
Practical Differential Privacy via Grouping and Smoothing

Georgios Kellaris Stavros Papadopoulos

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{gkellaris, stavrosp}@cse.ust.hk

ABSTRACT
We address one-time publishing of non-overlapping counts
with ǫ-differential privacy. These statistics are useful in a
wide and important range of applications, including trans-
actional, traffic and medical data analysis. Prior work on
the topic publishes such statistics with prohibitively low
utility in several practical scenarios. Towards this end, we
present GS, a method that pre-processes the counts by elab-
orately grouping and smoothing them via averaging. This
step acts as a form of preliminary perturbation that di-
minishes sensitivity, and enables GS to achieve ǫ-differential
privacy through low Laplace noise injection. The grouping
strategy is dictated by a sampling mechanism, which min-
imizes the smoothing perturbation. We demonstrate the
superiority of GS over its competitors, and confirm its prac-
ticality, via extensive experiments on real datasets.

1. INTRODUCTION
Numerous organizations release proprietary statistics on

individuals to third parties. For example, geo-social net-
works (e.g., Foursquare [1]) may sell user “check-in” sum-
maries to advertising companies. Moreover, hospitals may
provide pharmaceutical corporations or universities with pa-
tient prescription aggregates for research purposes. How-
ever, sensitive information may be inferred from the pub-
lished data, e.g., that a user visited a night club, or that a
patient suffers from a certain disease.
There is a plethora of methods on privacy-preserving data

publishing (e.g., [20, 22, 24, 14, 4]). Their target is to hide
sensitive information, while retaining the utility of the re-
leased data. One of the popular paradigms that offers strong
privacy is ǫ-differential privacy [3]. In particular, it ensures
that the adversary extracts roughly the same information,
whether the data of a user are incorporated in the aggregate
result or not. This implies that the user privacy is protected
and, thus, individuals are not discouraged from participat-
ing in the statistical analysis.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 5
Copyright 2013 VLDB Endowment 2150-8097/13/03...$ 10.00.

The basic ǫ-differential privacy framework entails two en-
tities; a curator and a querier. The curator is a trusted
party which holds a database (e.g., user “check-ins” or pa-
tient prescriptions). The querier requests statistical infor-
mation (e.g., counts) from the curator. The curator executes
a mechanism, which perturbs the answers prior to their pub-
lication following certain criteria. This sanitization process
hinders sensitive information disclosure about an individual
with strong theoretical guarantees.

1.1 Problem Description and Motivation
We focus on one-time publishing of non-overlapping counts

with ǫ-differential privacy. We clarify the targeted prob-
lem with an example. Suppose that the curator collects a
database where column j refers to a “check-in” place, record
i corresponds to a user, and the value of cell (i, j) is non-
zero if the ith user “checked-in” at the jth place at least once.
Consider the query “return all the column counts from the
database”, i.e., return the number of users that “checked-in”
at each place. Its result indicates the most popular places,
and may be useful for location-based advertising.

The above counts are non-overlapping, i.e., each cell value
affects exactly one count. Moreover, we assume that the
curator returns the result count vector only once. Equiva-
lently, the curator may publish the result on a web site once,
and multiple queriers may extract any desired information
from the released data (e.g., a subset of counts). There are
numerous applications where such data publication is use-
ful, including transactional databases (e.g., for market bas-
ket analysis), trajectory databases (e.g., for traffic analysis),
medical databases (e.g., for pharmaceutical research), and
movie rating databases (e.g., for viewer demographics).

The challenge is to publish the counts with ǫ-differential
privacy. Among the plethora of work on ǫ-differential pri-
vacy, only two schemes are applicable to our setting: the
Laplace Perturbation Algorithm [6] (henceforth referred to
as LPA), and an adaptation of the Fourier Perturbation Al-
gorithm [18] (hereafter referred to as FPA).

LPA achieves ǫ-differential privacy by injecting indepen-
dent Laplace noise in every count before releasing it. The
noise scale is proportional to the sensitivity of the query,
i.e., to the maximum amount of influence of a single user
on the result. As such, LPA features satisfactory utility in
settings where the sensitivity is low, e.g., in histogram publi-
cation where each user affects a single count. However, our
targeted applications may incur arbitrary sensitivity. For
example, a user may “check-in” at any number of places
and, hence, affect any number of counts. In such scenarios,
the published data of LPA may become meaningless [21].

301

FPAmainly targets at time series data. Adapting it to our
context, every database column corresponds to a timestamp,
the result count vector is perceived as a time series, and each
user affects an arbitrary number of published counts. FPA

approximates the result vector using a subset of its Dis-
crete Fourier Transform (DFT) coefficients perturbed with
Laplace noise. This may render the required noise scale in
FPA smaller than that in LPA. However, the utility of the
published result depends also on the quality of the DFT ap-
proximation. A small subset of DFT coefficients may effec-
tively approximate time series with high amplitude in only a
few frequencies (e.g., stock data). Nevertheless, in our appli-
cation scenarios, the result vector may distribute its energy
arbitrarily in the frequency domain. This could greatly im-
pact the quality of the DFT approximation and, hence, the
utility of FPA.

1.2 Our Contributions
Motivated by the shortcomings of LPA and FPA in the

targeted problem, we introduce a novel mechanism that
achieves ǫ-differential privacy with high utility via data pre-
processing. Our technique decomposes the database columns
into disjoint groups, and averages the counts in each group.
Subsequently, it adds Laplace noise to each group average,
and sets the result as the new count of every column in
the group. Intuitively, the averaging smooths the counts in
each group, acting as some form of preliminary perturba-
tion. The actual purpose of this perturbation is to render
the sensitivity on the new counts up to constant and, thus,
irrelevant to the maximum number of the original counts
affected by a user. As a result, the Laplace noise required
for ǫ-differential privacy diminishes. We hereafter term our
scheme as GS (for grouping and smoothing).
The challenging question that arises is, how do we deter-

mine the grouping strategy? Ideally, we must group together
columns with similar counts, in order to reduce the smooth-
ing perturbation. However, optimally grouping the origi-
nal counts (e.g., via straightforward clustering) is a careless
choice; we show that grouping compromises privacy when it
operates on the original counts. On the other hand, group-
ing at random does not affect privacy, but may result in
averaging counts with large variance, which increases the
smoothing perturbation. To tackle this problem, we present
an effective grouping technique with low privacy cost that
is based on sampling. We initially adapt an existing sam-
pling method, and explain its drawbacks. Subsequently, we
design a novel sampling approach tailored to our setting.
We analytically prove that our new scheme leads to better
grouping than the existing one.
Furthermore, we observe that although larger groups sub-

