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ABSTRACT
In this paper we study the tradeoff between parallelism and commu-
nication cost in a map-reduce computation. For any problem that is
not “embarrassingly parallel,” the finer we partition the work of the
reducers so that more parallelism can be extracted, the greater will
be the total communication between mappers and reducers. We in-
troduce a model of problems that can be solved in a single round
of map-reduce computation. This model enables a generic recipe
for discovering lower bounds on communication cost as a function
of the maximum number of inputs that can be assigned to one re-
ducer. We use the model to analyze the tradeoff for three problems:
finding pairs of strings at Hamming distance d, finding triangles
and other patterns in a larger graph, and matrix multiplication. For
finding strings of Hamming distance 1, we have upper and lower
bounds that match exactly. For triangles and many other graphs, we
have upper and lower bounds that are the same to within a constant
factor. For the problem of matrix multiplication, we have matching
upper and lower bounds for one-round map-reduce algorithms. We
are also able to explore two-round map-reduce algorithms for ma-
trix multiplication and show that these never have more communi-
cation, for a given reducer size, than the best one-round algorithm,
and often have significantly less.

1. INTRODUCTION
We assume the reader is familiar with map-reduce [9] and its

open-souce implementation Hadoop [27]. A brief summary can be
found in Chapter 2 of [22]. There have been many custom solutions
using a single round of map-reduce for specific problems, e.g., per-
forming fuzzy joins [3, 26], clustering [8], graph analyses [2, 24],
multiway join [1], and so on. Here, we develop techniques for an-
alyzing problems of this type and optimizing the performance on
any distributed computing environment by explicitly studying an
inherent trade-off between communication cost and parallelism.
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1.1 Communication and Parallelism for Map-
Reduce

This paper offers a model that helps us analyze how suited prob-
lems are to a map-reduce solution. We focus on two parameters
that represent the tradeoff involved in designing map-reduce algo-
rithms.

First is the amount of communication between the map phase
and the reduce phase. Often, but not always, the cost of communi-
cation is the dominant cost of a map-reduce algorithm. To represent
the communication cost, we define and study replication rate. The
replication rate of any map-reduce algorithm is the average number
of key-value pairs that the mappers create from each input.

The second parameter is the “reducer size.” A reducer, in the
sense we use the term in this paper, is a reduce-key (one of the
keys that can appear in the output of the mappers) together with its
list of associated values, as would be delivered to a reduce-worker.
Reducer size is the upper bound on how long the list of values can
be. For example, we may want to limit a reducer to no more input
than can be processed in main memory. A reduce-worker may be
assigned many reduce-keys and works on them one at a time. The
total computation cost of the reducers is the sum over all keys (or
“reducers”) of the computation cost of processing all the values
associated with that key.1

Limiting reducer size also enables more parallelism. Small re-
ducer sizes force us to redesign the notion of a “key” in order to
allow more, smaller reducers, and thus allow more parallelism if
enough compute nodes are available.

1.2 How the Tradeoff Can Be Used
Suppose we have determined that the best algorithms for a prob-

lem have replication rate r and reducer size q, where r = f(q) for
some function q. Look ahead to Fig. 1 for an example of what such
a function f might look like. In particular, be aware that f(q) usu-
ally grows as q shrinks. When we try to solve an instance of this
problem on a particular cluster, we must determine the true costs
of execution. For example, if we are running on EC2 [6], we pay
particular amounts for communication and for rental of virtual pro-
cessors. The communication cost is proportional to r; the constant
of proportionality depends on the rate EC2 charges for communi-
cation and the size of our data. The cost of renting processors is
some function of q.

EXAMPLE 1.1. If the reducer must compare all pairs of its in-
puts (e.g., consider the Hamming-distance-based similarity join
discussed later in Example 2.3), then the work at each reducer is
O(q2), and the number of reducers is inversely proportional to q,

1Computation cost at the mappers is not treated separately, but is
incorporated into the communication cost.
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so the total processor cost is proportional to q. That is, the cost of
solving this instance of our problem is ar + bq for some constants
a and b. Since r = f(q), the cost is af(q) + bq. We find the value
of q that minimizes this expression. That value tells us which of the
algorithms lying along the curve r = f(q) should be selected for
this job.2

If we were concerned more with wall-clock time than with total
computation cost, then we might add a term representing the execu-
tion time for a single reducer. In this hypothetical example, the time
to compare

(
q
2

)
pairs is O(q2), so we would minimize a function of

the form af(q) + bq + cq2.

Different problems will have different functions r = f(q), and
they will also have different functions of q that measure the compu-
tation cost. This function may not be the linear or quadratic func-
tions suggested in Example 1.1. However:
• Deducing the proper function of q to represent the compu-

tation cost is not harder than analyzing, theoretically or ex-
perimentally, the running time of the serial algorithm that
implements the reduce-function.

1.3 Outline of the Paper
There may be many ways to solve nontrivial problems in a single

round of map-reduce. The more parallelism you want, the more
communication overhead you face due to having to replicate inputs
to many reducers. In this paper:
• We offer a simple model of how inputs and outputs are re-

lated. We show how our model can capture a varied set of
problems (Section 2).
• We define the fundamental tradeoff between

a) Reducer size: the maximum number of inputs that one
reducer can receive, and

b) Replication rate, or average number of key-value pairs
to which each input is mapped by the mappers.

• We study three well-known problems: Hamming Distance
(Section 3), triangle finding (Section 4) and some general-
izations (Section 5), and matrix multiplication (Section 6).
In each case there is a lower bound on the replication rate
that grows as reducer size shrinks (and therefore as the paral-
lelism grows). Moreover, we present algorithms that match
these lower bounds for various reducer sizes.

Due to space constraints, complete proofs of some technical results
are omitted from the submission, and are available in our online
technical report [4].

1.4 Related Work
The present paper is the first work that addresses the tradeoff

between reducer size and communication cost in one round map-
reduce computations. In [19], the optimization of theta-join im-
plementation by map-reduce was considered from a point of view
similar to what we propose here. This paper considers only one
special case of our model, where each output depends on only two
inputs. An inherent trade-off between communication cost and par-
allelism has been studied in different contexts, e.g., pipelined paral-
lelism [13]; we study this trade-off for one round map-reduce jobs.

The model of [15] proposes that a map-reduce algorithm should
limit the input size of any reducer to be asymptotically smaller than
the total amount of input. This idea is appropriate for eliminating
trivial algorithms that really do all the work serially in one reducer

2Note that typically, f(q) is monotonically decreasing in q, so there
is a minimum at some finite value of q.

and thus limits consideration to algorithms that we might think of
as truly parallel.

[21] study the problem of matrix multiplication in map-reduce.
They derive lower bounds on the number of map-reduce rounds
required to multiply two dense or two sparse matrices as a function
of different reducer sizes and cumulative memory available in the
cluster.

Map-reduce differs from previous parallel-computation models
(e.g., PRAM) in that it interleaves sequential and parallel com-
putation. Thus the essential constraint on map-reduce comes not
so much from the demand for parallelism, but from the limit on
how much input we can expect a reducer to handle and how costly
communication among processors is. For instance, if the input is
small enough, then the optimal choice is to run everything at one
compute node thus minimizing communication, regardless of the
asymptotics of your algorithm.

There has been a lot of interest in handling skewed data in map-
reduce (e.g., [17, 16]). The work closer to our setting is [16] where
the authors propose a slight modification to the map-reduce com-
putational framework to allow for small amount of communication
among the mappers in order to decide how to handle skewed data.
Handling skewed data is not the focus of our paper, but the need to
deal with skewed data, will require alternative algorithms.

