve
by cutting an edge ( 1−α

|V | according to Definition 1).

If the number of the components satisfying the condition is
less than k (say, d), we create k partitions by segmenting the
current components. This can be easily done by obtaining
the spanning trees of these components and removing k− d
edges from them.2 Note that the way, we select these edges,
does not impact the value of the objective function. In case,
the number of edges in all trees is smaller than k−d (say d′),
we report the trees together with k−d−d′ largest in weight
components of the lattice having a weight smaller than 1−α

|V | .

Example 3. Consider the lattice in Figure 5(a). We wish
to find top-2 partitions according to Problem 3. Let α = 0.5.
First, we calculate the weight of each edge in the lattice. The

weight of the edge e = (u, v) = 1/2× min(N(u),N(v))
n

− 1
2×|V | .

In this lattice, n = 35 and |V | = 19. Thus, edges connected
to nodes with size of 1 have negative weights and should
be removed. Figure 5(b) displays the new lattice. The two
partitions shown have the highest weights (0.0496) among
all 13 candidates.

Theorem 7. The proposed algorithm achieves the opti-
mal solution for Problem 3.

Theorem 8. The run time of MST is Θ(l) where l is the
number of lattice nodes.

4.2 MaxWeighted Top partitions (MWT)
In the second ranking problem that we introduce, we wish

to identify k partitions, satisfying Property 4, with the high-
est weights. Indeed, we are seeking k partitions that are as
large as possible and report on the information captured
by the tweets in them. Formally, the goal is to identify k
completely important partitions (Property 4) such that the
weight of the lightest one is maximized.

2Note that the weight we gain by removing an edge is 1−α
|V |
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Problem 4. (MaxWeighted Top k partitions) Let the func-
tion weight(.) : Partition → R assigns a weight value to
each partition. Moreover, let k be an input integer. Identify
k partitions P1, · · · , Pk in the given lattice L such that:
a. The objective Φ = min1≤i≤k weight(Pi) is maximized
b. for each edge e in a partition: weight(e) > 0 (Lemma 1)

Theorem 9. Problem 4 is NP-complete.

4.2.1 An Approximate MWT Algorithm (AMWT)
We start by pruning all edges with negative weights. Then,

we calculate the weights of the connected components, and
identify the k components with the largest weights.

These k components are not necessarily the top k par-
titions that we are looking for. There are situations where
one can generate a set of k partitions with a larger minimum
weight, by decomposing some of these components. In a set
of partitions (for instance {P,Q,R} where R is the lightest
partition), a large partition (P ) may be decomposed into
two smaller partitions (P1, P2) with weights greater than
the current minimum weight (weight(P1) > weight(R) and
weight(P2) > weight(R)). Hence, substituting P and R by
the new partitions P1 and P2 increases the minimum weight
in the set of partitions. This new set {P1, Q, P2} has a higher
minimum weight, hence it is a better solution.

To identify the top partitions, therefore, we should opti-
mally decompose each component. The optimal decomposi-
tion for a component is a decomposition that increases the
current minimum weight the most. To achieve this goal,
we need to calculate the optimal number of decomposition
for each component. We initialize this number to be 1 for
all components. If there are less than k components (say
h), we initialize this number to be k − h + 1 for the heav-
iest component and 1 for the others. These numbers are
being updated in several iterations. In each iteration, we
check whether a higher minimum weight can be achieved by
increasing the number for one component and decreasing it
for another. If so, we perform this change and continue until
no increase can be done in the minimum weight. Note that
calculating the optimal minimum weight when a component
is decomposed into q partitions is, in fact, a MMP problem
(Problem 2) and can be addressed utilizing any MMP al-
gorithm including Algorithm 2 (by using a weight function
instead of size in the pseudo code).

Theorem 10. Utilizing a β-approximation algorithm for
MMP, the approximation bound of AMWT is β.

Theorem 11. The run time of the AMWT algorithm (uti-
lizing Algorithm 2 to conduct MMP) is Θ(k2 × l).