stantially reduce the sensitivity of the new counts, they yield
a stronger smoothing effect. For instance, if we choose only
one group that contains all columns, the resulting average
will practically destroy all the original counts, even though
the final Laplace noise is negligible. On the other hand, we
show that smaller groups require larger Laplace noise. Fine-
tuning the group size seems a good direction for optimizing
utility. However, it is not trivial how to do so without com-
promising privacy. Towards this end, we introduce a novel
fine-tuning technique that maintains ǫ-differential privacy,
while determining a group size that is close to optimal.
We provide a theoretical analysis of GS and a qualitative

comparison with LPA and FPA. We explain that GS is ex-

pected to outperform both LPA and FPA in our targeted ap-
plications. The reason is that GS necessitates orders of mag-
nitude smaller noise scale than LPA in scenarios with large
sensitivity (e.g., “check-in” data). Moreover, the grouping
and smoothing transformation of GS approximates the count
vector much better than FPA, especially in settings where
the counts have no natural ordering (such as in all our ap-
plication examples).

Finally, we provide an exhaustive experimental evaluation
using four real datasets, ranging from thousands to millions
of users. The datasets come from various domains (e.g.,
the Gowalla geo-social network, the Netflix prize, etc.) and
feature considerably different characteristics (e.g., number
of columns, sensitivity, distribution, etc.). Our results con-
firm the superiority of GS over LPA and FPA, and its actual
practicality in real settings.

The rest of the paper is organized as follows. Section
2 provides preliminary information and surveys the related
work. Section 3 presents GS in detail. Section 4 analyzes
the utility of GS and compares it with that of LPA and FPA.
Section 5 includes our experiments. Finally, Section 6 con-
cludes our work.

2. BACKGROUND
Section 2.1 presents the necessary preliminaries, whereas

Section 2.2 surveys the related work.

2.1 Preliminaries
We present in turn our model, and the basic definitions

and theorems revolving around ǫ-differential privacy.

Model A trusted curator holds a database D with user data
(e.g., “check-ins”). We view D as a two-dimensional matrix,
with n rows corresponding to users, and d columns repre-
senting attributes (e.g., places). The querier requests the
count (i.e., number of non-zero cell values) of every column
only once. For simplicity, we suppose that all cell values
are binary, i.e., a non-zero cell is treated as 1 (e.g., a cell
indicates whether a user visited a place or not). A row
may have an arbitrary number of 1’s. The requested counts
are non-overlapping, i.e., each cell value affects exactly one
count. Moreover, this is the non-interactive setting, where
the curator handles these counts in a batch (in contrast to
the interactive setting where the querier adaptively sends
multiple queries in rounds). In essence, the non-interactive
setting is equivalent to one-time publishing of private statis-
tics about a database on a public web site. No more access
is given to D by the curator, and the querier extracts any
desired information (such as subsets of counts) directly from
the published data.

ǫ-differential privacy LetD denote a set of finite databases
with d attributes. Each D ∈ D is perceived as a set of rows.
We make use of the following definition.

Definition 1. Two databases D,D′ ∈ D are referred to
as neighboring if

|(D −D′) ∪ (D′ −D)| = 1

Informally stated, D and D′ are neighboring if we can
obtain D′ from D by removing or adding a single row.

A mechanism M is a randomized algorithm performed by
the curator on a database, which applies some functionality

302

and outputs a transcript t. The latter is returned to the
querier in response to the query.

Definition 2. A mechanism M : D → T satisfies ǫ-
differential privacy if for all sets T ⊆ T , and every pair
D,D′ ∈ D of neighboring databases

Pr[M(D) ∈ T] ≤ eǫ · Pr[M(D′) ∈ T]

The selection of ǫ is a social question [4]. Most typically,
ǫ equals 0.1, ln 2 or ln 3. The smaller the value of ǫ, the
stronger the privacy guarantees. Intuitively, M is consid-
ered to satisfy ǫ-differential privacy, if the participation of
an individual in the database changes the probability distri-
bution of M very slightly. This means that the adversary
distinguishes with small probability whether a transcript t
incorporates the data of an individual or not. Hence, the
adversary infers no more information from t than the case
where the individual’s data were absent from the database.

Laplace Perturbation Algorithm (LPA [6, 4]) Before
embarking on the details of LPA, we must formulate the sen-
sitivity of a query w.r.t. D. We model the query that asks
for the count of each database column as a function Q : D →
N

d, where d is the number of columns in the database. For
D,D′ ∈ D, Q(D),Q(D′) are two d-dimensional vectors. We
denote the Lp norm of Q(D),Q(D′) as ‖Q(D)−Q(D′)‖p.

Definition 3. The Lp sensitivity of Q w.r.t. D is

∆p(Q,D) = max
D,D′∈D

∥

∥Q(D)−Q(D′)
∥

∥

p

for all neighboring D,D′ ∈ D. When there is no ambiguity
on D, we simply use symbol ∆p(Q).

Let Lap(λ) be a random variable drawn from a Laplace
distribution with mean zero and scale parameter λ. LPA

achieves ǫ-differential privacy through the mechanism out-
lined in the following theorem.

Theorem 1. Let Q : D → N
d, and define c

def
= Q(D).

A mechanism M that adds independently generated noise
from a zero-mean Laplace distribution with scale parameter
λ = ∆1(Q)/ǫ to each of the d output values of Q, i.e., which
produces transcript

t = c+ 〈Lap(∆1(Q)/ǫ)〉d

enjoys ǫ-differential privacy. The error introduced in the ith

element of t by LPA is

error iLPA = E|t[i]− c[i]| = E|Lap(λ)| =
√
2λ =

√
2∆1(Q)/ǫ

The proof is found in [4]. The higher the ∆1(Q) or the
smaller the ǫ, the larger the required Laplace noise for sat-
isfying ǫ-differential privacy. Note that, in our setting, 1 ≤
∆1(Q) ≤ d. For example, ∆1(Q) = 1 if the columns repre-
sent histogram buckets, and each user affects only a single
bucket count. Moreover, ∆1(Q) = d in time series data,
where the user affects all counts. Finally, ∆1(Q) may be
any value in range (1, d) controlled by the application before
data collection. For instance, in geo-social networks, the
maximum user “check-ins” (in every D ∈ D) may be limited
to a fixed value in the order of thousands, whereas d could
be in the order of millions. We later explain that our mech-
anism features excellent performance for any ∆1(Q) > 1.