Our model for describing problems is closely related to the no-
tion of data provenance [25]. There has also been some work [14,
20] on provenance in the context of distributed workflows, includ-
ing map-reduce workflows.

2. THE MODEL
The model is simple yet powerful: We can develop some quite

interesting and realistic insights into the range of possible map-
reduce algorithms for a problem. For our purposes, a problem con-
sists of:

1. Sets of inputs and outputs.
2. A mapping from outputs to sets of inputs. The intent is that

each output depends on only the set of inputs it is mapped to.
There are two non-obvious points about this model:
• Inputs and outputs are hypothetical, in the sense that they

are all the possible inputs or outputs that might be present
in an instance of the problem. Any instance of the problem
will have a subset of the inputs. We assume that an output is
never made unless at least one of its inputs is present, and in
many problems, we only want to make the output if all of its
associated inputs are present.
• We need to limit ourselves to finite sets of inputs and outputs.

Thus, a finite domain or domains from which inputs are con-
structed is essential, and a “problem” is really a family of
problems, one for each choice of finite domain(s). We also
require that there be a finite set of outputs associated with
each choice of input domain(s). The values that these out-
puts can take may be a function of the inputs on which each
output depends, and we do not need to specify the domain
for the output in advance. Example 2.4 illustrates how the
outputs can compute a function of their associated inputs.

2.1 Examples of Problems
In this section we offer several examples of common map-reduce

problems and how they are modeled.

EXAMPLE 2.1. Natural join of two relations R(A,B) and
S(B,C). The inputs are tuples in R or S, and the outputs are tu-
ples with schema (A,B,C). To make this problem finite, we need
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to assume finite domains for attributes A, B, and C; say there are
NA, NB , and NC members of these domains, respectively.

Then there areNANBNC outputs, each corresponding to a triple
(a, b, c). Each output is mapped to a set of two inputs. One is the
tupleR(a, b) from relationR and the other is the tuple S(b, c) from
relation S. The number of inputs is NANB +NBNC .

Notice that in an instance of the join problem, not all the inputs
will be present. That is, the relations R and S will be subsets of
all the possible tuples, and the output will be those triples (a, b, c)
such that both R(a, b) and S(b, c) are actually present in the input
instance.

EXAMPLE 2.2. Finding triangles. We are given a graph as in-
put and want to find all triples of nodes such that in the graph there
are edges between each pair of these three nodes. To model this
problem, we need to assume a domain of size N for the nodes of
the input graph. An output is thus a set of three nodes, and an in-
put is a set of two nodes. The output {u, v, w} is mapped to the
set of three inputs {u, v}, {u,w}, and {v, w}. Notice that, unlike
the previous and next examples, here, an output is a set of more
than two inputs. In an instance of the triangles problem, some of
the possible edges will be present, and the outputs produced will be
those such that all three edges to which the output is mapped are
present.

EXAMPLE 2.3. Hamming distance 1. The inputs are binary
strings, and since domains must be finite, we shall assume that
these strings have a fixed length b. There are thus 2b inputs. The
outputs are pairs of inputs that are at Hamming distance 1; that
is, the inputs differ in exactly one bit. Hence there are (b/2)2b

outputs, since each of the 2b inputs is Hamming distance 1 from
exactly b other inputs – those that differ in exactly one of the b bits.
However, that observation counts every pair of inputs at distance 1
twice, which is why we must divide by 2.

EXAMPLE 2.4. Grouping and aggregation. This example illus-
trates how to deal with a problem where the outputs are more than
“yes” or “no” responses to whether a given set of inputs exists.
Here, each output depends on a large set of possible inputs, and the
result of an output is calculated from those of its associated inputs
that actually appear in the data set. Suppose we have a relation
R(A,B) and we want to implement group-by-and-sum:

SELECT A, SUM(B)
FROM R
GROUP BY A;

We must assume finite domains for A and B. An output is a value
of A, say a, chosen from the finite domain of A-values, together
with the sum of all the B-values. This output is associated with a
large set of inputs: all tuples with A-value a and any B-value from
the finite domain of B. In any instance of this problem, we do not
expect that all these tuples will be present for a given A-value, a,
but (unlike the previous examples) as long as at least one of them
is present there will be an output for this value a.

2.2 Mapping Schemas
In our discussion, we shall use the convention that q is the max-

imum number of inputs that can be sent to any one reducer.
A mapping schema for a given problem, with a given value of q,

is an assignment of a set of inputs to each reducer, subject to the
constraints that:

1. No reducer is assigned more than q inputs.

2. For every output, there is (at least) one reducer that is as-
signed all of the inputs for that output. We say such a reducer
covers the output. This reducer need not be unique, and it is,
of course, permitted that these same inputs are assigned also
to other reducers.

The figure of merit for a mapping schema with a given reducer
size q is the replication rate, which we defined to be the average
number of reducers to which an input is mapped by that schema.
Suppose that for a certain algorithm, the ith reducer is assigned
qi ≤ q inputs, and let I be the number of different inputs. Then the
replication rate r for this algorithm is

r =

p∑
i=1

qi/I

EXAMPLE 2.5. To see one subtlety of the model, consider the
canonical example of a map-reduce algorithm: word-count. In
the standard formulation, inputs are documents, and the outputs
are pairs consisting of a word w and a count of the number of
times w appears among all the documents. The standard algorithm
works as follows. The map function takes a document, breaks it into
words, and for each word w, it generates a key-value pair (w, 1).
There is one reducer for each key (i.e., for each word), and the
reduce-function sums the 1’s in the list of values it is given for a
word and thus computes the count for that word.

It looks like there is a great deal of replication, because each
input results in as many key-value pairs as there are words. How-
ever, this view is deceptive. We could just as well have thought
of the inputs as the word occurrences themselves, and then each
word occurrence results in exactly one key-value pair. That is, the
replication rate is 1, independent of the limit q on reducer size.3

Since the replication rate is identically 1, there is no tradeoff at
all between q and replication rate; i.e., the word-count problem is
embarrassingly parallel, as we knew all along.

We want to derive upper and lower bounds on the minimum pos-
sible r, as a function of q, for various problems, thus demonstrating
the tradeoff between high parallelism (many small reducers, so q is
small) and low overhead (total communication cost – measured by
the replication rate).

2.3 Independence of Inputs in the Mappers
When we calculate bounds on the replication rate we pretend

that we have an instance of the problem where all inputs over the
given domain are present. This actually captures the nature of map-
reduce computation. Normally, in a mapper, a map function turns
input objects into key-value pairs independently, without knowing
what else is in the input. Thus, we can take the assumption that
the mapping schema assigns inputs to processors without reference
to what inputs are actually present. Consequently, the replication
rate r we calculate represents the expected communication if we
multiply it by the number of inputs actually present, so r is a good
measure of the communication cost incurred by any instance of the
problem.

Further to this point, recall that q counts the number of potential
inputs in a reducer, regardless of which inputs are actually present
for an instance of the problem. However, on the assumption that in-
puts are chosen independently with fixed probability, we can expect
the number of actual inputs at a reducer to be q times that probabil-
ity, and there is a vanishingly small chance of significant deviation
3Technically, if q is smaller than the number of occurrences of a
particular word, then this algorithm will not work at all. But there
is little reason to chose a q that small.
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for large q. If we know the probability of an input being present in
the data is x, and we can tolerate q1 real inputs at a reducer, then
we can use q = q1/x to account for the fact that not all inputs will
actually be present.