4.2.2 A Heuristic MWT Algorithm (HMWT)
Arguably the runtime of AMWT can be high for large

datasets or large k. We propose a much faster heuristic ap-
proach that generates partitions with minimum weight that
is very close to the AMWT algorithm. Algorithm HMWT
starts similarly to AMWT: it removes negative edges, iden-
tifies k connected components with the largest weights, and
continues to decompose these components in several iter-
ations. At each iteration, however, it first identifies the
lightest current partition (Po). Then, it temporarily de-
composes each partition Pi (1 ≤ i ≤ k) into 2 parts P 1

i

and P 2
i . Let MINi = min(weight(P 1

i ), weight(P 2
i )) and

MAX = maxki=1(MINi). Assume MAX corresponds to the
partitions of Pj (i.e., MAX = MINj ). HMWT compares
MAX with weight(Po). If MAX > weight(Po), it replaces
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Figure 6: Dataset statistics.

Po and Pj with P 1
j and P 2

j . Otherwise, the algorithm ter-
minates and the k current partitions will be reported.

We note that we do not need to temporarily decompose all
partitions at each iteration. In fact, at iteration l, we reuse
the values of MINi from the iteration l − 1 and run the
MMP algorithm to decompose just the two newly generated
partitions at iteration l − 1 (i.e., P 1

j and P 2
j ).

Theorem 12. The run time of HMWT is Θ(k × l).

5. EXPERIMENTAL RESULTS
We evaluated all algorithms on synthetic and real datasets.

Since the results are consistent in both datasets, we choose
to present the results on real datasets.

We use a dataset consisting of 10 days of Twitter fire hose
(chosen randomly from January and February 2012). Each
day contains between 250−300 million tweets, among those
about 13% contain hashtags. We executed our algorithms on
the different days and observed similar trends. The results
on the run time of all proposed algorithms are presented
in Section 5.1 and qualitative results of their output are
discussed in Section 5.2.

The algorithms were coded in Java and evaluated on a
quad core 2.4GHz computer (AMD OpteronTM Processor
850) with 20G of memory running CentOS 5.5 (kernel ver-
sion 2.6.18-194.11.1.el5). All algorithms are single-threaded.

5.1 Run time analysis
There are three parameters that affect the execution time

of the partitioning algorithms: (1) the dataset size, (2) min-
imum size of partitions, c, in MSP, and (3) number of parti-
tions, q, in MMP. The top-partitions algorithms are affected
by three parameters: (1) dataset size, (2) number of par-
titions k, and (3) parameter α. To evaluate the impact of
dataset size, since the tweets are ordered by time, we pro-
gressively increase the number of tweets. We use tweets for
Feb 8 and report the number of tweets containing hashtags,
the number of distinct tagsets, and the number of nodes in
the corresponding lattice in Figure 6. As Figure 6 shows,
Feb 8 contains more than 37 million tweets with hashtags,
and about 5.5 million distinct tagsets. Moreover, the lattice
representing this dataset contains about 8.7 million nodes.
The lattice creation time takes less than 5 minutes for all
algorithms utilizing our infrastructure. We analyze the run
time for the partitioning algorithms in Section 5.1.1, and for
the top-partitions algorithms in Section 5.1.2.

5.1.1 Partitioning algorithms
Figure 7 depicts the sensitivity of the partitioning algo-

rithms to the dataset size and the parameter q. We set
c=q=100 in Figures 7(a-b). Figures 7(a-b) suggest that the
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Table 1: Run time of all algorithms for c=q=k=100,
α=0.25 on Feb 8 tweets.

Alg. AMSP MMP MST AMWT HMWT
Time 9.3 sec 18.7 min 9.2 sec 2.9 min 32.9 sec

run time of AMSP and MMP increases linearly when the
dataset size grows. We, also, measure the impact of chang-
ing c (min size of partitions) on the run time of the AMSP
algorithm. Our experiments show that the run time remains
constant (about 9.3 seconds) when c increases; changing c
does not affect the number of times the lattice nodes and
edges are examined by AMSP. Thus, AMSP can generate
partitions on a full hose tweet dataset with any desired min-
imum size in less than 10 seconds. As Figure 7(b) shows,
the MMP algorithm, partitions the entire dataset into 100
partitions in less than 19 minutes. In Figure 7(c), we mea-
sure the run time of MMP by varying the value of q and
observe a linear increase in the run time as q increases.

