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ABSTRACT

We present research aimed at improving our understanding
of the use and implementation of quantification in relational
query languages in general and SQL in particular. In order
to make our results as general as possible, we use the frame-
work of Generalized Quantification. Generalized Quantifiers
(GQs) are high-level, declarative logical operators that in
the past have been studied from a theoretical perspective.
In this paper we focus on their practical use, showing how
to incorporate a dynamic set of GQs in relational query lan-
guages, how to implement them efficiently and use them in
the context of SQL. We present experimental evidence of
the performance of the approach, showing that it improves
over traditional (relational) approaches.

1. INTRODUCTION
It is well known that relational query languages (i.e. re-

lational algebra, SQL) are variants of a restricted subset of
first order logic. As such, they have the capability to express
basic properties, including those that rely on quantification
over the objects of a domain. At the same time, as practi-
cal languages (especially SQL), they must pay attention to
pragmatic issues that do not arise in purely logical scenarios:
for instance, issues of efficient evaluation are of the utmost
importance for implementation efforts, in particular in en-
vironments like Decision Support and Data Mining, where
the volumes of data under consideration are very large.
It is likely a combination of such factors that has led to the

lack of a universal quantifier in Relational Algebra (hence-
forth RA) and SQL: it is easy to see that certain queries
with universal quantification, in interaction with other fea-
tures, can led to high complexity ([12, 26]). However, there
is no lack of expressive power in such languages: universal
quantification can be expressed through negation (relative
negation, or set difference, for safety reasons) and existen-
tial quantification. Unfortunately, this paraphrasing leads
to queries that are somewhat cumbersome to express and
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difficult to optimize1 ([5]). It would seem that adding uni-
versal quantification to SQL and RA is therefore a good
idea, and this indeed has been studied in the past ([7]).

However, it is also possible to go beyond this punctual so-
lution and consider adding generalized quantifiers (GQs) to
the query language. Intuitively, GQs are generalizations of
the idea of quantifier in first order logic, so they admit more
operators than ∃ and ∀2. Again, this is especially relevant in
environments that use complex queries. As an example, in a
data warehouse with supplier information, one may be inter-
ested in analyzing orders where all the suppliers involved are
from some specific region (say, Europe). Or, the condition
can be relaxed to at least two thirds of the suppliers. Simi-
larly, one may look for orders where at most 10% of the items
are considered (by some measure) expensive. This typical
Decision Support queries involve set-based conditions.

The idea of adding GQs to query languages has been stud-
ied ([15, 28]), but all past approaches worked with a fixed,
finite set of such quantifiers. This limited the language ex-
pressiveness and usefulness. Also, implementation was ei-
ther based on an inefficient translation back into SQL ([15])
or in a very efficient but customized approach valid only for
a few quantifiers ([28]). A different approach is presented in
[3], that uses a logic-based query language with GQs, called
QLGQ, with the ability to add an unbounded number of
quantifiers to the language.

In this paper, we extend the approach proposed in [3]
with the goal of making it practical (by this we mean, in this
context, applying it to relational query processing). The ap-
proach of [3] is not readily usable for query processing, since
it relies on a tailored logic-based query language to express
queries, and issues of query processing and optimization are
barely addressed. Here address those shortcomings. In par-
ticular, our contributions here are as follows:

• we define an extension of RA that incorporates GQs.
Our approach is inspired by the work in [19], where
an extended relational algebra is developed to better
support rank queries. We take a similar approach in
extending RA to make it aware of set-based opera-
tions (subsection 3.1). We also study several proper-
ties of the resulting language that provide the basis
for query processing and optimization. In particular,
we describe how GQs behave in the presence of (tra-
ditional) relational operators (subsection 3.2).

1It is interesting to note that more modern query languages
like OQL and XQuery do include universal quantification.
2A formal definition is given in section 3.
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• after discussing, for completeness, the implementation
of GQs proposed in [3], we use this approach to provide
an implementation for the extended RA of 3.1, and
give a detailed account of how to incorporate such im-
plementation in traditional query processing, including
optimization strategies (section 5).

• we show results of an exhaustive experimental study
that provides evidence that the proposed approach
is indeed competitive with standard (relational) ap-
proaches for the type of queries considered (section 6).

The rest of this paper is organized as follows. In the next
section we provide some motivation for our work and explain
the issue that we are addressing. In section 3 we introduce
the concept of Generalized Quantifier (GQ) and an extension
of relational algebra that incorporates GQs. We also give
some basic properties of the resulting language. In section 4
we summarize the approach of [3] to GQ implementation and
show how it can be used to deal with our extended algebra,
detailing the approach used in our experiments. In section 5
we introduce several optimization techniques that can be
applied to the proposed implementation. In section 6 we
present our experiments and discuss its results. In section 7
we discuss related work and close in section 8 with some
conclusions and further work.

2. MOTIVATION
It is well known that SQL’s syntax sometimes forces users

to write queries in an awkward way. A well studied exam-
ple is that of universal quantification ([12, 26]). SQL relies
on paraphrases that make formulas complex for users and
difficult for the optimizer too, since it has to work harder
to process them in an efficient manner. As an example,
assume a database with two relations: student(sid,name)

and teaches(pid,sid), which denote the professor pid is
a teacher of student sid. Consider the question “find the
professors teaching all students”. Since SQL does not di-
rectly support the quantifier all (note that the keyword ALL

in SQL has a different meaning), there are several ways to
express this question, but all are indirect. The following
query is one of these expressions, which is presented in most
textbooks:

select pid

from teaches t

where not exists (select sid

from student

where sid not in

(select sid

from teaches

where pid=t.pid))

The query structure is complicated, and more importantly,
the performance of such a query may not be efficient due
to the correlated predicate ([5]). Adding universal quantifi-
cation to SQL allows this query to be written in a simpler
manner using the GQ all, which can be defined as a opera-
tor that takes two sets X and Y as arguments, and returns
true if X ⊆ Y 3 Thus, one could express the query above as:

3This corresponds to the typical use of ∀ in first-order for-
mulas like ∀ z (X(z) → Y (z)).

select pid

from teaches t

where all (select sid from students),

(select sid from teaches where pid = t.tid)

(We rely on the reader’s knowledge of SQL to see the in-
tuitive meaning of this formula; we will provide exact syn-
tax and semantics later. Again, note the difference between
the GQ all, that takes two subqueries as arguments, and
SQL’s ALL, which compares an attribute with a subquery
on a given comparison). Such query is not only easier to
write than the standard approach; it could potentially be
executed more efficiently if a query processor is equipped to
handle such queries. One of the main insights about GQs is
that by expressing declaratively what the user wants and de-
veloping appropriate techniques for query optimization, the
system may be able to execute such queries more efficiently
than in the traditional approach.