2.4 The Recipe for Lower Bounds
While upper bounds on r for all problems are derived using con-

structive algorithms, there is a generic technique for deriving lower
bounds. Before proceeding to concrete lower bounds, we outline
in this section the recipe that we use to derive all the lower bounds
used in this paper.

1. Deriving g(q): First, find an upper bound, g(q), on the num-
ber of outputs a reducer can cover if q is the number of inputs
it is given.

2. Number of Inputs and Outputs: Count the total numbers
of inputs |I| and outputs |O|.

3. The Inequality: Assume there are p reducers, each receiving
qi ≤ q inputs and covering g(qi) outputs. Together they
cover all the outputs. That is:

p∑
i=1

g(qi) ≥ |O| (1)

4. Replication Rate: Manipulate the inequality from Equa-
tion 1 to get a lower bound on the replication rate, which
is
∑p
i=1 qi/|I|.

Note that the last step above may require clever manipulation to
factor out the replication rate. We have noticed that the following
“trick” is effective in Step (4) for all problems considered in this
paper. First, arrange to isolate a single factor qi from g(qi); that is:

p∑
i=1

g(qi) ≥ |O| ⇒
p∑
i=1

qi
g(qi)

qi
≥ |O| (2)

Assuming g(qi)
qi

is monotonically increasing in qi, we can use the
fact that ∀qi : qi ≤ q to obtain from Equation 2:

p∑
i=1

qi
g(q)

q
≥ |O| (3)

Now, divide both sides of Equation 3 by the input size, to get a
formula with the replication rate on the left:

r =

∑p
i=1 qi

|I| ≥ q|O|
g(q)|I| (4)

Equation 4 gives us a lower bound on r. Thus, in summary, given
a particular problem, we derive our lower bounds in this paper as
follows:
• Suppose the instance of the problem has |I| inputs and |O|

outputs.
• We find an upper bound, g(q), on the number of outputs any
q inputs can generate.
• If g(q)/q is monotonically increasing in q then we can com-

pute the replication rate using our recipe.
• Suppose the maximum number of inputs any reducer can

take is q. Then the replication rate is r ≥ q|O|
g(q)|I| .

2.5 Our Results
We summarize our results in two tables.
Table 1 gives the lower bounds for each problem we obtain. The

table enumerates for each problem the total number of inputs |I|,

number of outputs |O|, the upper bound g(q) on the number of out-
puts q inputs can generate for each problem, and the lower bound
we derived.

Table 2 gives the upper bound on the replication rate for each
problem. In several cases our upper bounds are derived using multi-
ple constructive algorithms, giving different upper bounds depend-
ing on the input parameters. Therefore, Table 2 only gives a repre-
sentative upper bound for each problem, with a forward reference
to the section in which more detailed results are present.

3. HAMMING DISTANCE 1
We begin with the tightest result we can offer. For the problem of

finding pairs of bit strings of length b that are at Hamming distance
1, we have a lower bound on the replication rate r as a function
of q, the maximum number of inputs assigned to a reducer. This
bound is essentially best possible, as we shall point to a number
of mapping schemas that solve the problem and have exactly the
replication rate stated in the lower bound.

3.1 Bounding the Number of Outputs
As described in Section 2.4, our first task is to develop a tight

upper bound on the number of outputs that can be covered by a
reducer of size q.

LEMMA 3.1. For the Hamming-distance-1 problem, a reducer
of size q can cover no more than (q/2) log2 q outputs.

The proof of this result, obtained by induction on the length b of
strings, is presented in our online technical report [4].

3.2 Lower Bound for Hamming Distance 1
We can use Lemma 3.1 to get a lower bound on the replication

rate as a function of q, the maximum number of inputs at a reducer.

THEOREM 3.2. For the Hamming-distance-1 problem with in-
puts of length b, the replication rate r is at least b/ log2 q.

PROOF. Suppose there are p reducers, and the ith reducer has
qi ≤ q inputs. We apply our four step recipe described in Sec-
tion 2.4:
• Deriving g(q): Recall that g(q) is the maximum number of

outputs a reducer can cover with q inputs. By Lemma 3.1,
g(q) = (q/2) log2 q

• Number of Inputs and Outputs: There are 2b bitstrings of
length b. The total number of outputs is (b/2)2b. Therefore
|I| = 2b and |O| = (b/2)2b.
•
∑p
i=1 g(qi) ≥ |O| Inequality: Substituting for g(qi) and

|O| from above:
p∑
i=1

qi
2

log2 qi ≥
b

2
2b (5)

• Replication Rate: Finally we employ the manipulation trick
from Section 2.4, where we arrange the terms of this inequal-
ity so that the left side is the replication rate. Recall we must
separate a factor qi from other factors involving qi by replac-
ing all other occurrences of qi on the left by the upper bound
q. That is, we replace log2 qi by log2 q on the left of Equa-
tion 5. Since doing so can only increase the left side, the
inequality continues to hold:

p∑
i=1

qi
2

log2 q ≥
b

2
2b (6)

The replication rate is r =
∑p
i=1 qi/|I| =

∑p
i=1 qi/2

b.
We can move factors in Equation 6 to get a lower bound on

280



Problem |I| |O| g(q) Lower bound on r

Hamming-Distance-1, b-bit strings 2b b2b

2

q log2 q

2
(Section 3.1) b

log2 q
(Section 3.2)

Triangle-Finding, n nodes n2

2
n3

6

√
2

3
q

3
2 (Section 4.1) n√

2q
(Section 4.1)

Sample Graphs (size s nodes) in Alon
(
n
2

)
or m ns qs/2 ( n√

q
)s−2 or (

√
m
q

)s−2

Class in graph of m edges, n nodes (Section 5.2) (Sections 5.2 and 5.3)
2-Paths in n-node graph

(
n
2

)
n3

2

(
q
2

)
(Section 5.4.1) 2n

q
(Section 5.4.1)

Multiway Join: N bin. rels, m vars., N
(
n
2

) (
n
m

)
qρ ([7]) nm−2

qρ−1 (Section 5.5.1)
Dom. n, parameter ρ from [7]
n× n Matrix Multiplication 2n2 n2 q2

4n2 (Section 6.1) 2n2

q
(Section 6.1)

Table 1: Lower bound on replication rate r for various problems in terms of number of inputs |I|, number of outputs |O|, and
maximum number of inputs per reducer q.

Problem Upper bound on r
Hamming-Distance-1 b-bit strings b

log2 q
(Section 3.3)

Triangle-Finding, n nodes O( n√
2q

) (Section 4.2 and [2, 24])

Sample Graphs (size s nodes) in Alon O((
√

m
q

)s−2) (Result from [2])

Class in graph of m edges, n nodes
2-Paths in n-node graph O( 2n

q
) (Section 5.4.2)

Multiway Join: N rels, m vars., Dom. Chain join: (n/
√
q)N−1

n (Section 5.5.2) Star join: fact, dim. sizes f , d0: Nd0(Nd0/q)
N−1

f+Nd0

n× n Matrix Multiplication 2n2

q
for q ≥ 2n2 (Section 6.2 and [18])

Table 2: Representative upper bound on the replication rate r for each problem considered in this paper. This table only presents a
representative upper bound, with a forward reference to the section that derives all upper bounds with constructive algorithms for
each problem.

r =
∑p
i=1 qi/2

b ≥ b/ log2 q, which is exactly the statement
of the theorem.