5.1.2 Top-partitions algorithms
In Figure 8, we demonstrate the run time behavior of the

top-partitions algorithms by varying the dataset size and the
number of partitions, k. We set k = 100 in Figures 8(a-b)
and run the MWT algorithms on the full dataset in Fig-
ures 8(c-d). We observe a linear run time increase as a result
of dataset growth (Figure 8(a-b)). This linearity persists
when k is raised from 10 to 1 million in HMWT (Figure 8
(d)). Figure 8(c) demonstrates that AMWT has a quadratic
run time subject to k (as discussed in Section 4.2.2).

Figure 9 demonstrates the impact of parameter α on the
run time of the top-partitions algorithms. The results for
MST have been presented in Figure 9(a) and for the MWT
algorithms in Figure 9(b). We observe a slight increase in
the run time of MST for α = 0.8 that is reasonable since
the number of non-negative edges increases significantly at
that point. To explain the behavior of MWT in Figure 9(b),
we show how the number of non-negative edges vary when
α increases (Figure 9(c)) and how run time changes with
respect to the number of non-negative edges (Figure 9(d)).
The outcome suggests a linear increase in run time with
respect to the number of non-negative edges.

We report the run time for all algorithms on the full
dataset of Feb 8 using c=q=k=100 and α=0.25 in Table 1.

5.2 Qualitative results
In this section, we conduct a qualitative study of the re-

sults of all algorithms presented. As a baseline comparison,
we include two graph clustering algorithms to partition the
lattice and three co-clustering algorithms to partition the
tweet-tag bipartite graph. The tweet-tag bipartite graph for
a collection of tweets is constructed by establishing edges be-
tween tweets (as nodes on one partition) and the hashtags
contained in the tweets (as nodes on the other partition).
Moreover, we compare our ranking algorithms with an al-
gorithm that simply ranks tagsets based on their frequency
(referred to as algorithm MFT - Most Frequent Tagsets)
which is further compared in Section 5.2.1).

After these comparisons, we report results of running our
algorithms on the Twitter fire hose for Feb 26 (The Oscars
night) using c=q=k=100 and α=0.001 for MST and α=0.25
for MWT algorithms. Finally, we analyze how the partitions
alter when we change the values of different parameters.

AMSP AMSP AMSP AMSP AMSP AMSP

MMP MMP MMP MMP MMP MMP
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10 50 100 10 50 100

Accuracy

Most Frequent Tagsets Random Tagsets
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20

40

60

80

100
Accuracy

Bipartite coclustering
Lattice partitioning

Our algorithms

(a) partitioning quality (b) baseline comparison

Figure 10: Accuracy comparison.

To report the results, we rank them accordingly. For MSP,
MST, and MWT, due to the constraints and objectives on
both the size and the number of edges in each partition,
we use the weight function defined in Definition 1 to rank
the generated partitions. For MMP, since the goal is to
maximize the size of each partition with no constraint on
the number of edges, we rank them according to their sizes.

5.2.1 Goodness of the proposed algorithms
To evaluate our partitioning algorithms, we created a set

of datasets containing known partitions. We experimented
with various ways to generate known partitions including
among others, selecting the partitions randomly, selecting
the partitions based on what was trending that day on Twit-
ter as well as selecting partitions based on very popular
hashtags on that day. In all cases our results were consis-
tent. For brevity we report the following indicative results.
We choose the 10, 50, 100 most frequent tagsets and 10, 50,
100 random tagsets and in each case retrieve all tweets in
the Twitter fire hose containing at least one of these tagsets.
Here, each tagset represents a partition. We run AMSP and
MMP to segment these datasets into 10, 50, 100 partitions
and report the accuracy (the percentage of correctly parti-
tioned tweets) in Figure 10(a). As can be seen our algo-
rithms are highly accurate.