Sampling Suppose we draw a random sample of rows from
a database, and publish statistics about the sampled data
instead. Sampling increases the uncertainty of the adver-
sary about a user being in the sample. As a result, a lower
Laplace noise is needed in order to satisfy ǫ-differential pri-
vacy for the sampled data. The following corollary is derived
from Li et al. [11] for the ǫ-differential privacy framework.

Corollary 1. Let M be a mechanism that satisfies ǫ1-
differential privacy. Let Ms be another mechanism that
samples each row of its input with probability β, and then ap-
plies M on the resulting sample. Ms satisfies ǫ2-differential
privacy for ǫ2 = ln (1 + β(eǫ1 − 1)).

The corollary essentially states that we achieve better pri-
vacy for the sample than for the original database, with the
same amount of Laplace noise. Slightly restating it, we can
maintain the same privacy level for the sample as that for
the original database by injecting smaller Laplace noise.

2.2 Related Work
A plethora of differentially private techniques were intro-

duced after the first proposal (LPA) in [6]. We categorize
the existing methods based on their targeted setting, and
identify our competitors.

Range-count queries Approaches of this category support
ǫ-differential privacy in answering range-count queries, i.e.,
count queries with a range predicate (e.g., “number of per-
sons between 30 and 40 years old suffering from HIV”). The
original data are modeled as a histogram, where the sensitiv-
ity is one (i.e., each user affects a single count). The objec-
tive is to publish a perturbed version of the histogram, such
that (i) arbitrary range-count queries can be answered, (ii)
counts with longer ranges can be directly answered more ac-
curately than aggregating a set of noisy counts with shorter
ranges, and (iii) shorter ranges can be derived from larger
ranges, taking advantage of uniformity.

Privelet [25] applies the Haar Wavelet Transform on the
original histogram, and publishes a noisy version of its co-
efficient tree. The authors prove that higher nodes in the
tree require smaller noise. Count queries with longer ranges
can be directly answered using higher tree nodes. Xu et al.
[27] propose two algorithms, NoiseFirst and StructureFirst.
Both output a coarser and noisy version of an input his-
togram, which can directly answer counts with longer ranges
more accurately. NoiseFirst initially applies noise, and then
merges consecutive histogram buckets. StructureFirst ini-
tially creates the coarser histogram by merging adjacent
buckets, and then injects noise to the summation of their
counts. Xiao et al. [26] address 2-dimensional range-count
queries. They merge adjacent buckets using a kd-tree par-
titioning technique, and answer shorter range-counts from
larger ones. The shorter range-counts are more accurate,
because the Laplace noise they incorporate constitutes only
a portion of the noise injected to the larger range-count.

Query consistency Hay et al. [9] consider a setting where
the published statistics follow certain consistency constraints
(e.g., counts that are in sorted order, or counts with some
linear relationship). They focus on histograms and range-
count queries. They apply a data transformation technique
in conjunction with noise injection, in order to provide ǫ-
differential privacy, while satisfying the given constraints.

303

Sparse data Cormode et al. [2] aim at publishing a sum-
mary of a contingency table with ǫ-differential privacy. They
observe that, when the contingency table is sparse, consider-
able computational savings can be achieved during the sum-
mary generation. Specifically, instead of producing the sum-
mary after perturbing the entire contingency table (which is
an expensive process), they derive it directly from the orig-
inal data. The computational cost is proportional to the
summary size (which is controlled by the owner), and the
utility is similar to that of the noisy contingency table. Li et
al. [12] release a perturbed version of the entire database,
instead of specific noisy statistics. The output can be used
for answering an arbitrary number of queries, without ex-
tra privacy cost. Their mechanism is based on compressive
sensing, which constructs a synopsis of the initial data. Sub-
sequently, it injects noise to this synopsis, and uses the re-
sult to re-construct a perturbed database. In order for this
mechanism to be effective, the original data must be sparse.

Correlated queries Schemes in this group exploit corre-
lations among overlapping queries, in order to reduce the
amount of noise required for ǫ-differential privacy. K-norm
[8] adjusts the noise by analyzing the queries using concepts
from convex geometry. Li et al. [10] proposed a two-stage
matrix mechanism, which has been recently subsumed by
Yuan et al. [28]. The latter argue that the matrix mecha-
nism features considerable computational overhead and sub-
optimal strategies. They introduce an improved mechanism
(in terms of both accuracy and computation), which is based
on the theory of low-rank approximation.

Adaptive queries In the interactive setting, the queries ar-
rive adaptively over time at the curator. The latter answers
them immediately with no knowledge of future queries. LPA
is adapted to this setting by assuming an a priori privacy
budget; it keeps on independently perturbing every answer
until the budget is depleted, and then shuts down. An alter-
native adaptation works for an arbitrary number of queries,
but doubles the required noise every time a query arrives.
Roth and Roughgarden [19] propose the median mechanism,
which improves upon LPA by answering some of the queries
using the noisy answers of previous ones.

Minimization of relative error Contrary to the afore-
mentioned mechanisms that mainly focus on reducing the
absolute error in the published data, iReduct [23] targets at
minimizing the relative error. It achieves this by calibrating
the Laplace noise scale proportionally to the magnitude of
the query answers. Specifically, it injects low noise into an-
swers with small values, shifting a larger amount of noise to
larger outputs.

Non-numerical query answers There are scenarios where
the query outputs are nominal. Adding numerical noise to
such answers does not make sense. The exponential mech-
anism [15] targets at such settings. It employs a utility
function that measures the quality of each possible output.
It then chooses the answer to be published among all pos-
sible outputs, with probability that increases exponentially
with utility. This leads to ǫ-differential privacy.

Variations of ǫ-differential privacy There exist two re-
laxations of ǫ-differential privacy; (ǫ, δ)-probabilistic differ-

ential privacy [13] and (ǫ, δ)-indistinguishability [5, 16]. The
former achieves ǫ-differential privacy with high probabil-
ity (≥ 1 − δ), whereas the latter relaxes the bound of ǫ-
differential privacy in Definition 2. Götz et al. [7] prove
that (ǫ, δ)-probabilistic differential privacy is a stronger no-
tion than (ǫ, δ)-indistinguishability.

Our competitors Our goal is to minimize the absolute er-
ror when publishing numerical answers of non-overlapping
count queries in the non-interactive setting with ǫ-differential
privacy. Therefore, the methods of the last five categories
above are orthogonal to our work. Moreover, we make no as-
sumptions about the original data or the query answers and,
hence, techniques requiring sparse data or query consistency
are not applicable to our setting. On the other hand, [25,
26, 27] optimize range-count queries on histograms, where
a user affects only a single count. In contrast, we focus on
(non-range) count queries where a user affects an arbitrary
number of answers.