3.3 Upper Bound for Hamming Distance 1
There are a number of algorithms for finding pairs at Hamming

distance 1 that match the lower bound of Theorem 3.2. First, sup-
pose q = 2; that is, every reducer gets exactly 2 inputs, and is
therefore responsible for at most one output. Theorem 3.2 says the
replication rate r must be at least b/ log2 2 = b. But in this case,
every input string w of length bmust be sent to exactly b reducers –
the reducers corresponding to the pairs consisting of w and one of
the b inputs that are Hamming distance 1 from w.

There is another simple case at the other extreme. If q = 2b, then
we need only one reducer, which gets all the inputs. In that case,
r = 1. But Theorem 3.2 says that r must be at least b/ log2(2b) =
1.

In [3], there is an algorithm called Splitting that, for the case of
Hamming distance 1 uses 21+b/2 reducers, for some even b. Half
of these reducers, or 2b/2 reducers correspond to the 2b/2 possible
bit strings that may be the first half of an input string. Call these
Group I reducers. The second half of the reducers correspond to the
2b/2 bit strings that may be the second half of an input. Call these
Group II reducers. Thus, each bit string of length b/2 corresponds
to two different reducers.

An input w of length b is sent to 2 reducers: the Group-I reducer
that corresponds to its first b/2 bits, and the Group-II reducer that
corresponds to its last b/2 bits. Thus, each input is assigned to
two reducers, and the replication rate is 2. That also matches the
lower bound of b/ log2(2b/2) = b/(b/2) = 2. It is easy to observe
that every pair of inputs at distance 1 is sent to some reducer in

common. These inputs must either agree in the first half of their
bits, in which case they are sent to the same Group-I reducer, or
they agree on the last half of their bits, in which case they are sent
to the same Group-II reducer.

We can generalize the Splitting Algorithm so that for any c > 2
such that c divides b evenly, we can have reducer size 2b/c and
replication rate c. Note that for reducer size 2b/c, the lower bound
on the replication rate is exactly
b/ log2(2b/c) = c. We split each bit string w into c segments,
w1w2 · · ·wc, each of length b/c. We will have c groups of reduc-
ers, numbered 1 through c. There will be 2b−b/c reducers in each
group, corresponding to each of the 2b−b/c bit strings of length
b − b/c. For i = 1, ..., c, we map w to the Group-i reducer that
corresponds to bit string w1 · · ·wi−1wi+1 · · ·wc, that is, w with
the ith substring wi removed. Thus, each input is sent to c re-
ducers, one in each of the c groups, and the replication rate is c.
Finally, we need to argue that the mapping schema solves the prob-
lem. Any two strings u and v at Hamming distance 1 will disagree
in only one of the c segments of length b/c, and will agree in every
other segment. If they disagree in their ith segments, then they will
be sent to the same Group-i reducer, because we map them to the
Group-i reducers ignoring the values in their ith segments. Thus,
this Group-i reducer will cover the output pair (u, v).

Figure 1 illustrates what we know. The hyperbola is the lower
bound. Known algorithms that match the lower bound on replica-
tion rate are shown with dots.

3.4 An Algorithm for Large q
The lower bound in Fig. 1 is matched for many values of q as

long as log2 q ≤ b/2. However, what happens between b/2 and b
is less clear. Surely r ≤ 2 for that entire range. In this subsection
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Figure 1: Known algorithms matching the lower bound on
replication rate

and the next we shall show that there are algorithms for log2 q near
b with replication rates strictly less than 2.

There is a family of algorithms that use reducers with large in-
put – q well above 2b/2, but lower that 2b. The simplest version
of these algorithms divides bit strings of length b into left and right
halves of length b/2 and organizes them by weights, as suggested
by Fig. 2. The weight of a bit string is the number of 1’s in that
string. In detail, for some k, which we assume divides b/2, we
partition the weights into b/(2k) groups, each with k consecutive
weights. Thus, the first group is weights 0 through k − 1, the sec-
ond is weights k through 2k − 1, and so on. The last group has an
extra weight, b/2, and consists of weights b

2
− k through b/2.

Left−half

Right−half

weight

weight

Figure 2: Partitioning by weight. Only the border weights need
to be replicated

There are ( b
2k

)2 reducers; each corresponds to a range of weights
for the first half and a range of weights for the second half. A string
is assigned to reducer (i, j), for i, j = 1, 2, . . . , b/2k if the left half
of the string has weight in the range (i − 1)k through ik − 1 and
the right half of the string has weight in the range (j− 1)k through
jk − 1.

Consider two bit strings w0 and w1 of length b that differ in ex-
actly one bit . Suppose the bit in which they differ is in the left
half, and suppose that w1 has a 1 in that bit. Finally, let w1 be as-
signed to reducer R. Then unless the weight of the left half of w1

is the lowest weight for the left half that is assigned to reducer R,
w0 will also be at R, and therefore R will cover the pair {w0, w1}.
However, if the weight of w1 in its left half is the lowest possi-
ble left-half weight for R, then w0 will be assigned to the reducer
with the same range for the right half, but the next lower range
for the left half. Therefore, to make sure that w0 and w1 share a
reducer, we need to replicate w1 at the neighboring reducer that
handles w0. The same problem occurs if w0 and w1 differ in the
right half, so any string whose right half has the lowest possible
weight in its range also has to be replicated at a neighboring re-
ducer. We suggested in Fig. 2 how the strings with weights at the
two lower borders of the ranges for a reducer need to be replicated
at a neighboring reducer.

Now, let us analyze the situation, including the maximum num-
ber q of inputs assigned to a reducer, and the replication rate. For
the bound on q, note that the vast majority of the bit strings of
length n have weight close to n/2. The number of bit strings of
weight exactly n/2 is

(
n
n/2

)
. Stirling’s approximation [10] gives us

2n/
√

2πn for this quantity. That is, one in O(
√
n) of the strings

have the average weight.
If we partition strings as suggested by Fig. 2, then the most pop-

ulous k × k cell, the one that contains strings with weight b/4 in
the first half and also weight b/4 in the second half, will have no
more than

k2
( 2b/2√

2π(b/2)

)2
=
k22b

πb

strings assigned.4 If k is a constant, then in terms of the horizontal
axis in Fig. 1, this algorithm has log2 q equal to b − log2 b plus
or minus a constant. It is thus very close to the right end, but not
exactly at the right end.

For the replication rate of the algorithm, if k is a constant, then
within any cell there is only a small ratio of variation, among all
pairs (i, j) assigned to that cells, of the numbers of strings with
weights i and j in the left and right halves, respectively. Moreover,
when we look at the total number of strings in the borders of all the
cells, the differences average out, so the total number of replicated
strings is very close to (2k)/k2 = 2/k. That is, a string is repli-
cated if either its left half has a weight divisible by k or its right
half does. Note that strings in the lower-left corner of a cell are
replicated twice, strings of the other 2k − 2 points on the border
are replicated once, and the majority of strings are not replicated at
all. We conclude that the replication rate is 1 + 2

k
.

3.5 Generalization to d Dimensions
The algorithm of Section 3.4 can be generalized from 2 dimen-

sions to d dimensions. Break bit strings of length b into d pieces of
length b/d, where we assume d divides b. Each string of length b
can thus be assigned to a cell in a d-dimensional hypercube, based
on the weights of each of its d pieces. Assume that each cell has
side k in each dimension, where k is a constant that divides b/d.