We also compare the results of our partitioning algorithms
with baseline techniques including two graph clustering algo-
rithms (the edge betweenness clustering [6] and the voltage
clustering [17]) on the created lattice and three co-clustering
algorithms (the euclidean co-clustering, information theo-
retic co-clustering “IT”, and minimum squared residue co-
clustering “MSR”) [3,4,7] on the tweet-tag bipartite graph.
Since the complexity of these algorithms is high, we couldn’t
run them on the full dataset. For exposition, we run all
algorithms on a smaller dataset created by choosing the 10
most frequent tagsets and retrieving 1000 first (by post time)
tweets containing each tagset (10000 tweets in total). The
edge betweenness clustering (as an example) takes 4 days
on this dataset while AMSP and MMP take less than 0.2
seconds. Figure 10(b) displays the results. It is evident that
our approach offer superior accuracy in all cases. Moreover
in terms of run time our approach is the only approach that
is able to scale into real world instances such as Twitter.

To evaluate our ranking algorithms, we discuss a final way
to report top tagsets, namely the strategy MFT that sim-
ply reports the most frequent tagsets. There are significant
differences between the results of this approach and those
discovered by our algorithms. People commonly employ di-
verse tagsets to refer to the same physical event. MFT does
not group related tagsets in one partition hence fails to de-
tect all important events or rank them effectively. Further-
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Figure 7: The impact of changing size and q on the run time of the partitioning algorithms.
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Figure 8: The impact of changing size and q on the run time of the top-partitions algorithms.

more, each MFT partition is a single tagset hence it does
not discover context. More details are provided in [5].

5.2.2 Detected trends
Table 2 presents the top partitions for each algorithm.

Since the partitions contain diverse tagsets, to ease our pre-
sentation and facilitate reference, we label each partition
utilizing the most frequent tagset in it and show the parti-
tion labels using capital letters (e.g., #OSCARS).

By inspecting Table 2, we observe that many partition
labels are shared among the algorithms. Some observa-
tions are in order; we note that the Oscars 2012, the 2012
NBA All-Star game between Eastern and Western confer-
ence teams, the League Cup final (Carling Cup) between
Liverpool and Cardiff (partition labels #LFC, and #YNWA3), a
derby match between Arsenal and Tottenham, soccer matches
of Rayo Vallecano vs Real Madrid (#HALAMADRID), PSV Eind-
hoven vs Feyenoord (#PSVFEY), a government referendum on
a new constitution in Syria, and the national dutch song-
festival all took place on Feb 26. Moreover, we realized that
there was active discussion regarding #LIBROQUEESTOYLEYENDO

(in Spanish: Book I’m reading), #10THINGSILOVEABOUTYOU,
#THINGSPEOPLEHAVETOSTOPDOING, #TEECHANDEMISA (in Span-
ish: you get kicked out of church [if ...]), #5GOODSINGERS,
#10VICIOS, #IFMYLIFEWEREAMOVIE, #BLACKMOMSCATCHPHRASE,
and #5THINGSILOVEABOUTYOU.

Furthermore, we observed other popular events regarding
the partition with label #DAYTONA500, “a 500 miles (804.7
km)-long NASCAR Sprint Cup Series race held annually
at the Daytona International Speedway” that was held in
Feb 27-28, 20124; the partition with label #ELDIARIODENOA,
a Spanish name for the movie “The Notebook”, that was
broadcasted on Antenna 3 in Feb 26 in Spain and attracted
social media attention; the partition with label #SARAHGLIVE

3#lfc, a short for “Liverpool football club”; #ynwa, a short
for “You’ll never walk alone”, the official Liverpool football
club anthem, which is performed by fans on matchdays.
4http://en.wikipedia.org/wiki/Daytona_500

that is “a Philippine evening musical show hosted by Sarah
Geronimo [...] debuting on February 26, 2012”5; the parti-
tion with label #TVDMEMORIES about the TV series “the vam-
pire diaries”; the partition with label #MYWORLDTOURMEMORIES
about Justin Bieber’s first headlining tour diaries that ap-
pears in fans’ tweets about their favorite moments from the
tour; the partition with label #BIGBANGFANTASTICBABY that
appeared due to the release of a teaser for one of the Big
Bang (a popular Korean band) new songs “Fantastic Baby”,
and the partition with label #WEMISSSHINEE related to the
South Korean R&B boy group Shinee.