We identify two competitors. The first is a straightforward
application of LPA [6]. The second is an adaptation of the
work by Rastogi and Nath [18] to our setting. Specifically,
we focus on the centralized mechanism of [18], called FPA,
which assumes a database D where the rows are time-series
(e.g., sequences of periodic reports on the health condition
of a patient), and the columns are timestamps. It publishes
with ǫ-differential privacy the count for every timestamp.
The authors consider that a user affects all counts, but here
we adapt it such that the user may affect an arbitrary num-
ber of counts. FPA first applies the Discrete Fourier Trans-
form (DFT) on the count vector Q(D). Next, it chooses the
first ρ (≪ d) DFT coefficients, and injects Laplace noise of
certain scale to them. Finally, it runs the inverse DFT on
the noisy coefficients and publishes the result. The following
theorem states the required noise scale in FPA for achieving
ǫ-differential privacy, as well as its resulting error.

Theorem 2. Let d be the number of columns in D. In
order to satisfy ǫ-differential privacy, FPA mandates inject-

ing Laplace noise with scale λ =

√
ρ·d·∆1(Q)

ǫ
to each of the ρ

selected DFT coefficients. Moreover, let RE i
FPA(ρ) denote

the re-construction error of count i due to the DFT ap-
proximation. Then, the total error of FPA for count i is

error iFPA ≤ RE i
FPA(ρ) +

√
2 · ρ·

√
∆1(Q)

ǫ·
√
d

.

Proof. See Appendix A.

In the sequel, we introduce our novel mechanism, and pro-
vide a utility analysis and experimental comparison with
LPA and FPA.

3. GROUPING AND SMOOTHING
In this section we present our proposed scheme, called GS,

which is based on grouping and smoothing. In order to bet-
ter demonstrate its underlying ideas, we construct GS grad-
ually by starting with simple components and later adding
more advanced features. Specifically, in Section 3.1 we ex-
plain a simple mechanism, referred to as GS-R, which relies
on random grouping. In Section 3.2, we design an improve-
ment of GS-R, called GS-S, which implements a more so-
phisticated grouping technique through sampling. Finally,
in Section 3.3 we augment GS-S with a fine-tuning step to
derive our full-fledged GS mechanism.

304

Table 1: Summary of notation

Symbol Meaning

D / D Input database / Set of all databases
Ds / Ds Sampled database / Set of all sampled databases
G / g Grouping comput. module / Output strategy of G
w / gw Group size / Strategy with w-sized groups
d / dg Number of columns in D / Cardinality of g

Q Query that asks for all column counts
c / cs Result vector of Q on D / Ds

Qg / cg Count query given g / Result vector of Qg on D
Mg / tg Mechanism that perturbs cg / Output of Mg

Ms / ts Sampling sub-module of G / Output of Ms

t Final output of mechanism GS-R, GS-S or GS
∆p(Q) Lp sensitivity of Q w.r.t. D

A vital concept common in all three mechanisms is the
grouping strategy. Therefore, we provide its definition here.

Definition 4. Let D ∈ D be a database. A grouping
strategy is a partition of the columns of D. It is viewed
as a vector g, whose elements are sets (called groups) of
column identifiers. We refer to the computational module
that produces g as G.

The grouping strategy dictates the smoothing magnitude,
as well as the amount of added noise. Essentially, what
mainly differentiates GS-R, GS-S and GS is the construction
of their grouping strategy, i.e., module G. Table 1 summa-
rizes the most important notation.

3.1 Random Grouping (GS-R)
Figure 1 sketches the GS-R mechanism, which takes as in-

puts a database D, the number of columns d of D, the query
Q, and its sensitivity ∆1(Q). We uniquely identify each col-
umn by a number in {1, 2, . . . , d}. GS-R initially generates a
grouping strategy g via module G. Specifically, it randomly
partitions the columns of D into dg = ⌊d/∆1(Q)⌋ distinct
groups. The jth group is denoted by g[j] and contains ex-
actly ∆1(Q) identifiers, except for the last group g[dg] that
contains ∆1(Q) + (d mod ∆1(Q)) identifiers.

Compute
grouping
strategy

Compute
Result

Add
Laplace
Noise

GS-R

c cg

t

D, d,Q Group and
Average

Construct
final

transcript

g

tg

random seed

Mg

G

g

d,∆1(Q)

Figure 1: Outline of GS-R

Subsequently, GS-R runs module Mg. The latter com-
putes the answer vector c = Q(D). Then, it generates a
vector cg of size dg, where the jth element corresponds to
g[j] and holds the average of the counts of the columns in
g[j]. Next, it adds independent Laplace noise to each ele-
ment of cg, producing vector tg. In GS-R, this noise must be

Input: D, d,Q,∆1(Q)
Output: t

/* Module G */
1. Set dg = ⌊d/∆1(Q)⌋
2. Initialize I = 〈1, 2, . . . , d〉 and empty vector g of size dg
3. Randomly permute I
4. For j = 1 to (dg − 1)
5. g[j] = {I[(j − 1) ∗∆1(Q) + 1], . . . , I[j ∗∆1(Q)]}
6. g[dg] = {I[(dg − 1) ∗∆1(Q) + 1], . . . , I[d]}

/* Module Mg */
7. Initialize c = Q(D) and empty vector cg of size dg
8. For j = 1 to dg
9. cg[j] is the average of every c[i] such that i ∈ g[j]
10. Compute tg = cg + 〈Lap(1/ǫ)〉dg

11. Initialize empty vector t of size d
12. For i = 1 to d
13. t[i] = tg[j], such that i ∈ g[j]

Figure 2: Pseudocode of GS-R

Lap(1/ǫ). Eventually, it constructs t, which stores the final
output. The count of column i in t is assigned the value
from tg that corresponds to group g[j] containing i. Figure
2 provides the pseudocode of GS-R.

We next show that GS-R satisfies ǫ-differential privacy.
Before embarking on the detailed proof, in order to facilitate
presentation, we define query Qg that depends on a given
grouping strategy g.

Definition 5. Let g be a grouping strategy with dg groups.
We define query Qg : D → R

dg . Given D as an input, Qg

outputs a vector of dg elements, where the jth element is the
average of the counts of D’s columns in g[j].

Observe that cg = Qg(D) in Figures 1 and 2. Considering
the construction of g in GS-R, the following lemma explains
the sensitivity of Qg in this mechanism.

Lemma 1. In GS-R, it holds that ∆1(Qg) ≤ 1.