4Note that many of the cells have many fewer strings assigned, and
in fact a large fraction of the strings have weights within

√
b of b/4

in both their left halves and right halves. In the best implementa-
tion, we would combine the cells with relatively small population at
a single compute node, in order to equalize the work at each node.
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The most populous cell will be the one that contains strings
where each of its d pieces has weight b/(2d). Again using Stir-
ling’s approximation, the number of strings assigned to this cell is

kd
( 2b/d√

2πb/d

)d
=

kd2b

bd/2(2π/d)d/2

On the assumption that k is constant, the value of log2 q is

b− (d/2) log2 b

plus or minus a constant.
To compute the replication rate, observe that every point on each

of the d faces of the hypercube that are at the low ends of their
dimension must be replicated. The number of points on one face is
kd−1, so the sum of the volumes of the faces is dkd−1. The entire
volume of a cell is kd, so the fraction of points that are replicated is
d/k, and the replication rate is 1+d/k. Technically, we must prove
that the points on the border of a cell have, on average, the same
number of strings as other points in the cell. As in Section 3.4,
the border points in any dimension are those whose corresponding
substring has a weight divisible by k. As long as k is much smaller
than b/d, this number is close to 1/kth of all the strings of that
length.

3.6 Larger Hamming Distances
Unfortunately, the analysis for Hamming distance 1 does not

generalize easily to higher distances. To see why, consider Ham-
ming distance 2. While for Hamming distance 1 we learned that
there is an O(q log q) upper bound on the number of outputs cov-
ered by a reducer with q inputs, for distance 2 this bound is much
higher: Ω(q2), at least for small q. That prevents us from getting a
good lower bound on replication rate.

The Ω(q2) bound comes from an algorithm from [3] called “Ball-
2” that creates one reducer for each string of length b. For distance
2, this algorithm assigns to the reducer for string s all those strings
at distance 1 from s. Notice that all distinct strings at distance 1
from s are distance 2 from each other. Thus, each reducer covers(
b
2

)
outputs. Since q = b, each reducer covers

(
q
2

)
, or about b2/2

outputs.
On the other hand, we can generalize the upper bound of Sec-

tion 3.3 to distance d. We divide the b bits of input strings into k
equal-length pieces. A reducer corresponds to a choice of d of the k
pieces to delete and a bit string of length b(1−d/k) corresponding
to the k−d pieces of a string that are not deleted.. An input s is sent
to
(
k
d

)
reducers – those corresponding to the strings we obtain by

deleting d of the k segments of string s. Thus, the replication rate
is approximately kd/d!, assuming k is much larger than d. Again
using Stirling’s approximation for the factorial, this replication rate
is approximately r = (ek/d)d.

4. TRIANGLE FINDING
We shall now consider the problem of finding triangles, intro-

duced in Example 2.2. We shall first derive a lower bound as-
suming that all possible edges in the data graph can be present.
That assumption follows our model, since we assume every possi-
ble output can be made, and every possible input could be present.
However, applications of triangle-finding, such as in analysis of
communities in social networks are generally applied to large but
sparse graphs. As a result, we shall continue the analysis by show-
ing how to adjust the bound q on reducer size to take into account
the fact that most inputs will not be present. When we make this
adjustment, we see that the lower bound we get matches, to within a
constant factor, the upper bound obtained from known algorithms.

4.1 Lower and Upper Bound for Finding Tri-
angles

Recall that, as described in Example 2.2, the inputs are the pos-
sible edges of a graph, and the outputs are the triples of edges that
form a triangle. Suppose n is the number of nodes of the input
graph. Following the recipe from Section 2.4:
• Deriving g(q): We claim a reducer with q inputs can cover

at most
√

2
3
q3/2 outputs (triangles), which happens when the

reducer is sent all the edges among a set of k =
√

2q nodes.
This point was proved, to within an order of magnitude in
[24], who in turn credit the thesis of Schank [23].5 Sup-
pose we assign to a reducer all the edges among a set of k
nodes. Then there are

(
k
2

)
edges assigned to this reducer, or

approximately k2/2 edges. Since this quantity is q, we have
k =
√

2q. The number of triangles among k nodes is
(
k
3

)
, or

approximately k3/6 outputs. In terms of q, the upper bound
on the number of outputs is

√
2

3
q3/2.

• Number of Inputs and Outputs: The number of inputs is(
n
2

)
or approximately n2/2. The number of outputs is

(
n
3

)
,

or approximately n3/6.
•
∑p
i=1 g(qi) ≥ |O| Inequality: So using the formulas from

(1) and (2), if there are p reducers each with ≤ q inputs:

p∑
i=1

√
2

3
q
3/2
i ≥ n3/6 (7)

We can replace a factor of
√
qi on the left of Equation 7 by√

q, since q ≥ qi, and then move that factor to the denomi-
nator of the right side. Thus,

p∑
i=1

√
2

3
qi ≥ n3/6

√
q (8)

• Replication Rate: The replication rate is
∑p
i=1 qi divided

by the number of inputs, which is n2/2 from (1). We can
manipulate Equation 8 as per the trick in Section 2.4 to get

r =
2
∑p
i=1 qi

n2
≥ n√

2q

Upper Bound: There are known algorithms that, to within a
constant factor, match the lower bound on replication rate. See
[24] and [2]. These algorithms are stated in terms of the number
of edges, m, rather than the number of nodes, n. However, for
the case m =

(
n
2

)
, which is what we assume when we consider

all possible edges and triangles, these algorithms do in fact imply
a replication rate that is O(n/

√
q). We shall next consider how

to modify the analysis on the assumption that the true input will
consist of m randomly chosen edges.

4.2 Analysis for Sparse Data Graphs
The lower bound r = Ω(n/

√
q) holds on the assumption that

all edges are actually present in the input. But as we pointed out,
commonly the data graph to which a triangle-finding algorithm is
applied is sparse. We shall show that, with essentially the same
limitation q on the number of edges that any reducer must deal
with, the lower bound on replication rate can be transformed to
r = Ω(

√
m/q).

5What is actually proved is that among q edges, you can form at
most O(q3/2) triangles. However, picking a set of nodes and all
edges among them will match this upper bound.
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Suppose the data graph hasm of the possible
(
n
2

)
edges, and that

these edges are chosen randomly. Then if we want no more than
an expected value of q for the number of edges input to any one
reducer, we can actually assign a “target” qt = qn(n − 1)/2m
of the possible edges to one reducer and know that the expected
number of edges that will actually arrive will be q.

We already know from Section 4.1 that if we assign at most qt
of the

(
n
2

)
possible edges to any reducer, then the replication rate r

is Ω(n/
√
qt). But on the assumption that only m edges are truly

present in the input, qt is O(qn2/m), from which we can conclude

r = Ω(n/
√
qn2/m) = Ω(

√
m/q)

This lower bound is met (to within a constant factor) by the al-
gorithms of [24] and [2] when we measure reducer size in terms of
the number of edges m (as these papers do), rather than in terms
of the number of possible edges

(
n
2

)
. There is a natural concern

that a random selection of the edges will cause more than q actual
edges to be assigned to some of the reducers. However, we are
only claiming bounds to within a constant factor, and by lowering
the target qt by, say, a factor of 2, we can make the probability that
one or more reducers will get more than q actual edges as low as
we like for large n and m.

5. FINDING INSTANCES OF OTHER
GRAPHS

The analysis of Section 4 extends to any sample graph whose
instances we want to find in a larger data graph. For each problem
of this type, the sample graph is fixed, while the data graph is the
input. Previously, we looked only at the triangle as a sample graph,
but we could similarly search for cycles of some length greater than
3, or for complete graphs of a certain size, or any other small graph
whose instances in the data graph we wanted to find.