A second insight is that the idea can be generalized in a
principled and efficient manner. Intuitively, English deter-
miners and noun phrase modifiers (such as some, all, half
of, at least 3,...) can be seen as quantifiers. For instance,
the query “find the professors teaching half of the students”
could be written as

select pid

from teaches t

where half (select sid from students),

(select sid from teaches where pid = t.tid)

An even better approach would be to eliminate the need
for correlation, although this would require further changes
to SQL syntax. For instance, the query above can be written
as

select T.pid

where all (select sid from students),

(select sid from teaches T)

under the understanding that the second subquery provides
values for the select clause by acting as a correlated sub-
query. That is, this query is intended to be equivalent to
the previous one (note that pid is a foreign key in teaches),
but it eliminates the need for a self-join on teaches. The
main point is that SQL has a mechanism to form sets (sub-
queries), but that such mechanisms are not fully exploited by
the language as only a few predicates (IN, etc.) are allowed
to operate on subqueries.

In order to exploit this intuition, several challenges need
to be addressed: first, we need to give a formal semantics to
the new queries proposed; second, we need to incorporate
GQs into relational query processing (ideally, with minimal
disruption); third, we need to provide algorithmic support
to show that queries with GQs can be efficiently processed.
An additional challenge is deciding which specific GQs are to
be supported: since each GQ represents a certain property,
adding a fixed set of GQs is of limited utility, as it pro-
vides direct support only when those properties are needed.
However, more general approaches may be difficult to im-
plement. Thus, the goal (as usual in query languages) is to
balance generality with complexity.

3. BACKGROUND
In this section we introduce the formalism that we will use

in the rest of the paper. First, we introduce the concept of
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Generalized Quantifier (GQ). Then, we define the extended
algebra with GQs. We also provide some basic properties
of GQs and of the algebra that will be used later for query
processing and optimization.

3.1 Generalized Quantifiers
We start by fixing some notation. We will use variables

X, Y , X1, Y1,. . . , to refer to sets, and variables A, B,. . . ,
to refer to relational attributes. Relations themselves (more
in general, algebra expressions) will be denoted by E, E1,
E2,. . . . We will reserve M , M ′, . . . , for sets that act as uni-
verses (they will correspond to active domains in databases).
We use |X| to denote the cardinality of a set X. For RA
expressions, we will denote projection by π, selection by σ,
Cartesian product by ×, group-by by GB, aggregate func-
tion by AGG, join by 1, left (right) outerjoin by =⊲⊳ (⊲⊳<),
and left (right) semijoin by ⋉ (⋊).
Given a non-empty set M , a GQ Q on M is a binary

relationship on subsets of M , that is, a subset of P(M) ×
P(M). We write QM (X,Y ) to state that X,Y ⊆ M stand
in the relationship determined by Q. Some common GQs
are shown in Figure 14.

all = {X,Y ⊆M |X ⊆ Y }

some = {X,Y ⊆M |X ∩ Y 6= ∅}

no = {X,Y ⊆M |X ∩ Y = ∅}

not all = {X,Y ⊆M |X 6⊆ Y }

all but n = {X,Y ⊆M ||X − Y | = n}

at least n = {X,Y ⊆M ||X ∩ Y | ≥ n}

at most n = {X,Y ⊆M ||X ∩ Y | ≤ n}

half = {X,Y ⊆M ||X ∩ Y | × 2 = |X|}

Figure 1: A few common Generalized Quantifiers

Note that we admit parametric GQs, which allow parame-
ters in their definitions (and in their names). As an example,
at least n is a parametric GQ, with parameter n taking as
value a natural number.
Not all such relations are considered GQs. As with most

logical operators, GQs are required to be closed under iso-
morphisms, which in this context implies that for any bijec-
tion f : M → M , QM (X,Y ) iff QM (f [X], f [Y ]). Moreover,
it can also be argued that the behavior of a quantifier should
be independent of the context. Hence, it is sometimes as-
sumed (and we will assume it here) that for all M ′ ⊇ M ,
QM (X,Y ) iff QM′(X,Y ). In the context of database query
languages, closure under isomorphism ensures that quanti-
fiers are generic operations, while independence from con-
texts ensures they are domain independent ([2]).
The following definitions introduce some properties of GQs

that will be used later in this paper.

Definition 3.1. A GQ Q is upward (downward) mono-
tone on the first argument if whenever Q(X,Y ) and X ⊆ X ′

4We emphasize that here we are using a limited definition of
GQ; the general concept is much more powerful (the exact
relation between our notion of GQ and the general notion is
discussed in section 7).

(X ⊃ X ′), then Q(X ′, Y ), and likewise in the second argu-
ment. A GQ is upward (downward) monotone if it is upward
(downward) monotone on either argument.

As an example, some is upward monotone on both argu-
ments; all is downward monotone on the first argument and
upward monotone on the second; at most n is downward
monotone on both argument; and 10%of is neither upward
nor downward monotone.

Note that the definition can be easily extended to make
GQs operate on relations by treating tuples as atomic units:
for instance, given binary relations R, S, all(R,S) is true iff
R ⊆ S (that is, all pairs in R are also in S). Technically,
this is called the lifting of the GQ ([30]). In the following,
we assume that a GQ is automatically lifted to whatever is
needed by its arguments, i.e. a binary lifting when working
with binary relations, and so on.

3.2 GQs and Relational Algebra
Here we extend the standard relational algebra to incor-

porate GQs. In the following, if E is a relational algebra
expression, sch(E) denotes its schema and param(E) its set
of parameters. The extended algebra is defined by:

• if E is a standard RA expression composed of the se-
lection, projection, join and union operators (i.e. an
SPJU expression), then E is an expression in the ex-
tended algebra5. sch(E) is defined as usual; param(E) =
∅.

• if E is an algebra expression, and X ⊂ sch(E), E[X]
is an extended algebra expression, called a parametric
expression; the elements of X are called the parame-
ters. sch(E[X]) = sch(E); param(E[X]) = X.

• If E1, E2 are two extended algebra expressions, and
Q is a quantifier, Q(E1, E2) is an extended algebra ex-
pression, called a quantified expression. sch(Q(E1, E2)) =
param(E1) ∪ param(E2); param(Q(E1, E2)) = ∅.

The semantics of the extended algebra are simple: para-
metric expressions are really only used when quantified ex-
pressions are evaluated; otherwise they behave like regular
expressions. In particular, E[∅] = E. The following rules
specify the semantics formally:

• Let c be an arbitrary condition, with all the attributes
mentioned in c denoted by attr(c). Assuming (as usual)
that attr(c) ⊆ sch(E), σc(E[X]) = (σc(E))[X].

• Let L ⊆ sch(E). Then πL(E[X]) = (πL(E))[X ∩ L].

• Let E1, E2 be arbitrary expressions, withX ⊆ sch(E1)
and Y ⊆ sch(E2). Let c be a condition with attr(c) ⊆
sch(E1) ∪ sch(E2). Then E1[X] 1c E2[Y ] = (E1 1c

E2)[X ∪ Y ].

• Let E1 and E2 be schema compatible, andX ⊆ sch(E1)
and Y ⊆ sch(E2) be schema compatible too; then
E1[X] ∪ E2[Y ] = (E1 ∪ E2)[X].