Proof. Let u be a user in D. Denote by mu,j the num-
ber of 1’s that u has in the columns belonging to group
g[j]. Also recall that u has at most ∆1(Q) 1’s in total, i.e.,
∑dg

j=1 mu,j ≤ ∆1(Q). Suppose that we remove u from D to

derive neighboring database D′. Observe that u affects ele-
ment j of Qg(D) by at most mu,j/∆1(Q). Using Definition
3, it follows that

∆1(Qg) = max
D,D′∈D

dg
∑

j=1

∣

∣Qg(D)j −Qg(D
′)j

∣

∣

≤ max
D∈D∧u∈D

dg
∑

j=1

mu,j

∆1(Q)
=

∆1(Q)

∆1(Q)
= 1

which concludes our proof.

We are now ready to establish the privacy of GS-R.

Theorem 3. GS-R satisfies ǫ-differential privacy.

Proof. Let M : D → T denote the GS-R mechanism.
We need to prove that M satisfies Definition 2. We assume
that, in the worst case, the adversary learns the followed

305

strategy g from the output. Therefore, in the view of the
adversary, it holds for any t ∈ T that

Pr[M(D) = t] = Pr[M(D) = t ∧ G(D) = g] (1)

= Pr[M(D) = t|G(D) = g] · Pr[G(D) = g]

When M produces t given a grouping strategy g, it be-
comes equivalent to sub mechanismMg. Formula 1 becomes

Pr[M(D) = t] = Pr[Mg(D) = tg] · Pr[G(D) = g] (2)

Moreover, since the sensitivity of Qg is at most 1 (Lemma
1) andMg injects Laplace noise with scale 1/ǫ, the following
holds combining Theorem 1 and Definition 2:

Pr[Mg(D) = tg] ≤ eǫ · Pr[Mg(D
′) = tg] (3)

In addition, g in GS-R is computed randomly and inde-
pendently of the input database. Therefore,

Pr[G(D) = g] = Pr[G(D′) = g] (4)

Finally, combining Formulae 2-4 we get

Pr[M(D) = t] ≤ eǫ · Pr[Mg(D
′) = tg] · Pr[G(D′) = g]

= eǫ · Pr[M(D′) = t] (5)

The above holds for every t ∈ T . Hence, for any T ⊆ T ,

Pr[M(D) ∈ T] =
∑

t∈T

Pr[M(D) = t]

≤
∑

t∈T

eǫ · Pr[M(D′) = t]

= eǫ · Pr[M(D′) ∈ T] (6)

which concludes our proof.

To sum up, due to grouping and smoothing, GS-R neces-
sitates low Laplace noise for guaranteeing ǫ-differential pri-
vacy. However, smoothing inflicts extra perturbation error.
If the grouping strategy is not designed carefully, columns
with considerably different counts may be grouped together.
As a result, their smoothed counts (prior to Laplace noise
injection) will greatly deviate from their original ones. Since
GS-R randomly selects the groups, “bad” grouping strategies
will often occur. We next describe GS-S, which tackles this
problem via an effective grouping technique.

3.2 Effective Grouping via Sampling (GS-S)
In order to achieve grouping that minimizes the pertur-

bation due to smoothing, we should group together columns
with similar counts. A straightforward solution is to opti-
mally group the columns, by sorting them based on their
original counts, and then partitioning them into dg con-
secutive groups. Unfortunately, this violates ǫ-differential
privacy, because the optimal grouping for D may be differ-
ent from that for neighboring database D′ with substantial
probability. We demonstrate this below with an example.
Consider a database D with columns {1, 2, 3, 4}, ∆1(Q) =

2, and column counts c = 〈11, 13, 13, 14〉. Assume that we
derive a neighboring database D′, by removing from D a
user with data 〈0, 0, 1, 0〉. The column counts of D′ are
c′ = 〈11, 13, 12, 14〉. Let G be a grouping procedure that
optimally groups the columns. Then, G(D) returns g =
〈{1, 2}, {3, 4}〉 with probability 1. On the other hand, G(D′)
outputs g′ = 〈{1, 3}, {2, 4}〉 with probability 1, which means
that it produces g with probability 0.

Suppose that we substitute the strategy computation mod-
ule G of GS-R with the optimal technique described above.
In order to prove that the modified mechanism satisfies ǫ-
differential privacy, we follow the same steps as in the proof
of Theorem 3 until Formula 3. However, we just showed
above that Formula 4 does not hold, and also that there
exists at least one t = M(D), such that

Pr[M(D) = t] 6≤ eǫ · Pr[Mg(D
′) = tg] · Pr[G(D′) = g] = 0

for any ǫ. Consequently, Formula 6 does not hold and ǫ-
differential privacy is violated. The above suggests that
whenever a module “looks into” the original data D (such as
G above), noise must be injected to derive a private result.
However, injecting noise to c = Q(D) is prohibitive, due to
the potentially large ∆1(Q).

GS-S tackles this challenge by creating the optimal strat-
egy for a sample Ds of D, instead for D itself. The key
idea is that cs = Q(Ds) necessitates much lower noise than
c. Therefore, the noisy results are representative enough to
yield a strategy close to the actual optimal w.r.t. D.

Figure 3 outlines the steps of GS-S, which share similari-
ties with that of GS-R. In fact, GS-S features only two differ-
ences compared to GS-R: (i) G devises the grouping strategy
g in a fundamentally different manner, and (ii) after com-
puting cg based on c and g, Mg injects noise Lap(2/ǫ) to
derive tg, whereas in GS-R it applies noise Lap(1/ǫ).

Sample

Add
Laplace
Noise

GS-S

Ds

Compute
Result

cs

ts

Compute
Grouping
Strategy

Compute
Result

Group and
Average

Add
Laplace
Noise

t

g

D,∆1(Q)

c cg

Construct
final

transcript

tg

Mg

Ms

G

g

∆1(Q)

d,Q

∆1(Q)

D, d,Q

{row|col}

Figure 3: Outline of GS-S

We next explain how the G module of GS-S generates g.
It first samples D, creating a small portion of the original
database. This is denoted by Ds and has the same schema
as D. The procedure for deriving Ds from D is clarified
soon. Subsequently, it computes the column counts on Ds,
represented by vector cs. Next, it injects Laplace noise into
cs and generates perturbed transcript ts. Finally, it com-
putes the optimal grouping strategy (i.e., via sorting) w.r.t.
ts. Observe in Figure 3 that G practically integrates a pri-
vate mechanism Ms (dark grey area on top) that produces
ts as the noisy version of cs = Q(Ds). Figure 4 includes the
pseudocode of GS-S.