5.1 The Alon Class of Sample Graphs
In [5], Noga Alon analyzed the maximum number of occurrences

of a sample graph that could occur in a data graph of n nodes and
m edges. In particular, he defined a class of graphs, which we
shall call the Alon class of sample graphs. These graphs have the
property that we can partition the nodes into disjoint sets, such that
the subgraph induced by each partition is either:
• A single edge between two nodes, or
• Contains an odd-length Hamiltonian cycle.

The sample graph may have any other edges as well. The Alon
class is very rich. Every cycle, every graph with a perfect matching,
and every complete graph is in the Alon class. Paths of odd length
are also in the Alon class, since we may use alternating edges along
the path as a decomposition. However, paths of even length are not
in the Alon class, since there are no cycles of any length, and the
odd number of nodes cannot be partitioned into disjoint edges.

5.2 Lower Bound for the Alon Class
The key result from [5] that we need is that for any sample graph

S in the Alon class, if S has s nodes, then the number of instances
of S in a graph of m edges is O(ms/2). So if the ith reducer has
qi inputs, the number of instances of S that it can find is O(q

s/2
i ).

But if all edges are present, the number of instances of S is Ω(ns).
Note the number of instances need not be exactly ns, since there
may be symmetries in S as we saw for the case of the triangle.
However, there are surely at least ns/s! distinct sets of nodes that
form the sample graph S.

Now, we can repeat the analysis we did for the triangle. If there
are p reducers, and the ith reducer has qi inputs, then

p∑
i=1

q
s/2
i = Ω(ns)

If q is an upper bound on qi, we can write the above as
p∑
i=1

qiq
(s/2)−1 = Ω(ns)

The number of inputs is
(
n
2

)
. Thus, the replication rate r is

r =

∑p
i=1 qi(
n
2

) = Ω(ns−2/q(s−2)/2) = Ω
(
(n/
√
q)s−2)

5.3 Bounds in Terms of Edges
As we did for triangles, we can scale q up by a factor of n2/m if

we assume that the actual data is m out of the
(
n
2

)
possible edges.

If we do so, the lower bound on r becomes

r = Ω
((
n/
√

(qn2/m)
)s−2

)
= Ω

(
(
√
m/q)s−2)

The algorithm given in [2] matches this lower bound, to within a
constant factor.

5.4 Paths of Length Two
The analysis for sample graphs not in the Alon class is harder,

and we shall not try to give a general rule. However, to see the
problems that arise, we will look at the simplest non-Alon graph:
the path of length 2 (2-paths). The problem of finding 2-paths is
similar, although not identical to, the problem of computing a nat-
ural self join

E(A,B) ./ E(B,C)

The difference is that the edge relation E contains sets of two
nodes, rather than ordered pairs. That is, if a tuple (u, v) is in
E, when finding 2-paths we can treat it as (v, u), even if the latter
tuple is not found in E.

5.4.1 Lower Bound
We again follow the recipe from Section 2.4 to obtain a lower

bound:
• Deriving g(q): Any two distinct edges can be combined

to form at most one 2-path. Thus, the number of outputs
(2-paths) covered by this reducer is at most

(
q
2

)
or approxi-

mately q2/2.
• Number of Inputs and Outputs: |I| is

(
n
2

)
or approxi-

mately n2/2. For counting |O|, observe that there are
(
n
3

)
sets of three nodes, and any three nodes can form a 2-path
in three ways. That is, any of the three nodes can be chosen
to be the middle node. Thus, |O| is 3

(
n
3

)
, or approximately

3n3/6 = n3/2.
•
∑p
i=1 g(qi) ≥ |O| Inequality: Using the formulas from (1)

and (2), if there are p reducers each with ≤ q inputs:
p∑
i=1

q2i /2 ≥ n3/2 (9)

Replacing a factor of qi by q on the left:
p∑
i=1

(qi)(q/2) ≥ n3/2 (10)
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• Replication Rate: We rearrange terms in Equation 10 to
make the left side equal to

∑p
i=1 qi divided by |I| = n2/2.

r =

∑p
i=1 qi

n2/2
≥ 2n/q

This lower bound on replication rate is unlike those we have seen
before. For small q it makes sense, but for q > 2n it is less than
1, which is useless. Rather, it should be replaced by the trivial
lower bound r ≥ 1 for large n. Once we make this replacement,
the bound is tight for an infinite number of pairs of q and n. If
q = n2/2, then we can send all edges to one reducer and do the
work there, so r = 1 is correct.

5.4.2 Upper Bound
If q = n, then we can have one reducer for each node. We

send the edge (a, b) to the reducers for its two nodes a and b. The
replication rate is thus 2, which agrees with the lower bound. The
reducer for node u receives all edges consisting of u and another
node, so it can put them together in all possible ways and produce
all 2-paths that have u as the middle node.

If q < n, we have to divide the task of producing the 2-paths with
middle node u among several different reducers. That means every
pair of edges with u as one end has to be assigned to some reducer
in common. Suppose for convenience that k2 divides n. Suppose
h is a hash function that divides the n nodes into k equal-sized
buckets. The reducers will correspond to pairs [u, {i, j}], where u
is a node (intended to be the node in the middle of the 2-path), and
i and j are bucket numbers in the range 1, 2, . . . , k. There are thus
n
(
k
2

)
or approximately nk2/2 reducers.

Let (a, b) be an edge. We send this edge to the 2(k−1) reducers
[b, {h(a), ∗}] and [a, {∗, h(b)}], where ∗ denotes any bucket num-
ber from 1 to k other than the other bucket number in the set. We
claim that any 2-path is covered by at least one reducer. In partic-
ular, look at the reducer [u, {i, j}]. This reducer covers all 2-paths
v−u−w such that h(v) and h(w) are each either i or j. Note that
if h(v) = h(w), then many reducers will cover this 2-path, and
we want only one to produce it. So we let the reducer [u, {i, j}]
produce the 2-path v − u− w if either
• One of h(v) and h(w) is i and the other is j, or
• h(v) = h(w) = i and j = i+1 modulo k (i.e., j = i+1 ≤ k

or i = k and j = 1).
Each reducer receives q = 2n/k edges, and as mentioned, the

replication rate r is 2(k − 1), or approximately 2k. Since 2n/q =
k, the lower bound is approximately half what this algorithm ach-
ieves. Thus, to within a constant factor, the upper and lower bounds
match for small q as well as for large q (where both bounds are
between 1 and 2).

5.5 Multiway Join
We begin by looking at the join of several binary relations. We

can think of this extension as looking for sample graphs in a data
graph with labeled edges; the relation names are the edge labels.
Suppose n is the number of nodes of the data graph. The inputs are
the possible edges of a graph, and the outputs are the sets of s edges
that make the body of the multiway join true (i.e., the s labeled
edges of the sample graph). We assume also that the multiway join
seen as a Datalog rule, (or as a hypergraph) uses m variables (m
attributes/nodes in the hypergraph equivalently).