• Let t, t′ be variables over tuples. As usual, for X a
set of attribute names, t[X] is the tuple that results

5Set difference will be expressed with the quantifier no in
the extended algebra, and universal quantification with all.
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from limiting tuple t to the values of attributes in X6.
Given parametric expression E[X], let Z = sch(E) −
X. Then for t ∈ E[X], Et,X = {t′[Z] | t′ ∈ E∧ t′[X] =
t[X]}. Note that Et,Z is a set of tuples. A quantified
expression Q(E1[X], E2[Y ]) denotes a relation defined
by:

{(t[X]t′[Y ]) | t ∈ E1 ∧ t
′ ∈ E2 ∧Q(Et,X

1 , Et′,Y
2 )}

where (t[X]t′[Y ]) denotes the tuple concatenation of
t[X] and t′[Y ].

The purpose of introducing parametric expressions is to di-
rectly reflect correlated subqueries in SQL. In our SQL ex-
tension, the additional conditions are of the form Q(S1, S2)
where Q is a quantifier and S1, S2 are SQL subqueries. Our
approach is to translate such expression directly into the
extended algebra. The rational for doing so is to give the
query processor the opportunity to deal with quantification
directly by choosing among several possible implementations
for quantifiers. To illustrate this idea, and the semantics just
introduced, we revisit our previous examples. The extended
SQL for query “Find the professors teaching all students”
written in section 1 is translated to

all(πsid(STUDENTS), (πsid,pid(TEACHES))[pid])

Here E1 = πsid(STUDENTS), with sch(E1) = {sid} and
param(E1) = ∅; E2 = πsid,pid(TEACHES)[pid], with sch(E2) =
{sid, pid} and param(E2) = {pid}. This expression de-
notes a relation with schema {pid}. It is equivalent to the
division operator of standard algebra, in that for a given
value v of πpid(TEACHES), we consider the set Tv =
πsid(σpid=v(TEACHES)), and add v to the result whenever
all(πsid(STUDENTS), Tv), that is, πsid(STUDENTS) ⊆
Tv (i.e. v is a professor teaching all students). Note that
the query “Find the professors teaching half of the students”
gets translated into a similar extended algebra expression,
given by

half(πsid(STUDENTS), (πsid,pid(TEACHES))[pid])

and its semantics are similar: for v a value of πpid(TEACHES),
v is in the result iff half(STUDENTS, Tv). Likewise, queries
like “Find the professors teaching at least 3|no| 10% of the
students” are translated into similar expressions, with only
the GQ used changing.

3.3 Properties of the Extended Algebra
It is not difficult to see that the main properties of RA

that provide the basis for query optimization (like selection
push-down, commutativity and associativity of joins) also
hold in the extended algebra. Here we study how GQs in-
teract with other relational operators.
Selections In the following, we use R, S, T , as variables
over relational expressions, and use c, c1, . . . as variables
over conditions, with attr(c) as before.

Lemma 3.2. Let R, S be arbitrary RA expressions, X ⊆
sch(R), Y ⊆ sch(S), and Q an arbitrary GQ. Then

Q(σc(R[X]), S[Y ]) = σc(Q(R[X], S[Y ]))

whenever attr(c) ⊆ X.

6If X = ∅, t[X] is the null tuple.

This lemma allows us to move selections in and out of quan-
tification when they only affect parameters7. The following
one deals with selections attached to joins.

Lemma 3.3. Let R, S be arbitrary RA expressions, X ⊆
sch(R), Y ⊆ sch(S), attr(c1) ⊆ X and attr(c2) ⊆ Y , and
Q an arbitrary GQ. Then

σc1θc2(Q(R[X], S[Y ])) =
Q(πsch(R)(R 1c1θc2 S)[X], πsch(S)(R 1c1θc2 S)[Y ])

Note that even though the lemma seems to introduce a more
complex RA expression, the join of R and S can be compute
once and then reused to compute the GQ.
Joins A join can cause a tuple in a relation to be duplicated
(if it matches several tuples in the other relation) or to go
away (if it does not match any tuple in the other relation).
The first effect is irrelevant since GQs are set operators and
therefore duplicate-insensitive. However, the second effect
may change the result of applying a given GQ.

When the join is on attributes that are parameters, we
have the following:

Lemma 3.4. Let R, S, T be arbitrary RA expressions,
X ⊆ sch(R), Y ⊆ sch(S), and Z ⊆ sch(T ). Let attr(c) ⊆
X ∪ Y .

• If Q is upward monotone on the first argument,

Q((R[X] 1c S[Y ]), T [Z]) ⊆
Q(R[X], T1[Z]) ∩Q(S[Y ], T2[Z])

where Ti is the same expression as T but with addi-
tional projections to match only attributes in R (S).

• if Q is downward monotone on the first argument,

Q((R[X] 1c S[Y ]), T [Z]) ⊇
Q(R[X], T1[Z]) ∩Q(S[Y ], T2[Z])

Note that if Q is downward (upward) monotone in the
second argument, and the second set term contains a con-
junction, the case is completely symmetric.

When the join is on attributes that are not parameters,
we have a similar result:

Lemma 3.5. Let R, S, T be arbitrary RA expressions,
X ⊆ sch(R), Y ⊆ sch(S), and Z ⊆ sch(T ). Let attr(c) ⊆
sch(R) ∪ sch(S)− (X ∪ Y ).

1. If Q is upward monotone on the first argument,

Q((R[X] 1c S[Y ]), T [Z]) ⊆
Q(R[X], T1[Z])×Q(S[Y ], T2[Z])

where Ti is the same expression as T but with addi-
tional projections to match only attributes in R (S).

2. if Q is downward monotone on the first argument,

Q((R[X] 1c S[Y ]), T [Z]) ⊇
Q(R[X], T1[Z])×Q(S[Y ], T2[Z])

7Proof of this and the following lemmas are not included for
lack of space.
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Union The final operator to consider is union, that is, for-
mulas like Q(R[X] ∪ S[Y ], T [Z]), where R and S are union
compatible (that is, they have the same number and type of
attributes). Here we also consider several cases:

1. when X = Y = ∅, we have the following:

Lemma 3.6. (a) If Q is downward monotone in the
first argument, then

Q(R[∅] ∪ S[∅], T [Z]) ⊆
Q(R[∅], T [Z]) ∩Q(S[∅], T [Z])

(b) If Q is upward monotone in the first argument,
then

Q(R[∅] ∪ S[∅], T [Z]) ⊇
Q(R[∅], T [Z]) ∩Q(S[∅], T [Z])

The proof is based on the fact that S ⊆ S ∪ T and
T ⊆ S ∪ T . Note that technically we consider empty
sets for downward monotone quantifiers; if this is not
the case, than the lemma does not hold. For such
cases, union should be used instead of intersection.

2. whenever X or Y are not empty, lemma 3.6 still holds
but with a small modification:

• if X ∩ Y = ∅, then Cartesian product takes the
place of intersection.

• if X = Y , union takes the place of intersection.

• else (X ∩ Y 6= ∅ but X 6= Y ), then join (on at-
tributes X ∩ Y ) takes the place of intersection.

Since we only use SPJU expressions, this covers all cases
to consider.