We present in turn two sampling techniques for deriving
Ds from D. The first samples rows from D and relies on
results from [11]. The second is a novel approach that sam-
ples column values (i.e., 1’s) from rows. For each technique,
we explain the Laplace noise required for cs, and prove that
GS-S achieves ǫ-differential privacy when employing it.

306

Input: D, d,Q,∆1(Q), sampling method
Output: t

/* Module G */
/* Start of submodule Ms in G */

1. If sampling method = row

2. Get Ds by sampling rows from D with rate eǫ/2−1

eǫ·∆1(Q)/2−1
3. Else if sampling method = col
4. Get Ds by sampling a single 1 from each row of D
5. cs = Q(Ds) and ts = cs + 〈Lap(2/ǫ)〉d

/* End of submodule Ms in G */
6. Same as Lines 1-2 in Figure 2
7. Sort I based on the corresponding counts in ts
8. Same as Lines 4-6 in Figure 2

/* Module Mg */
9. Same as Lines 7-9 in Figure 2
10. Compute tg = cg + 〈Lap(2/ǫ)〉dg

11. Same as Lines 11-13 in Figure 2

Figure 4: Pseudocode of GS-S

Row Sampling In order to generateDs, this technique first

samples the rows of D with rate β = eǫ/2−1

eǫ·∆1(Q)/2−1
. Next, it

derives cs on Ds, and injects noise Lap(2/ǫ) in order to
produce transcript ts. This particular choice of β and noise
scale is necessary for guaranteeing ǫ-differential privacy in
GS-S with row sampling.

Theorem 4. GS-S integrating row sampling satisfies ǫ-
differential privacy.

Proof. Let M : D → T be the GS-S mechanism inte-
grating the row sampling technique. Suppose that G is the
module that calculates the grouping strategy g, and Qg the
query described in Definition 5. Let Mg be the mechanism
that returns tg, which is the result of Qg perturbed with
noise Lap(2/ǫ). Following a similar rationale as in the proof
of Theorem 3, it holds that

Pr[M(D) = t] = Pr[Mg(D) = tg] · Pr[G(D) = g] (7)

i.e., the probability to get transcript t from M depends
on the mechanism Mg that perturbs the already grouped
and averaged counts, and the module G that computes the
specific grouping strategy g followed by Mg.
Since ∆1(Qg) ≤ 1 (from Lemma 1) and Mg injects noise

Lap(2/ǫ), Mg satisfies ǫ
2
-differential privacy according to

Theorem 1. Consequently, it holds

Pr[Mg(D) = tg] ≤ e
ǫ
2 · Pr[Mg(D

′) = tg] (8)

Let Tg ⊆ T be the set of all transcripts ts that yield
strategy g in GS-S. Also recall that Ms is the mechanism
that gets as input dataset D, samples the rows of D with

rate β = eǫ/2−1

eǫ·∆1(Q)/2−1
retrieving Ds, and produces ts on Ds.

Since G eventually derives g based solely on ts, it holds

Pr[G(D) = g] = Pr[Ms(D) ∈ Tg] (9)

Transcript ts is the answer Q(Ds) = cs perturbed with
noise Lap(2/ǫ). If Ms does not perform sampling, then it is
equivalent to a mechanism M′ that outputs answer Q(D)
perturbed with noise Lap(2/ǫ). Thus, M′ enjoys (ǫ1 =
ǫ·∆1(Q)

2
)-differential privacy based on Theorem 1. Due to

Corollary 1, Ms achieves ǫ2-differential privacy, where ǫ2 =

ln (1 + β(eǫ1 − 1)) = ln (1 + eǫ/2−1

eǫ·∆1(Q)/2−1
(eǫ·∆1(Q)/2 − 1)) =

ǫ
2
. It follows that

Pr[Ms(D) ∈ Tg] ≤ e
ǫ
2 · Pr[Ms(D

′) ∈ Tg] (10)

Combining Formulae 9 and 10, we get

Pr[G(D) = g] ≤ e
ǫ
2 · Pr[G(D′) = g] (11)

Using Formulae 7, 8 and 11 we derive

Pr[M(D) = t] ≤ e
ǫ
2 · Pr[Mg(D

′) = tg] · e
ǫ
2 · Pr[G(D′) = g]

= eǫ · Pr[M(D′) = t] (12)

Adding the probabilities over any T ⊆ T (similar to the
proof of Theorem 3) yields ǫ-differential privacy.

If sampling is not used at all, cs becomes equal to c,
and must receive Lap(2 · ∆1(Q)/ǫ) so that GS-S retains ǫ-
differential privacy. Row sampling enables GS-S to reduce
this noise to Lap(2/ǫ). Nevertheless, its main drawback is
that sampling rate β decreases exponentially with the sen-
sitivity, potentially yielding a very small sample. There-
fore, the resulting cs may not be representative of c. This
fact may considerably balance off the benefits from Laplace
noise reduction, sometimes even completely negating them.
The column sampling technique presented below tackles this
problem.

Column Sampling This method keeps all the rows of D
in the sample Ds. However, it preserves only a single 1
per row (i.e., it samples column information). Specifically,
it randomly selects one 1 per row, setting the remaining
column values to 0. Subsequently, the technique derives cs
from Ds, and injects noise Lap(2/ǫ) to it to produce ts.
Column sampling has a similar effect to the case of row
sampling; the noise required on cs for achieving ǫ-differential
privacy becomes lower than the case where no sampling is
used at all.

Theorem 5. GS-S integrating column sampling satisfies
ǫ-differential privacy.

Proof. Let M : D → T be the GS-S mechanism inte-
grating the column sampling technique. Throughout this
proof, we use explicit notation ∆1(Q,D) instead of ∆1(Q).
Suppose that G is the module that calculates the grouping
strategy g, and Qg the query described in Definition 5. Let
Mg be the mechanism that returns tg, which is the result
of Qg perturbed with noise Lap(2/ǫ). Moreover, let Tg ⊆ T
be the set of all transcripts ts that yield strategy g in GS-S.
Also let Ms be the mechanism that gets dataset D as in-
put, samples Ds from D by maintaining exactly one random
1 in each row of D, and produces ts on Ds. Transcript ts is
answer Q(Ds) = cs perturbed with noise Lap(2/ǫ).