5.5.1 A Lower Bound for Multiway Join
Following the recipe from Section 2.4:

• Deriving g(q): According to [7] when we have q inputs in a
multiway join, then we can have at most g(q) = qρ outputs
where ρ is the fractional edge cover number, a parameter that
depends on properties of the hypergraph associated with the
specific multiway join. E.g., if all hyperedges have the same
number of attributes/nodes and there are ρ1 edges that cover
all the nodes exactly once, and moreover this is the minimum
number of edges with this property, then ρ = ρ1. Otherwise,
ρ comes from the solution of a linear program that is asso-
ciated to the hypergraph (see also Subsection 5.5.3). From
here on, we drop constant factors, but do not use the implied
big-oh notation, for simplicity.
• Number of Inputs and Outputs: |I| = s

(
n
2

)
or on the order

of n2. |O| =
(
n
m

)
or on the order of nm. Note that m here

is a constant, so in big-oh calculations we can drop the factor
1/m! when approximating binomial coefficients.
•
∑p
i=1 g(qi) ≥ |O| Inequality: Replacing for g(q) and |O|

from above:

Σpi=1q
ρ
i ≥ n

m (11)

We can replace a factor of qρ−1
i on the left of Equation 11 by

qρ−1, since q ≥ qi, and then move that factor to the denom-
inator of the right side. Thus,

Σpi=1qi ≥ n
m/qρ−1 (12)

• Replication Rate: The replication rate is
∑p
i=1 qi divided

by the number of inputs, which is nm from (1). We can
manipulate Equation 12 as per the trick in Section 2.4 to get

r =

∑p
i=1 qi

n2
≥ nm−2

qρ−1

Below we discuss in detail some algorithms from the literature
[1] that offer upper bounds that match or are close to the lower
bound for cases of multiway join.

5.5.2 Compare Upper and Lower Bounds for Cases
of Multiway Join

Chains of odd number of relations. Suppose we have N re-
lations in the chain and N is an odd positive integer. Then, let
us compute more carefully the above lower bound. We have now
m = N + 1 and ρ = (N + 1)/2. Hence the lower bound is:

r ≥ nN−1

q(N+1)/2−1
= (n/

√
q)N−1

Observe that a chain of odd number of relations with all relations
same size has the same lower bound as the lower bound we found
for finding patterns graphs that are contained in Alon’s class. This
is to be expected since finding a pattern graph can be viewed as
computing a multiway join[2].

For the upper bound we use the results in [1]. This paper com-
putes the communication cost for when we have p reducers (de-
noted k in [1]), each relation has size R and there are N relations
in the join, hence the total input size is |I| = RN . In [1] the ex-
pression that gives the communication cost is given as the sum ofN
terms, each a product of “shares” for some of the attributes; a share
for an attribute is the number of ways the values for that attribute
are to be hashed. The reducers correspond to vectors of a hash value
for each attribute apppearing in any relation schema. When we op-
timize the shares for each of the variables, we get communication
cost per input (hence replication rate) to be equal to: r = p

N−1
N+1 .
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After similar arithmetic manipulations as in previous sections, we
get an upper bound on the replication rate to be:

r = (n/
√
q)N+1

If
√
q is equal to n then the two bounds trivially match. If q is equal

to n then the two bounds differ by a factor of n; in this case the
lower bound is n(N−1)/2, thus for large N the difference between
the two bounds is getting smaller as a ratio of the factor n over
n(N−1)/2. The case for even number of relations in a chain query
is similar.

Star joins. A star join joins a central fact table with several
dimension tables. It is expected that the fact table is very large
while the dimension tables are smaller. Suppose the size of the
fact table is f , and all dimension tables have the same size d0.
Then according to [1], in order to minimize the communication
cost, the share for the attributes not in the fact table is 1 (i.e., their
values are not used when naming the reducers), while the share for
each attribute in the fact table is d0p1/N/d0 = p1/N ; here N is
the number of dimension tables and p is the number of reducers.
We assume, moreover, that dimension tables pairwise do not share
attributes. Thus, using the communication cost as computed in [1]
and dividing it by f +Nd0 we get the replication rate:

r =
f +Nd0p

N−1
N

f +Nd0

However, since the star join has this special property that the fact
table is much larger than the dimension tables, it is more interest-
ing to compute the upper and lower bounds on the replication rate
ignoring the fact table and assuming q is the maximum amount of
data that a reducer can hold only from the dimension tables.

In that case, the upper bound on replication rate r is

r =
Nd0p

N−1
N

Nd0
= p

N−1
N

Setting rNd0 = pq we find p = rNd0/q and r = (rNd0/q)
N−1
N ,

hence

r = (Nd0/q)
N−1 = (|I|/q)N−1

For the lower bound we have:
• Input to each reducer: q = |I|r/p
• Output from each reducer: qN = (|I|r/p)N

• Total output: |I|N

• The total output must be less than or equal to the output from
each reducer multiplied by the number p of reducers, hence:
p(|I|r/p)N ≥ |I|N

• We replace p from the first bullet in terms of q and get:

r ≥ (|I|/q)N−1

Thus the upper and lower bounds match. This proves that the
algorithm of [1] for hashing tuples to the reducers is optimal. More
details on our results for star joins including a fact table are in our
online technical report [4].

General case of multiway join It will be interesting to compare
the lower bound with the upper bound as implied by the algorithm
in [1] for replication rate for the general case of multiway join.
However a closed form is not given in [1], hence it will require a
computation executed by a program. Such a comparison will give
insight as to which cases a better algorithm is needed (e.g., for the
chain joins above) and for which cases the algorithm in [1] is opti-
mal (e.g., the star joins). An interesting remark is that although the
algorithm that gives the upper bound and the computation of the

lower bound start from completely irrelevant premises, the formu-
las in both bounds have the same form. I.e., the replication rate for
the upper bound in the general case is a summation of terms in the
form βp1−αi/si where αi depends on the arity of the relations in
the join, and si depends on the number of attributes and β depends
on how the sizes of the relations compare to each other, but neither
of these dependencies are in closed form.

5.5.3 Output Size for Multiway Join – General Case
For the general case, we can apply the same technique to get

lower bounds on the replication rate, only we need to know how to
compute a bound on the size of the output of any multiway join.
We explain here how to compute a tight bound as offered in [7, 12].

Let J be a multiway join and let G(J) be the corresponding hy-
pergraph. Thus the nodes of the hypergraph are the attributes in the
query and the edges of the hypergraph correspond to the relational
atoms in the query. For each edge e of G(J) we have a variable
xe. Let E(attr) be the set of edges that include attribute attr. We
form the following linear program:

A number of inequalities, one inequality for each attribute/node
attr of the hypergraph.

Σe∈E(attr)xe ≥ 1

We optimize on:

minimizeΣe∈G(J)xe

The solution to this program is called an optimal fractional edge
cover of the query hypergraph and the cost of an optimal solu-
tion is the fractional edge cover number ρ. It can be shown [12]
that there is always a solution whose values are rational and of bit-
length polynomial in the size of the query. Fractional edge covers
can be used to give an upper bound on the size |O| of the output of
the query. Let |Re| be the size of the relation that corresponds to
the edge e of the hypergraph G(J).

|O| ≤ Πe∈G(J)|Re|xe

6. MATRIX MULTIPLICATION
We shall now take up the common application of matrix multi-

plication. That is, we suppose we have n × n matrices R = [rij ]
and S = [sjk] and we wish to form their product T = [tik], where
tik =

∑n
j=1 rijsjk. This problem introduces a number of ideas

not present in the previous examples. First, each output depends on
many inputs, rather than just two or three. In particular, the output
tik depends on an entire row of R and and entire column of S, that
is, 2n inputs, as suggested by Fig. 3.

t

R S

n
k

i

ik

Figure 3: Input/output relationship for the matrix-
multiplication problem

There is also an interesting structure to the way outputs are re-
lated to inputs, and we can exploit that structure. Finally, the fact
that sum is associative and commutative lets us explore methods
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that use two interrelated rounds of map-reduce. Surprisingly, we
discover that two-round methods are never worse than one-round
methods, and can be considerably better.