4. IMPLEMENTING QUANTIFIERS
We now discuss how the extended algebra can be sup-

ported in the back end. We focus on quantified expressions
(since other expressions are similar to standard relational
expressions), and in particular on how GQs can be imple-
mented in a relational framework.
We use the approach of [3], which is summarized here for

completeness. We start by noticing that expressions of the
form Q(E1[X], E2[Y ]) are defined recursively; therefore E1

or E2 may contain quantified expressions in turn. However,
this can be handled in the usual manner, by executing the
query tree from the bottom up, since at some point the ex-
pressions E1 and E2 are simply SPJU expressions that the
query processor can handle. Thus, we focus on implement-
ing Q(E1[X], E2[Y ]), assuming that both arguments to the
quantifier have already been dealt with.
Since GQs are high-level, declarative operators, several

approaches to their implementation are possible -this is one
of the advantages of using GQs. One such approach is to
provide algorithms that directly compute the set properties
that GQs express, an approach used in [25, 21] for a related
issue (set-based joins). The advantages of such approach are
that it yields very efficient implementations, and that it can
be integrated in a relational framework quite nicely. The
main disadvantage is that in order to support more than a
fixed, finite set of GQs, the algorithms would have to be

parameterized, an interesting option that has not been ad-
dressed in the literature. The usual setup is to consider two
set-valued attributes, A from relation R and B from rela-
tion S, and determine which tuples t ∈ R and t′ ∈ S are
such that t[X] ∩ t′[Y ] 6= ∅ (i.e. a set-based join). These
algorithms provided in [25] and [21] could be adapted to
compute |t[X] ∩ t′[Y ]|, so we could determine whether GQs
like some, at least n, at most n, etc. hold. Also, the
algorithms could be used to check all either by computing
whether t[X] ⊆ t′[Y ] directly or by comparing |t[X] ∩ t′[Y ]|
with |t[X]|. Note that if we start with a flat relation R, mak-
ing attribute A set-valued is achieved by nesting R, which is
exactly what our parametric expressions denote -in this case,
R[A] and S[B] would be the arguments to the algorithm for
computing the set-based properties.

The approach of [3] enables supporting an extendible frame-
work. This approach (called the counter approach in the rest
of the paper) is explained in some detail since it is the one
used in our experiments. Our target language is a RA with-
out GQs, but with aggregation, group by and the ability to
detect nulls (an is null predicate) and to count under cer-
tain simple conditions (that is, a CASE statement). This
algebra is similar to that used by most query processors and
optimizers.

Recall that a GQ Q is (in our context) a binary relation on
subsets of a given domainM , and that such relation is closed
under isomorphisms: for f : M → M bijective, QM (X,Y )
iff QM (f [X], f [Y ]). It can be shown that such quantifiers
can be completely characterized by a purely combinatorial
approach, since isomorphism between sets depends uniquely
on cardinality conditions. In particular, it can be shown that
|X−Y |, |Y −X| and |X ∩Y | determine whether QM (X,Y )
([30]). Moreover, elements outside the arguments (that is,
elements inM−(X∪Y )) do not matter, due to our assump-
tion of domain independence. It follows that any quantifier
is determined by a relation between the cardinalities of the
three sets above, in the following sense (this concept is called
number-theoretic definability in [30]).

Definition 4.1. Let Q be a quantifier, and X and Y sets.
Let pX,Y

1 = |X − Y |; pX,Y
2 = |Y −X| and pX,Y

3 = |X ∩ Y |,
and let ϕ(x, y, z) be a formula in some arithmetic language
with (at least) 3 free variables. We say that Q is number-
definable when

Q(X,Y ) iff ϕ(pX,Y
1 , pX,Y

2 , pX,Y
3 )

Since quantifiers are determined, in this sense, by numeri-
cal properties, we define a language on numbers which allows
us to generate an infinite number of formulas, and therefore,
an infinite number of quantifiers. This framework allows us
to define new GQs as needed, instead of having a finite, fixed
set.

Definition 4.2. The proportional language (PL) is the
set of formulas on natural numbers obtained under the fol-
lowing syntax:

1. Terms. We assume an infinite set x, y, z, . . . of domain
variables.

(a) Numerals: 0,1,2, . . . and variables are terms.

(b) If m,n are terms, m+ n and m× n are terms.

2. Formulas
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(a) If t1 and t2 are terms, t1 θ t2 is a (atomic) for-
mula, where θ ∈ {=, 6=,≤, <≥, >}.

(b) If ϕ, ψ are formulas, then ϕ ∧ ψ, ϕ ∨ ψ are for-
mulas.

(c) If ϕ is a formula where the symbol × does not
appear, and x is a variable, ∃xϕ(x) is a formula.

We say that a quantifier Q is definable in PL iff it is
number-definable, in the sense of definition 4.1, by a for-
mula ϕ(x, y, z), where ϕ is in PL8. Even though PL is a
very simple language9, the quantifiers definable in PL can
express some important properties that are not first order
logic-definable. For instance, PL can express, besides all
standard first order quantifiers, the comparison quantifiers
(like I, defined by the formula p1 = p2

10; more, defined by
the formula p1 < p2; most, defined by the formula p3 > p1),
the even quantifier (since X ∩ Y is even can be expressed
as ∃n p3 = n + n)11; and the proportional quantifiers (like
n
m
of (A,B) = p3 ×m = (p1 + p3)× n, with the meaning

n
m

of As are Bs12). Thus, PL quantifiers are quite useful,
while admitting an efficient implementation.
From now on, we assume that for any quantifier Q appear-

ing in a query, the system has a PL formula that defines Q.
Note that there may be more than one formula for a given
quantifier; this fact can be used for optimization purposes,
since each definition of the quantifier can be used to gener-
ate a translation of the formula using the quantifier. The
query plan generator then simply uses the PL formula as-
sociated with Q (or several, if several are available), and
proceeds as follows: first, generate the expression E1−E2 if
p1 is involved; E2 −E1 if p2 is involved; and E1 ∩E2 if p3 is
involved (we can use join instead of intersection, and will do
so in the following). Then, we use aggregation (with the pa-
rameters in either set term as the grouping attributes) and
count to obtain a corresponding counter. Finally, a selec-
tion is added with a condition that reflects the PL formula.
As an example, the query “find the professors teaching all
students”, expressed by

all(πsid(STUDENTS), (πsid,pid(TEACHES))[pid])

causes the interpreter to attempt to evaluate the formula
with the all quantifier. Assume all has been defined as
p1 = 0 (that is, X ⊆ Y iff |X − Y | = 0). This yields the
formula:
T1 = AGGcount(distinct sid) as cnt2(student)
T2 = GBpid,count(distinct sid) as cnt1(student ⊲⊳<sid=sid teaches)
RESULT = πpid(σp1=0(πpid,p1=cnt1−cnt2(T1× T2)))
Here, T1 computes |X|, T2 computes |X ∩ Yv|, where Yv is
the set that results for parameter v (since Y is a parametric
expression); and the final expression computes |X − Yv| by
computing |X| − |X ∩ Yv|, and then checks that it is equal
to zero, in accordance to the PL formula. Note that an

8A very similar family of quantifiers is called the properly
proportional quantifiers in [16].
9Note that we avoid multiplication within quantification in
order to keep the language decidable.

10Since |X − Y | = |Y −X| implies that |X| = |Y |
11This example shows that PL takes us beyond languages
that have a 0-1 law ([2]).