Following an identical rationale as in the proof of The-
orem 4, Formulae 7-9 hold. The only difference between
GS-S with row sampling and GS-S with column sampling is
mechanism Ms. In Theorem 4 we proved that the Ms with
row sampling achieves ǫ

2
-differential privacy, which further

allowed us to prove Formulae 10-12. Consequently, in order
to complete this proof, it suffices to prove that the Ms with
column sampling also achieves ǫ

2
-differential privacy. In the

sequel, we focus on this task.
We start by analyzing the set of all possible Ds derived

from sampling any D ∈ D, henceforth denoted by Ds. Due

307

to the column sampling technique, every row in any Ds ∈ Ds

contains exactly a single 1. Thus, removing a row from Ds

affects cs by exactly one. This means that the sensitivity of
Q w.r.t. Ds is ∆1(Q,Ds) = 1. Recall that Ms computes
Q(Ds), instead of Q(D). Therefore, the sensitivity in Ms is
∆1(Q,Ds), and not ∆1(Q,D). Combining the above with
the fact that Ms injects noise Lap(2/ǫ), we derive that Ms

achieves ǫ
2
-differential privacy based on Theorem 1. This

concludes our proof.

Both row and column sampling inject the same amount
of Laplace noise to cs. However, the sample size in column
sampling has a linear dependence on ∆1(Q). The reason is
that a row may have up to ∆1(Q) 1’s and, hence, the prob-
ability of preserving any 1 from a row of D in Ds is at least
1/∆1(Q). Consequently, Ds leads to a more representative
cs in column sampling than in its row counterpart, resulting
in a better strategy g. In Section 4, we analytically prove
the superiority of column sampling over row sampling.

3.3 Adding a Fine-tuning Step (GS)
Recall that the grouping strategy in GS-S assumes that

the group size is equal to ∆1(Q). This choice renders the
sensitivity of Qg at most 1 and, thus, the Mg sub mecha-
nism mandates Laplace noise with scale 2/ǫ. However, the
extra perturbation induced by smoothing is gravely affected
by the group size. In databases where ∆1(Q) is large, this
perturbation may be strong. The idea that arises is to reduce
the group size, in order to alleviate the effect of smoothing.
Nevertheless, this would negate the proof of Lemma 1, i.e., it
would no longer hold that ∆1(Qg) ≤ 1. In fact, we will show
that the sensitivity increases as the group size decreases. As
a consequence, the Laplace noise in Mg increases as well.
Motivated by the above discussion, we suggest tuning the

group size in order to find the best trade-off between the
perturbation of smoothing and that of the required Laplace
noise in Mg. Finding the optimal group size is not triv-
ial; we need to evaluate each group size in terms of utility,
without compromising privacy. However, assessing utility
by “looking into” the initial data (either D or Ds) violates
ǫ-differential privacy. Specifically, similar to the example in
Section 3.2, the optimal group size for D may be different
from that for D′ with substantial probability.
In this section we address the above challenge. In partic-

ular, we augment the G module of GS-S with a fine-tuning
step for the group size, which is based on useful estimates
about the final error from the private transcript ts returned
by sub mechanism Ms. This step outputs a grouping strat-
egy that is close to the optimal, without introducing any
additional privacy cost.
Figure 5 outlines our full-fledged GS mechanism, whereas

Figure 6 provides the GS pseudocode. The Ms sub mecha-
nism of GS is identical to that in GS-S. The Mg sub mech-
anism of GS is similar to that in GS-S, with the difference

that it adds Lap(2·∆1(Q)
ǫ·w), where w henceforth denotes the

group size. Note that w = ∆1(Q) in GS-S, whereas w in GS

is a tunable parameter.
We next focus on how GS modifies G in order to determine

the w that leads to the best grouping strategy g. It initially
derives a grouping strategy gw from ts for every group size
w = {1, 2, . . . , d}. Once again, the size of the last group is
w+(d mod w). Then, GS computes an estimate c̃ of c using
ts. Next, it simulates Mg on gw and c̃, in order to derive
an estimate t̃w of t. Finally, it selects the gw that leads to

Sample

Add
Laplace
Noise

GS

Ds

Compute
Result

cs

ts

Compute
Grouping
Strategies

Compute
Result

Group and
Average

Add
Laplace
Noise

t

g

c cg

Construct
final

transcript

tg

〈g1,g2, . . . ,gd〉

Find Best
Grouping
Strategy

Mg

Ms

G

g

D,∆1(Q)

∆1(Q)

d,Q

∆1(Q)

D, d,Q

{row|col}

Figure 5: Outline of GS

the smallest L1 norm (absolute error) between c̃ and t̃w as
the optimal strategy g. The above procedure allows G to
select the best gw, without “looking into” the unperturbed
data.

In more detail, t̃w is estimated as follows. G first calcu-
lates c̃ = ∆1(Q) · ts. Next, it groups and averages c̃ us-
ing gw, yielding c̃gw . Then, it derives t̃gw by adding noise

〈Lap(2·∆1(Q)
ǫ·w)〉dgw to c̃gw . Finally, it combines t̃gw with gw

to get t̃w.
We next establish the privacy of GS, after proving the

following necessary lemma.

Lemma 2. In GS, it holds that ∆1(Qg) ≤ ∆1(Q)
w

.

Proof. Similar to Lemma 1, we define u to be a user in
D and mu,j the number of 1’s that u has in the columns
belonging to the jth group of g. The number of groups in g
is dg = ⌊d/w⌋, and u has at most ∆1(Q) 1’s in total. Again,

it holds that
∑dg

j=1 mu,j ≤ ∆1(Q). Suppose that we remove

u from D to derive neighboring database D′. Observe that
now u affects element j of Qg(D) by at most mu,j/w, since
each group consists of at least w columns. Using Definition
3, it follows that

∆1(Qg) ≤ max
D∈D∧u∈D

dg
∑

j=1

mu,j

w
=

∆1(Q)

w

which concludes our proof.

Theorem 6. GS satisfies ǫ-differential privacy.

Proof. Similar to Theorem 5, Formulae 7 and 9 hold.
Moreover, Ms in GS is identical to that in GS-S with row or
column sampling. Therefore, it achieves ǫ

2
-differential pri-

vacy. Observe that it suffices to prove that Mg also achieves
ǫ
2
-differential privacy, in order to prove that GS guarantees

ǫ-differential privacy. Let w be the group size in the deter-

mined strategy g. According to Lemma 2, ∆1(Qg) ≤ ∆1(Q)
w

.

Moreover, Mg injects noise Lap(2·∆1(Q)
ǫ·w). Consequently,

due to Theorem 1, Mg achieves ǫ
2
-differential privacy, which

completes our proof.