6.1 The Lower Bound on Replication Rate
• Deriving g(q): Suppose a reducer covers the outputs t14 and
t23. Then all of rows 1 and 2 of R are input to that reducer,
and all of columns 4 and 3 of S are also inputs. Thus, this
reducer also covers outputs t13 and t24. As a result, the set
of outputs covered by any reducer form a “rectangle,” in the
sense that there is some set of rows i1, i2, . . . iw of R and
some set of columns k1, k2, . . . , kh of S that are input to
the reducer, and the reducer covers all outputs tiukv , where
1 ≤ u ≤ w and 1 ≤ v ≤ h.
We can assume this reducer has no other inputs, since if an
input to a reducer is not part of a whole row ofR or column of
S, it cannot be used in any output made by the reducer. Thus,
the number of inputs to this reducer is n(w + h), which must
be less than or equal to q, the upper bound on the number of
inputs to a reducer. As the total number of outputs covered
is gh, it is easy to show that for a given q, the number of
outputs is maximized when the rectangle is a square; that
is, w = h = q/(2n). In this case, the number of outputs
covered by the reducer is g(q) = q2/(4n2).
• Number of Inputs and Outputs: There are two matrices

each of size n2. Therefore |I| = 2n2 and |O| = n2.
•
∑p
i=1 g(qi) ≥ |O| Inequality: Substituting for g(qi) and

|O|:
p∑
i=1

q2i
4n2
≥ n2

• Replication Rate: We first leave one factor of qi on the left
as is, and replace the other factor qi by q. Then, we ma-
nipulate the inequality so the expression on the left is the
replication rate and obtain:

r =

p∑
i=1

qi
2n2
≥ 2n2

q

6.2 Matching Upper Bound on Replication Rate
The lower bound r ≥ 2n2/q can be matched by an upper bound

for a wide range of q’s. If q ≥ 2n2, then the entire job can be done
by one reducer, and if q < 2n, then no reducer can get enough
input to compute even one output. Between these ranges, we can
match the lower bound by giving each reducer a set of rows of R
and an equal number of columns of S.

The technique of computing the result of a matrix multiplication
by tiling the output by squares is very old indeed [18]. In the map-
reduce model, that is correct if a single round of map-reduce is
used, but, as we shall see in Section 6.3, not quite correct for two-
phase matrix multiplication, where the minimum cost occurs when
the matrices are tiled with rectangles of aspect ratio 2:1.

Let s be an integer that divides n, and let q = 2sn. Partition
the rows of R into n/s groups of s rows, and do the same for the
columns of S. There is one reducer for each pair (G,H) consisting
of a group G of R’s rows and a group H of S’s columns. This
reducer has q = 2sn inputs, and can produce all the outputs tik
such that i is one of the rows in groupG and k is one of the columns
in the group H . Since every pair (i, k) has i in some group for R
and has k in some group for S, every element of the product matrix
T will be produced by exactly one reducer.

The replication rate for each input element is the number of
groups with which its group is paired. That number is r = n/s,
since both R and S are partitioned into this number of groups.
Since q = 2sn, and thus s = q/(2n), we have that r = 2n2/q,
exactly matching the lower bound on r.

6.3 Matrix Multiplication Using Two Phases
There is another strategy for perfoming matrix multiplication us-

ing two map-reduce jobs. As we shall see, this method always beats
the one-phase method. An interesting aspect of our analysis is that,
while tiling by squares works best for the one-phase algorithm,
• For the two-phase algorithm, the least cost occurs when the

matrices are tiled with rectangles that have aspect ratio 2:1.
We assume that we are multiplying the same n × n matrices R

and S as previously in this section.
1. In the first phase, we compute xijk = rijsjk for each i, j,

and k between 1 and n. We sum the xijk’s at a given reducer
if they share common values of i and k, thus producing a
partial sum for the pair (i, k).

2. In the second phase, the partial sum for each pair (i, k) is sent
from each reducer that has computed at least one xijk for
some j to a reducer of the second phase whose responsibility
to to sum all these partial sums and thus compute tik.

Figure 4 suggests what the mappers and reducers of the two
phases do.

Phase 1 Phase 2

mappers reducers mappers reducers

Inputs

and
R

S

inputs
Replicated

Partial
sums

Group
by i
and k

Figure 4: The two-phase method of matrix multiplication

The second phase is embarrassingly parallel, since each partial
sum contributes to only one output. However, the first phase re-
quires careful organization. To begin, it is not sufficient to compute
only the replication rate of the first phase, since there is significant
communication in the second phase. The number of partial sums
could be as large as n3 and thus dominate the communication cost.
We optimize on the number r of rows, number s of columns and
number t of partial-sums terms. Interestingly we find that although
s = r as in the one-phase algorithm, t = s/2 (proof in [4]). We
thus calculate the total communication involved in both phases, and
obtain a total communication of:

2n3

√
q

+
n3

√
q/2

=
4n3

√
q
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On the other hand, the total communication for the optimum one-
phase method described in Section 6.2 is the replication rate times
the number of inputs, or

(2n2/q)× 2n2 = 4n4/q

For what values of q does the one-phase method use less com-
munication than the two-phase method? Whenever

4n4

q
<

4n3

√
q

or q > n2. That is, for any number of reducers except 1, the two-
phase method uses less communication than the one-phase method,
and for small q the two-phase approach uses a lot less communi-
cation. There are other costs besides communication, of course,
but since both methods perform the same arithmetic operations the
same number of times, the communication difference is decisive.
Interestingly an independent study in [11] provides experimental
evidence that validates our theoretical analysis, even without the
optimization we introduced in our two-phase method. Experiments
in [11] show that indeed the one-phase method only outperforms
the two-phase method in cases the replication rate of the one-phase
method is not large. Although the communication cost of the one-
phase method is always the smallest, the overhead that is incurred
by the two-phase MapReduce is compensated when the difference
between the communication costs of the two methods is small and
thus, the one-phase method may be preferable in such cases (e.g.,
when one of the matrices is small enough to fit in one reducer). Fi-
nally, for the two-phase method, a rather straightforward observa-
tion is that we can use a similar function as the “combine” function
in many reducers of the first phase if they are colocated (in same
or close-by physical device) to produce partial sums, thus reducing
further the communication cost.

7. SUMMARY
This paper has attempted to set a new direction for the study

of optimal map-reduce algorithms. We introduced a simple model
for map-reduce algorithms, enabling us to study their performance
across a spectrum of possible computing clusters and computing-
cluster properties such as communication speed and main-memory
size. We identified replication rate and reducer input size as two
parameters representing the communication cost and compute-node
capabilities, respectively, and we demonstrated that for a wide vari-
ety of problems these two parameters are related by a precise trade-
off formula. These problems include finding bit strings at a fixed
Hamming distance, finding triangles and other fixed sample graphs
in a larger data graph, computing multway joins, and matrix multi-
plication.

7.1 Open Problems
The analyses done in this paper for several problems of interest

should be carried out for many other problems. Discovering the
tradeoff for Hamming distances greater than 1 seems hard. Analo-
gous investigations are warranted for other kinds of similarity joins
besides those based on Hamming distance. One question that arises
naturally is how closely the general lower bound on multiway joins
derived in this paper matches the general upper bounds in [1]?
Since there is no closed formula for either upper or lower bounds in
the general case, this question seems to need nontrivial arguments
in order to be answered.

Another interesting direction is to explore whether it is possible
to analyze algorithms taking two or more rounds of map-reduce
along the lines of Section 6.3. A possible first place to look is at
SQL statements that require two phases of map-reduce, e.g., joins
followed by aggregations.
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