12When m = 100, we have the percent family of quantifiers.
This also allows PL to express proportional GQs, like one
half of, one third of.... Note again that these definitions
are parameterized by m and n.

outerjoin is used for the intersection to avoid a zero-count
bug ([11]). Note also that T1 is really a number, so the
Cartesian product in the last line is trivial to compute. Al-
ternatively, we could define all as p1 + p3 = p3 (that is,
X ⊆ Y iff |X| = |X ∩ Y |). This generates the alternative
formula (with T1 as above)
T2 = GBpid,count(distinct sid) as cnt1(student 1sid=sid teaches)
RESULT = πpid(T1 1cnt1=cnt2 T2)
Here as above, T1 computes |X|, T2 computes |X∩Yv| (but
a join is used this time), and the final expression checks the
PL formula. Again, a cost-based optimizer would generate
a cost estimate for each alternative and choose the one with
the least cost. The details of an interpreter that takes in two
extended RA expressions and a PL formula and outputs an
algebra expression without quantifiers are given in [3], and
are not repeated here for lack of space. More examples are
shown in section 6.

4.1 GQs and SQL
Two issues need to be addressed if quantifiers are to be

considered as practical operators: handling of duplicates and
handling of nulls. In our exposition so far, we have stressed
that we are working with sets of elements. We believe that
this is what naturally fits with the quantifiers supported, i.e.
at least two means at least two different things. To achieve
set semantics, we use projection with duplicate removal and
use the aggregate count with a distinct in its argument.
In order to handle multisets, we can adopt multiset seman-
tics for intersection, difference and (more importantly) for
cardinality (so that multiset {a, a, b}, for instance, has
cardinality 3). In practice, this can be achieved by not re-
moving duplicates (in projection or in aggregation). This
means that not only we can handle multiset semantics, but
it is actually more efficient to do so than set semantics. The
other practical issue is the nulls. This is a more delicate
issue, in that null semantics is a big area of debate which
is not dealt with very consistently in SQL itself. With re-
spect to our approach, we can define set operations when
nulls are allowed by copying SQL semantics as followed in
the WHERE clause (since GQs are used in the WHERE
clause). In this approach, two nulls are treated as differ-
ent for computing intersection and difference. To support
this, we need to use COUNT(att) for a given attribute att,
or COUNT(*), as needed by the semantics, as the former will
ignore nulls and the latter count them.

Finally, we note that a database system could easily sup-
port PL; then a DBA could add GQs to the system by giving
the quantifier a name and a PL formula (or several) that in-
dicates the semantics of the GQ. Clearly, using such GQs in
query processing can be done within the counters approach.
This makes the approach extendible, in contrast with previ-
ous work, that deals with fixed sets of GQs.

5. OPTIMIZATION
In this section, we outline optimization techniques that

apply to expressions in the extended RA used in the pre-
vious section. Hence, these can be applied before GQs are
implemented.

5.1 Optimization using GQ Properties
There are several logical properties of quantifiers that can

be exploited for optimization. One of them is that of being
a sieve [4]. The intuition behind this idea is very simple:
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GQ Sieve Type
at least n |X| ≥ n and |Y | ≥ n constraint
at most n |X| ≥ n and |Y | ≥ n implication
exactly n |X| ≥ n and |Y | ≥ n constraint
all A 6= ∅; B 6=M implication
all but at least n |X| ≥ n constraint
all but at most n |X| ≥ n implication
all but exactly n |X| ≥ n implication

Figure 2: Quantifiers, sieve conditions and their
negations

given quantifier Q, it is expected that, in almost every do-
main M , some subsets of M will be in the relationships
denoted by Q, and some will not. However, this does not
always hold: sometimes the quantifier degenerates, in the
sense that all subsets of a domain are in its relationship, or
none is. By looking at different quantifiers’ definitions, it is
easy to identify conditions under which the quantifiers do
not behave as sieves; such conditions are called sieve con-
ditions. Note that, when such conditions are met, there is
no point in processing the quantifier formula (all arguments
will qualify, or none will); hence the value of this property
for query optimization. The following definitions and exam-
ples formalize the idea and show how it contributes to query
optimization.

Definition 5.1. Let Q be a quantifier. Then Q(X)1 =
{Y | Q(Y,X)} and Q(X)2 = {Y | Q(X,Y )}.

Definition 5.2. Let Q be a quantifier. Q behaves as a
sieve in its ith argument (i = 1, 2) whenever for all X ⊆M ,
Q(X)i 6= ∅ and Q(X)i 6= P(M). Q behaves as a sieve when
it behaves as a sieve in any argument.

Definition 5.3. Let ϕ(X) be a PL formula on set X and
Q a quantifier. ϕ is a sieve condition for Q if, whenever
ϕ(X) is true, Q behaves as a sieve, that is
ϕ(X) → ¬∀Y Q(X,Y ) and ϕ(X) → ∃Y Q(X,Y ) or
ϕ(X) → ¬∀Y Q(Y,X) and ϕ(X) → ∃Y Q(Y,X).

Note that when a sieve condition fails, two things may
happen: all sets qualify for a quantifier’s definition, or none
does. We distinguish both aspects because they tell us dif-
ferent things about how to proceed in query processing.

Definition 5.4. Let ϕ(X,Y ) be a formula on sets X, Y
and Q a standard quantifier. ϕ is an implication for Q
if, whenever ϕ(X,Y ) is true, Q(X,Y ) is also true, that is,
∀X,Y ϕ(X,Y ) → Q(X,Y ). ϕ is a constraint for Q if, when-
ever ϕ(X,Y ) is true, Q(X,Y ) is false, that is, ∀X,Y ϕ(X,Y ) →
¬Q(X,Y ).

The table in Figure 5.1 shows sieve conditions for some
common quantifiers and their type (implication or constraint).
As an example, consider the TPCH benchmark database
([1]) and the question “select the orders where all but 10
suppliers are from Europe.” We would compute this query
by generating two subqueries: one (call it X) giving the or-
ders and their suppliers, parametric on the orders; another
(call it Y ), listing the suppliers from Europe. The quantifier
all but (exactly) 10 can be computed by p1 = 10. Ac-
cording to the procedure of section 4, an outer join between
X and Y would be performed. But before carrying out this

outer join, both X and Y can be checked for sieve condi-
tions. Since only orders which have more than 10 suppliers
may qualify (note that this is the last (bottom) case in ta-
ble 5.1) we can, before outer join, add a group-by and an
aggregation to count the number of suppliers for each order
and remove tuples whose number is less than 10. This could
reduce the input (and hence the cost) of the outer join13

Note, though, that checking sieve conditions is a heuris-
tic and is not guaranteed to improve performance. This is
due to the fact that carrying out the checking has a cost
(in this example, an extra grouping and aggregation, plus
a selection, are introduced in the query plan14), while the
expected benefit will vary from case to case, depending on
features like data distribution (what is average number of
suppliers per order? How are they distributed?) Therefore,
the cost-based optimizer should consider the plans with and
without sieve conditions, and choose the most efficient plan
for a given query in a given database, using the information
on data distribution available.