The similarity of the partition labels, representing the
top partitions in different algorithms in Table 2, demon-
strates the consistency of these algorithms in the experi-
ments. Moreover, by manual inspection of the content of
the partitions with similar labels, we observed that they
are indeed related to the same physical events. Yet, we
observe some differences in the ranking of these partitions
among the presented algorithms. In fact, different algo-
rithms yield partitions with labels at varying positions in
the ranking on Table 2. For instance, in AMSP, the par-
tition with label #TEAMEAST appears higher in the rank-
ing than #SONGFESTIVAL while, in MMP, it appears lower.
In fact, the number of tweets in the partition with label
#SONGFESTIVAL is more than the partition #TEAMEAST. Re-
call that we rank MMP partitions according to their overall
size. Hence, the partition labeled #SONGFESTIVAL appears
higher than #TEAMEAST in the MMP ranking. On the other
hand, the number of nodes (distinct tagsets) in the parti-
tion with label #TEAMEAST is less than the partition with
label #SONGFESTIVAL. This results in a lower weight (Defi-
nition 1) for #SONGFESTIVAL, hence a lower position in the
AMSP partitions’ ranking. Another reason for this ranking
difference is that although partitions with the same label,
created by various algorithms, relate to the same physical
event, it does not necessarily mean that they contain exactly
the same set of tweets. Thus partitions may have diverse

5http://en.wikipedia.org/wiki/Sarah_G._Live
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Figure 9: The impact of changing α on the run time of the top-partitions algorithms.

sizes and weights that can lead to differences in the ranking
position. Section 5.2.3 discusses the structural differences
among the partitions generated by the proposed algorithms.

5.2.3 Differences in the algorithms
Comparing MSP with the other algorithms, we realize

that MSP creates partitions about specific events (exhibiting
very low variance in the tagsets belonging to the partitions)
while other algorithms identify events with much higher vari-
ance in the tagsets included in the partition. For exam-
ple, the partition labeled #OSCARS in MSP contains tweets
mostly tagged individually with a single #oscars along with
a small number of tweets tagged with a few other tagsets
such as (#oscars #wish) and (#oscars #scam) in 5 tweets
and (#oscars #videogames) in 7 tweets. The partition with
label #OSCARS in other algorithms contains several Oscars
related sub-events. For instance, we can see hashtags in
this partition for sub-events including Oscars movies (e.g.,
#theartist, #hugo, #aseparation, #theironlady), red car-
pet (#redcarpet), best and worst dressed (#bestdressed,
#worstdressed), and the simultaneous occurrence of Oscars
with NBA all-stars (#oscars #allstar).

To understand the differences between MMP and top-
partitions algorithms, we first define the notion of a connec-
tor between partitions in the lattice. A connector is a tagset
that builds a path between two partitions in the lattice. In
other words, it is a tagset that is a superset/subset of at least
one tagset in each partition with a difference in size exactly
one. For example, amongst partitions #a and #b, (#a #b) is
a connector since it is a superset of #a in the first partition
and #b in the second. We say that a connector is weak
if its size (number of tweets associated with this tagset)
is much smaller than the corresponding size of the parti-
tions it connects and strong otherwise. MMP allows the
creation of large partitions with weak connectors while top-
partitions algorithms create partitions containing tagsets as-
sociated via strong connectors (by removing negative edges).
For instance, for the NBA all-star match that took place
between the Eastern and Western conference teams, MMP
creates one partition containing hashtags {#nba, #allstar,
#teameast, and #teamwest}, while in top-partitions algo-
rithms, we see two separate partitions with hashtags {#nba,
#allstar} and hashtags {#teameast, #teamwest}. As the
potential connectors of these two partitions are weak, the
top partitions algorithms do not merge the two partitions.6

The partitions, created by MST, greatly depend on the
value of α. MST removes edges depending on the value of α