5.2 Optimization of RA Expressions
Some RA expressions produced by the interpreter in [3]

involve outer joins. Since such outer joins are introduced to
deal with GQs and are followed by selections that reflect the
PL formula associated with the GQ, it is very easy to deter-
mine, by inspection, when the outer join can be simplified to
a join, following the concepts and approach of [10]. Other
traditional optimization techniques such as pushing down
group-by (e.g., [13]) and exploiting common subexpressions
(e.g., [32, 31]), can also be applied to the formulas produced
by the interpreter. Pushing down group-by is very useful for
the counter approach, since it needs to apply grouping to any
parametric set term (correlated subquery); such push-down
can reduce the cost of join or outer join. Also, when the first
and the second RA expressions that are arguments to a GQ
share common expressions (accessing the same relations, for
instance), the shared expressions can be computed once and
then reused by later processing. This technique is used re-
peatedly in our experiments (see section 6 for details).

Another special case which can be further optimized is the
case where the two RA expressions that are arguments to a
GQ are connected by a primary key/foreign key relationship.
In this case, the join or outer join introduced by the formula
may not be needed at all. For instance, in the previous
example (end of section 4), T1 can be simplified, in either
strategy, to
GBpid,count(distinct sid) as cnt1(teaches)
since sid is a foreign key in Teaches and a primary key in
Student.

5.3 Optimization of Multiple Quantifiers
Since SQL rules for subqueries are recursive, there can

be cases where several nested GQs are used within a single
query. Our previous expressions focused on single quanti-
fier rules to simplify the presentation; but the approach can
clearly be extended to handle several nested GQs. Focusing

13Note the relation of this reasoning with semantic query
optimization techniques that identify presuppositions in a
query.

14Although the grouping would be done anyways, so it is not
an extra cost!
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on this case, though, makes additional optimizations possi-
ble. Consider queries of the form

Q1(Q2(R[X], S[Y ])[Z], T [W ])

The process described previously can be used here, with Q2

processed first and then Q1 processed separately, using the
previous result. At the algorithmic level there is an opti-
mization strategy for this case: pipelining. In the counter
approach, we have to join R[X] and S[Y ], group the result
by both XY and select according to the PL formula for Q2,
then join the result with T [W ], and group by WZ to do the
final filtering according to the PL formula for Q1. In this
context, pipelining means that as soon as the selection forQ2

produces some results, we can start joining with T . Thus,
pipelining can also be used with set-based approaches, as
far as we use non-blocking algorithms. But with GQs, this
tactic presents another interesting possibility: to completely
skip part of the work. Assume Q2 is upward monotone in
the first argument -that is, if Q2(R,S) and R ⊆ R′, then
Q2(R

′, S). Then when we compute Q2 we do not need to
“finish” the computation: as soon as some value for XY sat-
isfies the condition, we can pass it to the (outer)join with T .
Further, if Q1 is also upward monotone, as soon as a value
associated with W has qualified for Q1 we can stop further
computation for that value. For instance, if Q1 is “at least
2” and Q2 is “at least half”, for a given value t[XY ], we
partition R 1 S by this value, further partition this with
values for t[Z] and count the associated Rt,XY ∪Z . As soon
as we get half of Rt,XY ∪Z we can pass the associated value
to the join with T . As soon as we have two such values that
pass the test for Q1, wen can move on to the next group for
Rt,XY ∪Z . A symmetric idea can be exploited if both quan-
tifiers are downward monotone; and if one GQ is downward
and another upward monotone, similar strategies can be im-
plemented (details are left out for lack of space). What is
required is that the flow of control can be passed backwards
to not only resume work, as in regular pipelining, but also
to stop work -at least on certain groups- when a GQ signals
that it has already “reached a decision” for a given param-
eter. Finally, note that this strategy can be combined with
the use of sieve conditions. For instance, in the previous
example, if for a certain value of Z Q2 can only produce one
associated XY value, then we know right away that the GQ
“at least 2” will not succeed, so there is no need to join this
value with T .

6. EXPERIMENTS
To verify the efficiency of our approach, we simulated the

implementation of SQL with GQs with the approach pre-
sented here by using a market-leading commercial RDBMS
systems, which we call “System A” in the following. In our
experiments, we created two copies of the TPC-H database
[1], one with size 1GB and another one of size 10GB, both
in System A, which was hosted on a server with an Intel
Pentium 4 2.80GHz processor, two 36GB SCSI disks, and
1GB memory, running Red Hat Enterprise Linux WS re-
lease 3. We configured a buffer cache of size 32MB, and
installed all data and indexes in a single disk. B+ tree in-
dexes on the primary key of each base table are automat-
ically built by System A, and indexes on all foreign keys
were manually created. We marked as NOT NULL all the
attributes used on the benchmarks queries. We carefully
built a query set to be representative of the approach as a

Figure 3: Query 1

whole. Each query was written in plain SQL and submit-
ted to System A, as a baseline. Then the same query was
written in SQL with GQs, transformed into extended RA,
and then translated to traditional RA with the GQs in the
query translated using the counter approach. Finally, this
last expression was transformed back into SQL, and the re-
sulting SQL submitted to System A. In the case of all and
no, due to their importance in SQL and in our approach, we
added several optimization techniques such as pushing down
group-by (labeled GB) and reusing common subexpressions
(labeled CS). Because the counter approach uses slightly dif-
ferent transformations to different types of queries, we used
variations of our test queries to cover all cases. Cases are
denoted as xy, where x = 1, 2, 3 (depending on whether p1,
p2 or p3 is used in the quantifier formula), and y = a, b, c,
corresponding, respectively, to: only the first (second, both)
argument to the GQ is parametric. In our test, we examine
cases 1a to 1d and 3a to 3d (cases 1 and 2 are symmetric).
For each query, we chose multiple quantifiers that could be
expressed using p1 or p3 or a combination. Our goal was
to test if different cases led to different performance, even
for the same GQ. For all and no, we compared SQL with
GQs to the plain SQL presented in most textbooks: using
NOT EXISTS and NOT IN subqueries for all (labeled by N/N),
and NOT EXISTS and IN for no (labeled by N/I). The perfor-
mance metric used everywhere is the average elapsed time
of multiple runs of a query. All the graphs of results plot
elapsed time on the Y-axis and quantifiers with different
approaches for each on the X-axis.