6The size of (#nba #teameast) and (#nba #teamwest) is,
respectively, 58 and 28. Compare it with #teameast :
58097, #teamwest : 36152, (#teameast #teamwest) : 3968,
#allstar : 65179, #nba : 13623 and (#allstar #nba) : 3230.
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Figure 11: The impact of changing q and α on the
minimum weight of the proposed algorithms.

and selects the largest components in the remaining lattice.
Since there is no limitation on the size of these partitions,
it may create a set of partitions with heterogeneous sizes.
Thus, we may observe large partitions encompassing differ-
ent tagsets along with tiny partitions. For example, when
α = 0.5, we obtain a large partition containing tweets about
diverse tagsets related to Oscars, NBA, soccer, etc., with
more than 25 million tweets, and some small partitions (e.g.,
a partition with label #10THINGSIHATE with 12000 tweets).
Choosing an appropriate α value is considerably important
to achieve meaningful partitions. We explain how to choose
an appropriate value for α in Section 5.2.4.

Finally, we focus on comparing the top partitions gener-
ated by the two algorithms presented for the MWT prob-
lem. Although in theory there could be scenarios where
there is a difference between the partitions, on real data
we observed similar behavior for both algorithms. We re-
port the minimum weight of partitions that are generated
by the AMWT and HMWT algorithms in Figure 11. We
observe that HMWT can achieve the same minimum weight
as AMWT in all except two cases and the difference between
the reported values for these two cases is less than 0.04%.
This suggests that the HMWT algorithm creates partitions
with high quality (same as AMWT) albeit much faster.

5.2.4 Choice of parameters
We detail how the partitions alter when we change the

parameters associated with our algorithms, and also what
constitutes good parameter choice for the algorithms.

In MSP, increasing c (minimum partition size) results
in the creation of larger partitions. For instance, by set-
ting c to 100, we observe a partition with label (#OSCARS
#ASEPARATION) for the Oscars movie “A Separation”, while
by increasing c to 1000, this partition becomes part of a
larger partition containing information about several Os-
cars movies. On the contrary, increasing q (number of par-
titions), in MMP, leads to partitions representing smaller
events. Example of this behavior is a big Oscars partition for
q = 10 that is divided into several smaller partitions with la-
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Table 2: The top results for different algorithms.7

rank AMSP MMP MST AMWT HMWT
1 #OSCARS #OSCARS #OSCARS #OSCARS #OSCARS

2 #TPHTSD* #TPHTSD* #TPHTSD* #TPHTSD* #TPHTSD*

3 #10TILAY* #10TILAY* #10TILAY* #10TILAY* #10TILAY*

4 #10VICIOS #ALLSTARGAME #YNWA #ALLSTARGAME #ALLSTARGAME

5 #BMCP* #BMCP* #BMCP* #BMCP* #BMCP*
6 #ALLSTARGAME #10VICIOS #10VICIOS #10VICIOS #10VICIOS

7 #YNWA #LFC #TEAMEAST #LFC #LFC

8 #5GOODSINGERS #ARSENAL #5GOODSINGERS #ARSENAL #ARSENAL

9 #MWTM* #YNWA #MWTM* #YNWA #YNWA

10 #TEAMEAST #SONGFESTIVAL #SONGFESTIVAL #TEAMEAST #TEAMEAST

11 #ARSENAL #TEAMEAST #ARSENAL #5GOODSINGERS #5GOODSINGERS

12 #SONGFESTIVAL #5GOODSINGERS #HALAMADRID #SONGFESTIVAL #SONGFESTIVAL

13 #LFC #SYRIA #TEECHANDEMISA #MWTM* #MWTM*
14 #TEECHANDEMISA #MWTM* #DAYTONA500 #SYRIA #SYRIA

15 #WEMISSSHINEE #EREDCARPET #WEMISSSHINEE #EREDCARPET #EREDCARPET

16 #EREDCARPET #ACADEMYAWARDS #ELDIARIODENOA #ACADEMYAWARDS #ACADEMYAWARDS

17 #ELDIARIODENOA #TEECHANDEMISA #TVDMEMORIES #TEECHANDEMISA #TEECHANDEMISA

18 #ACADEMYAWARDS #WEMISSSHINEE #OSCARLINHOSBROWN #HALAMADRID #HALAMADRID

19 #TVDMEMORIES #TEAMWEST #SARAHGLIVE #WEMISSSHINEE #WEMISSSHINEE

20 #TEAMWEST #DAYTONA500 #SYRIA #DAYTONA500 #DAYTONA500

21 #IMLWAM* #IMLWAM* #OSCARFORPOTTER #ELDIARIODENOA #ELDIARIODENOA

22 #SARAHGLIVE #SARAHGLIVE #5TILAY* #TEAMWEST #TEAMWEST

23 #OSCARLINHOSBROWN #TVDMEMORIES #BBFB* #IMLWAM* #IMLWAM*
24 #OSCARFORPOTTER #PSFVEY #MOVIESWEREBESTWHEN #SARAHGLIVE #SARAHGLIVE

25 #SYRIA #HALAMADRID #PSVFEY #TVDMEMORIES #TVDMEMORIES

bel (#REDCARPET), (#BESTDRESSED), (#THEARTIST), (#HUGO),
etc. when q = 1000. What constitutes a good choice of c
and q depends on our intention to obtain large partitions or
small specific partitions. A suggested approach is to choose
large values for c and decrease it progressively to obtain
more refined partitions. By decreasing c, the MSP algo-
rithm generates partitions for popular events in addition to
partitions representing smaller events. The same approach
can be utilized for q where we start by choosing a small value
and increase it to acquire more detailed partitions as well as
partitions representing less popular events.

The parameter α, as mentioned in Section 4, specifies the
trade-off between having more tweets or less distinct tagsets
when partitions are created. When we decrease α, we re-
move many edges from the lattice. Thus, we obtain smaller
in size partitions representing more specific events. When
α = 0, the top partitions are the most frequent tagsets, while
when α = 1, the top partition is the largest connected com-
ponent of the lattice. We run the MST algorithm using dif-
ferent values of α and observe the created partitions. Recall
that in order to identify top partitions in MST, we choose
the largest connected components of the lattice. When the
value of α is large, a small number of edges is removed and
most of the tagsets are still connected. For instance, when
α = 0.5, the top partition has 25 million tweets merging
different tagsets #oscars, #allstar, #arsenal, #fb, #oomf,
#10thingsiloveaboutyou, #bahrain, #syria, #china, etc.
The remaining top partitions are connected components,
representing small events. For example, we observe a parti-
tion with label #ZACEFRONNAJOHNJOHN (Zac Efron, the Amer-
ican actor and singer, that was announced as the face of John

7We have used #TPHTSD, #10TILAY, #BMCP,
#MWTM, #IMLWAM, #5TILAY, and #BBFB as ab-
breviations for #THINGSPEOPLEHAVETOSTOPDOING,
#10THINGSILOVEABOUTYOU, #BLACKMOMSCATCHPHRASE,
#MYWORLDTOURMEMORIES, #IFMYLIFEWEREAMOVIE,
#5THINGSILOVEABOUTYOU, and #BIGBANGFANTASTICBABY.

John denim) with 23500 tweets, and a partition with label
#10THINGSIHATE with 12000 tweets.

When we decrease the value of α, more edges are re-
moved. Thus, the connected components break to smaller
pieces. Therefore, if the connectors between partitions are
weak, they will be separated. For instance, when α = 0.01,
the top partition contains tweets with tagsets #nowplaying,
#nowwatching, #oscars, #news, #carlingcup-liverpool, and
#nba. The second partition contains #10thingsiloveaboutyou,
and the third partition contains tweets about Arab countries
with tagsets #bahrain, #kuwait, #saudi, #uae and #syria.
When α = 0.001, the top partitions contain more specific
events (Table 2). In this case, the top partition represents
the Oscars event including tweets about Oscars sub-events
such as Oscars, red carpet, best dressed, winning movies
(e.g., the artist, the help, Hugo), and its co-occurrence with
the all-star game.8 It is interesting to observe how this par-
tition morphs when we further decrease α. By reducing
α, this partition is divided into a number of sub-partitions.
Hence, we get more refined partitions related to Oscars. For
instance, for α = 0.0005, the top partition includes Oscars,
red carpet, best dressed, and the winning movies (the artist,
Hugo). This is a more refined Oscars partition that does
not contain tweets related to the co-occurrence of Oscars
and the NBA all-star game. Moreover, it just contains the
most popular (most tweeted about and incidentally receiv-
ing the most awards) movies of the Oscars, the artist and
Hugo. When we further decrease α to 0.0002, we achieve a
very refined top partition containing Oscars and red carpet
tweets. Finally by decreasing α to 0.0001, the top partition
contains tweets tagged solely with #oscars.