Experiment 1: Our first experiment was to test Case 1a
and Case 3a on the following query (Query 1): “Select the
orders (ordered between 1993-01-01 and 1993-03-01) where
Q (at least n | no | two thirds | all | all but n) suppliers
are from Europe.” The extended SQL query is:

select O.o_orderkey

where Q (select l_supkey

from orders O, lineitem

where o_orderkey = l_orderkey

and l_date between 1993-01-01 and 1993-03-01)

(select s_supkey

from supplier, nation, region

where s_nationkey = n_nationkey and

n_regionkey = r_regionkey and
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r_regionname = ’EUROPE’)

In Query 1, the parameter of the first subquery is o orderkey;
the second one has no parameters. This translates into our
extended relational algebra as15:

Q (πorderkey,supkey(O 1 σdate between...(L))[orderkey],
πsupkey(S 1 N 1 σrname=′Europe′(R)))

We tested five quantifiers over Query 1, where at least n
(n=3), no, and two thirds belong to Case 3a due to the for-
mulas p3 >= 3, p3 = 0, and |X1| ∗ 2/3 = p3 respectively; all
but n (n=2) belongs to Case 1a because of p1 = 2; and all
belongs to both Case 1a and Case 3a because it can be com-
puted either by p1 = 0 or |X1| = p3. The results are shown
in Figure 3. Although the original approaches using the
formulas in Section 4 have different performance, when op-
timization techniques are applied all tested quantifiers have
similar performance and reasonable cost. For Case 3a, we
can see that at least n performs most efficiently compared
to other quantifiers because it only needs join. The perfor-
mance of no is slightly worse than at least n due to outer
join. Both quantifiers perform faster than two thirds and
all, which need an extra computation of |X1|. For Case 1a,
all and all but n perform comparably. For all, Case 1a per-
forms much faster than Case 3a (even with optimization).
Although no obvious common subexpressions are present in
the query, quantifiers computed by |X1| ∗ n = |X1 ∩ X2|
can be further optimized by either pushing down group-by
(labeled by GB) or exploiting common subexpressions (la-
beled by CS). We apply the optimizations to two thirds
and all; this results on performance about 40% faster than
the original approaches. We also did an experiment on op-
timizing all but n when n >= 1 using antijoin (labeled by
AJ) instead of outer join, and this improved performance
over the original approach. We also compared all and no
using our approach to the traditional SQL approach. Fig-
ure 3 shows that both SQL baseline queries no (N/I) and all
(N/N) perform slightly faster than our approach for Case
3a, but all(N/N) performs worse than Case 3a with opti-
mizations and Case 1a. The reason is that the IN or NOT IN

subquery is a non-correlated subquery and is efficiently pro-
cessed first by System A, and as a result the two subqueries
are reduced to one. Then the NOT EXISTS is executed by an-
tijoin. Here we have to point out that the ability of System
A to use antijoin for NOT EXISTS depends on several factors:
the NOT NULL definition on the involved attributes, the
absence of multiple correlated subqueries, etc. Our original
approach always uses outer join so as to work on a more
general setting. By taking into account the NOT NULL,
our approach can also be simplified to achieve better per-
formance. Still, our optimized approach beats SQL in each
but one case.
Experiment 2: To see how query structures affect perfor-
mance, we modified Query 1 such that the IN or NOT IN

subquery is a correlated subquery and the NOT EXISTS sub-
query is a non-correlated subquery. Accordingly, this leads
to Case 1b and Case 3b. Our second experiment was per-
formed on the following query (Query 2): “Select the orders
where Q (all | no) suppliers from Europe (and with some

15To make the RA expressions fit into the text, we identify
each relation by its first letter and shorten the conditions in
selections.
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Figure 4: Query 2

customer complaints) are suppliers of that order.” The ex-
tended relational algebra expression is:

Q(
πsupkey(σcomment like ′...′(S) 1 N 1 σrname=′Europe′(R)),
πsupkey,orderkey(σdate between ...O 1 L)[orderkey])

We tested quantifiers no and all. Similar to the first ex-
periment, no belongs to Case 3b, and all belongs to both
Case 1b and Case 3b. We run queries with two different
sizes (by changing the condition on o orderdate). The re-
sults are shown in Figure 4. In both sizes, our approach
performs significantly faster than the traditional SQL ap-
proach for all, especially in the larger one. But for no, in
the larger size, our approach performs slightly worse because
the cost of outer join is expensive for larger relations, partic-
ularly if the size of the intermediate join result is large. The
traditional SQL approach for no has one NOT EXISTS non-
correlated subquery and one IN correlated subquery, and
uses the nested iteration method only for IN. Compared to
outer join, the performance could be better if indexes are
properly defined to speed up table access. Although our ap-
proach is not always better than the traditional approach,
it is less sensitive to different sizes, while the traditional ap-
proach exhibits significant variations in performance, with
its worst-case much worse than the GQ approach.
Experiment 3: Our third experiment was to test Case 1c
and Case 3c. The test query (Query 3) is: “Select the
common orders between the orders (with commit date ear-
lier than receipt date and with the part size between 10
to 20) and the orders (with ship date earlier than commit
date), and the latter has Q (all | no) parts of the former.”
The extended algebra expression is:

Q(
πpartkey,orderkey(σcommitdate<receiptdate(L))[orderkey],
πpartkey(σshipdate<commitdate(L)))

We tested two quantifiers no and all. Similarly, no be-
longs to Case 3c, and all belongs to both Case 1c and Case
3c. For all, Case 1c performs slightly worse than Case 3c
because Case 1c needs a semijoin to obtain common orders
first and then an outer join, while Case 3c can be done using
join only due to p3 always greater than zero, even though
it needs to compute |X1|. A further optimization can be
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Figure 5: Query 3
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Figure 6: Query 4

made to Case 3c because there are common subexpressions
when computing |X1| = p3, which only needs an outer join
followed by computing two aggregations. The results shown
in Figure 5 correspond to the above analysis. Similar to
the previous experiments, we also run the query using the
traditional SQL approach for all (N/N) and no (N/I); both
perform worse than any of our approaches.

Experiment 4: Our fourth experiment was to test Case 1d
and Case 3d on the following query (Query 4): “Select the
pairs (supplier, customer) such that ’customer’ is involved
in Q (at least n | half | all |) of the orders (ordered be-
tween 1993-01-01 and 1993-02-01) from the ’supplier’.” The
extended algebra expression is:

Q(
πsupkey,custkey,orderkey((σdate...O) 1 L)[supkey, custkey],
πorderkey(σdate...O))

We tested three quantifiers: at least n (n=2), half, and
all, where at least n and half belong to Case 3d, and all
belongs to both Case 3d and Case 1d. Since at least n
is implemented by p3 >= 2, half and all are implemented
by |X1| ∗ n = p3 (n = 0.5 for half and n = 1 for all),
these three quantifiers can be implemented efficiently by join
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Figure 7: Query 5

operations like Case 3a. And, as common subexpressions are
present between two set terms, the original approaches can
be further optimized. Figure 6 shows the results. Using
p1 = 0 (Case 1d) to implement all is more expensive than
Case 3d because a Cartesian product is required. The worst
performance is the traditional SQL using NOT EXISTS and
NOT IN for all, it gives results in about 7.5 hours (compared
to a few minutes for our approach). The number is too big
to be shown in Figure 6.
Experiment 5: Our fifth experiment was to test the pro-
posed optimizations based on exploiting common subexpres-
sions. We added one more quantifier to Query 1, obtaining
the following (Query 5): “Select the orders (ordered be-
tween 1993-01-01 and 1993-03-01) where all suppliers are
from Europe and at least one is from Germany.” The ex-
tended algebra expression is:

all(
πorderkey,supkey(O 1 σdate between ...(L))[orderkey],
πsupkey(S 1 N 1 σrname=′Europe′(R)))∩
at least one(
πorderkey,supkey(O 1 σdate between ...(L))[orderkey],
πsupkey(S 1 σnname=′Germany′(N)))

Query 5 has two quantifiers, all and at least one. It can
be executed by intersection of the results of two separate
queries, with each query following its own formula. Since
these two queries are exactly the same except for the GQ
used, the process can be optimized by executing the com-
mon subexpressions once and then computing two quanti-
fiers simultaneously over the common subexpressions; this
performs 65% faster than the original approach (see Fig-
ure 7). We also run the query in SQL using two subqueries
NOT EXISTS and NOT IN (N/N)for all, and join operations
for at least one, which performs 0.5 and 3.3 times slower
than the original and the optimized approaches respectively.

Experiment 6: Our final experiment was to test opti-
mizations based on sieve conditions (see subsection 5.1). We
added sieve conditions to at least n (Case 3a) and all but
n (Case 1a) on Query Q1. For both at least n (n = 5)
and all but n (n = 2 and n = 7 respectively), we know
|X1| must be greater than or equal to n. Thus, we added
an aggregation to E1 which serves as a sieve condition and
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Figure 8: Query 6

discards unqualified tuples before the join (for at least n)
or outer join (for all but n). The results are shown in
Figure 8. For at least n, adding a sieve condition makes
query performance worse because the original approach only
needs join operations. For all but n, adding a sieve con-
dition slightly improve query performance because the sieve
condition makes the outer join operation less expensive and
the result smaller by getting rid of useless tuples in advance.
The difference is more significant for n = 7 than for n = 2.
More experiments were run, with results not shown for

lack of space (we point out that we repeated a large part
of our experiments in a 10GB TPC-H database.) Overall,
the results obtained support the following conclusions: first,
our approach handles a large class of queries in a uniform
manner. This contrasts with SQL, where expression of dif-
ferent quantifiers requires different types of queries, some of
them difficult to write and optimize. In this sense, it is in-
teresting to note that upward monotonic GQs (like some,
at least n) can be expressed easily in RA/SQL; on the
other hand, downward monotonic GQs (e.g., all, no) are
difficult to express in RA/SQL ([18] provides theoretical
justification for this distinction). Second, our experiments
show that our approach outperforms the traditional SQL
approach (using NOT IN/NOT EXISTS) in complex queries in-
volving downward monotonic operators, while doing as well
as SQL with upward monotone ones. Third, our approach
scales, both in the complexity of the query (see Query 5
above) and in the complexity of the data: when repeating
experiments with larger databases, we saw a linear growth
in all cases. On the other hand, SQL scalability is erratic,
depending heavily on the type of query. Finally, our opti-
mizations make a positive difference. Whenever used, they
result in improvement, sometimes quite significant.

7. RELATED RESEARCH
GQs were introduced in [23] and refined in [20]. A large,

theoretical body of work focuses on the complexity and ex-
pressive power that GQs bring to typical logics ([17, 14]).
Due to lack of space, here we mention only a few directly
relevant results.
As stated in section 3, the full concept of GQ is very

powerful. A type is a finite sequence of natural numbers,
t = (k1, . . . , kn); a GQ of type t on domain M is a relation
on Mk1 × . . .Mkn that is closed under isomorphisms. In a

fundamental result ([14]), Hella proved that the expressive
power of quantifier classes goes up with the type: if we use
t to denote first order logic extended with all GQs of type t,
and L < L′ to denote that language L′ has more expressive
power than L, then
(1) < (1, 1) < (1, 1, 1) < . . . < (2) < (2, 1) < (2, 1, 1) <
. . . < (2, 2) < . . . < (3) < . . .

Quantifiers that deal only with sets (monadic quantifiers,
of types (1), (1, 1), (1, 1, 1), . . . ) have been studied exten-
sively ([17, 30]). While such GQs are the most limited class
in terms of expressive power, there are sound reasons to
focus the present work on them. First, our approach is
a practical one, and considerations of efficient implemen-
tation are paramount. Beyond monadic, complexity raises
immediately and strongly: note that GQs of type (2) are,
essentially, graph properties, so some of them represent NP-
hard problems. Second, even simple set-based computations
are not well supported at the language level; [18] shows that
there is no efficient way to express most set operations in
RA. Third, type (1, 1) quantifiers cover reasonable prac-
tical uses. Research on formal linguistics has shown that
many English sentences (as well as other Indo-European lan-
guages) can be formally analyzed using this type of GQ (see
[29] for details). This research has also shown that quan-
tifiers of higher types are rare in natural languages. Since
querying is also a linguistic activity, we believe this gives
some pragmatic support to our approach.

Work on quantification in query languages has a long his-
tory ([7, 8]). Most past work focuses exclusively on the uni-
versal quantifier, but [24] deals directly with set operations.
There is an intuition behind most of this work that the one-
tuple-at-a-time approach is not satisfactory to express set
predicates. Efficient algorithms for direct implementation of
universal quantification are given in [12]. Such algorithms
were a precursor of modern day approaches to dealing with
set-based computation ([25, 21]) that provide an alternative
implementation for GQs. However, it remains unexplored
how they would cope with an extendible (not fixed) list of
GQs. Traditional approaches to universal quantification in
the context of SQL have added outerjoins and grouping,
which are difficult to deal with. This has motivated re-
search to deal with this issue ([27]). Our naive approach is
very similar to the SegmentApply operator, and hence our
optimization follows some of the steps of [9]. When deal-
ing with the universal operator, the plans generated by the
definition of all(X,Y ) as |X| = |X ∩ Y | are very similar to
those of [6]. They implement their approach using a new
operator called the Multidimensional join operator. While
[26] focuses on universal quantification and gives several op-
timization choices based on RA, for us universal quantifi-
cation is but one case among many (although admittedly
an important case). Note that we provide several options
for computing universal quantification, and leave it up to
the optimizer to decide which one to use for a given query.
Subqueries and quantification in the context of XQuery are
studied in [22], focusing on ordered structures. Incorporat-
ing order is an important idea in the context of XML, but
outside the scope of our paper.

Finally, there are a few prior attempts to incorporate GQs
in query languages ([15, 28]). The former argues for incor-
porating GQs into SQL in order to make queries easier to
write. However, they only consider a finite, fixed set of GQ,
and rely on rewriting an SQL query with GQs back into
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SQL without GQs, even though it is acknowledged that this
results in bad performance. On the other hand, [28] pro-
vides tailored algorithms to compute the quantifiers some,
all, not some, not all very efficiently. The approach per-
forms well and is highly scalable on the data, but not on the
complexity of the query, and is very difficult to extend to
other quantifiers. Again, we follow the approach of [3] be-
cause it can deal with an unbounded set of quantifiers while
providing efficient implementation.

8. CONCLUSION AND FURTHER RESEARCH
We have introduced an extension of SQL and RA with

Generalized Quantifiers. We have shown how GQs can be
integrated in a standard relational framework. We have
also given implementations and optimization techniques for
the extended language, and have provided experimental ev-
idence that the proposed approach provides significant per-
formance improvements over standard SQL on certain queries.
This approach is high-level and declarative, and therefore
provides an excellent tool to study quantification in query
languages. We are currently considering alternative imple-
mentations for GQs, as well as further optimization tech-
niques. In the same vein, we are studying the use of GQs
to express complex constraints and in other data models
besides relational.
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