8A strong connection exists between Oscars and all-star
game due to their co-occurrence. Many tweets complain
here and talk about which one to watch, and how this co-
occurrence may reduce the revenue that can be achieved by
their organizers.
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This points to an iterative approach to obtain meaningful
partitions; one can start by using a high value for α and
progressively decrease it observing the refined partitions.
In general, if we use the proposed weight function and de-
sire partitions containing tagsets with sizes of at least a, we
should choose α = n

n+a×l where n and l are, respectively,
the number of tweets and nodes in the lattice.

6. RELATED WORK
The use of tags in online information sharing has been

utilized in various contexts. For example collaborative tag-
ging has been utilized to solve different data mining prob-
lems. Heyman et al. [8] study whether social annotations
(bookmarking and tagging) can provide data to improve
web search. Sarkas et al. [16] have designed novel searching
paradigms employing user-generated tags Hotho et al. [9]
identify trends in a social tagging system (folksonomy) uti-
lizing a differential adaptation of the PageRank algorithm.
Li et al. [12] create a top-down hierarchical structure to store
tags. An automatic method to recommend personalized tags
for webpages has also been designed by Chirita et al. [2].

Twitter has been considered actively in research stud-
ies given the relatively easier accessibility to its data sets.
Sankaranarayanan et al. [15] present a system to detect
breaking news in twitter. Other aspects of research related
to Twitter are available elsewhere [11]. Several works [10,13]
aims to characterize bursty information on the web. Klein-
berg [10] utilizes a multi-state automaton to model and iden-
tify the bursty vs. non-bursty time periods for each event.
Mathioudakis et al. [13] detect geographically focused infor-
mation bursts and describe these bursts with demographic
characteristics and illustrative keywords. Budak et al. [1]
utilize the network topology to discriminate viral bursty top-
ics from news media bursty topics.

Perl and Schach [14] have proposed an optimal algorithm
to divide a tree into q subtrees (by removing q − 1 edges)
such that the size of the lightest subtree is maximized. In
Section 3.2 we generalize this approach to partition a lattice.

Graph clustering algorithms have been proposed based
on various concepts such as analogies from physics (voltage
clustering [17]) or concepts utilizing graph notions (such as
sorest paths, edge betweenness [6]) or simultaneous similar-
ity of nodes and features (co-clustering approach [3, 4, 7]).
We compare with those in section 5.2.1 for completeness.
We note however that the objectives of these algorithms are
orthogonal to those of our problems and in terms of run
time they take hours to complete even in small instances of
our problem (e.g., running the edge-betweenness clustering
algorithm on the same data set as that used in Section 5.2.1
with 10000 tagged tweets takes approximately 4 days).

7. CONCLUSIONS
We presented several algorithms to partition and rank

tagged data sources and also investigated the complexity
of these algorithms. All algorithms were evaluated on the
Twitter fire hose and their performance was demonstrated
by varying all key parameters. We presented a detailed
quantitative and qualitative analysis. Our algorithms op-
erate on the full day of Twitter data in seconds typically
and in less than 20 minutes for the most time-consuming al-
gorithm proposed. We also demonstrated that the top parti-
tions created by our algorithms correspond to valid popular

events of the day. Furthermore, we compared our algorithms
with 5 baseline techniques (lattice partitioning and bipartite
tweet-tag coclustering) and noticed up to 55% improvement
in accuracy over baseline techniques.

This work raises several avenues for further work. One is
to design algorithms to improve the approximation bounds.
It would be interesting to incorporate more information in-
cluding time, space, and social ties in the creation of the
lattice model.
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