308

Input: D, d,Q,∆1(Q), k, sampling method
Output: t

/* Module G */
1. Get Ds based on sampling method

2. cs = Q(Ds) and ts = cs + 〈Lap(2/ǫ)〉d

3. Initialize I = 〈1, 2, . . . , d〉 and sort it based on ts
4. c̃ = ∆1(Q) · ts
5. For w = 1 to d
6. Set dgw = ⌊d/w⌋ and initialize empty gw of size dgw

7. Compute gw from sorted I
8. Compute c̃gw using gw and c̃

9. t̃gw = c̃gw + 〈Lap(
2·∆1(Q)

ǫ·w)〉dgw

10. Compute t̃w using gw and t̃gw

11. Set w∗ = arg min
w

L1(c̃, t̃w) and g = gw∗

/* Module Mg */
12. Initialize c = Q(D) and empty cg of size dg
13. Compute cg using g and c

14. Compute tg = cg + 〈Lap(
2·∆1(Q)

ǫ·w)〉dg

15. Initialize empty vector t of size d
16. Compute t using g and tg

Figure 6: Pseudocode of GS

Our experiments (Section 5) show that our fine-tuning
technique effectively determines a close-to-optimal w. More
importantly, they indicate that different datasets have dif-
ferent optimal group sizes, which may greatly deviate from
∆1(Q). This justifies the importance of the fine-tuning
method as compared to the ad hoc selection of GS-R and
GS-S to set w = ∆1(Q).

4. UTILITY ANALYSIS
In this section we analyze the utility of GS. We also (i) show

that column sampling is superior to row sampling, (ii) ex-
plain the effect of w (group size), and (iii) qualitatively com-
pare GS with LPA and FPA.
Similar to the error analysis of FPA (see Appendix A), the

expected error of the ith published count t[i] in GS is

error iGS ≤ RE i
GS(w) +

√

Var(t[i])

= RE i
GS(w) +

√
2 · 2 ·∆1(Q)

ǫ · w (13)

where RE i
GS(w) is the error attributed to smoothing, and

√

Var(t[i]) is the error due to Laplace noise. The smoothing
error is affected by the sampling method and the grouping
strategy (and, thus, w). It is also data-dependent and can-
not be rigorously analyzed without making strong (typically
unrealistic) assumptions about the data distribution. How-
ever, we can still elaborate on why column sampling leads
to higher utility than row sampling.
Consider the total error of GS for any fixed w, i.e.,

errorGS =

d
∑

i=1

erroriGS =

d
∑

i=1

RE i
GS(w) + d ·

√
2 · 2 ·∆1(Q)

ǫ · w

Value
∑d

i=1 RE
i
GS(w) is the total smoothing error. Its

optimal value is yielded from the optimal grouping, which
depends on c. However, GS derives the grouping strategy
based on ts. Note that ts[i] is essentially a biased estimator
of c[i], which relies on the sampling method. Intuitively,
the better the estimation of ts[i] for all i, the “closer” the

grouping strategy computed in GS is to the optimal (the
full-fledged proof of this intuition is out of the scope of this
work). We next prove that ts[i] in column sampling is a
better estimator of c[i] than that in row sampling for every
i, concluding that column sampling is superior to its row
counterpart.

The quality of a biased estimator is typically calculated
via its mean squared error (MSE) w.r.t. the estimated pa-
rameter, that is

MSE(ts[i], c[i]) = Var(ts[i]) + (Bias(ts[i], c[i]))
2 (14)

We first focus on row sampling. Var(ts[i]) depends on two
independent events; sampling and Laplace noise injection.
Therefore, it is simply the sum of the variance of sampling,
and that of Laplace noise. The Laplace variance is equal to
2 ·λ2 = 8/ǫ2. Since each row is independently sampled with
rate β, each of the c[i] 1’s of column i will be incorporated
in ts[i] with probability β. Hence, the sampling variance
of ts[i] is c[i] · β · (1 − β). Moreover, the expected value
of ts[i] is E(ts[i]) = c[i] · β. The bias of ts[i] is equal to
E(ts[i]) − c[i] = c[i] · (β − 1). Combining the above, we
derive

MSErow(ts[i], c[i]) = c[i] · β · (1− β)

+ (c[i] · (β − 1))2 + 8/ǫ2 (15)

We next turn to column sampling. Similar to the case of
row sampling, Var(ts[i]) incorporates sampling and Laplace
variance. The Laplace variance is the same as in row sam-
pling, but the sampling variance is different. The reason is
that column sampling uses a different probability for choos-
ing each 1 of column i. Let j ∈ [1, c[i]] and pj be the
probability of choosing the jth 1 of column i. The sam-

pling variance is
∑c[i]

j=1 pj · (1 − pj) =
∑c[i]

j=1 pj − ∑c[i]
j=1 p

2
j .

From a straightforward application of the Cauchy-Schwarz

inequality, it holds that
∑c[i]

j=1 p
2
j ≥ (

∑c[i]
j=1 pj)

2/c[i]. Let

γ = (
∑c[i]

j=1 pj)/c[i]. Then, the sampling variance becomes

smaller than or equal to c[i]·γ ·(1−γ). The expected value of

ts[i] is
∑c[i]

j=1 pj = γ ·c[i]. The bias then becomes c[i]·(γ−1).
Combining all the above, we get

MSEcol(ts[i], c[i]) ≤ c[i] · γ · (1− γ) (16)

+ (c[i] · (γ − 1))2 + 8/ǫ2 (17)

Observe that the right-hand sides of Formulae 15 and 16
can be expressed as a function f(x), where x = β in row
sampling and x = γ in column sampling. Moreover, it can
be shown that f(x) is monotonically decreasing when c[i] is
a positive integer (we omit the tedious calculations due to
space limitation). Therefore, in order to prove that MSE is
lower in column than in row sampling, it suffices to show
that γ ≥ β.

We first calculate that

β =
eǫ/2 − 1

eǫ·∆1(Q)/2 − 1
≤ eǫ/2

eǫ·∆1(Q)/2

≤ ǫ/2

ǫ ·∆1(Q)/2
=

1

∆1(Q)
(18)

In column sampling, pj is at least 1/∆1(Q), because a
row has at most ∆1(Q) 1’s and we randomly choose one of
them. Therefore, it holds that

γ =

∑c[i]
j=1 pj

c[i]
≥

c[i] · 1
∆1(Q)

c[i]
=

1

∆1(Q)
(19)

309

From Formulae 18 and 19 we derive that γ ≥ β, conclud-
ing that MSE col ≤ MSE row.
It is now apparent that the effect of w is data-dependent.

In particular, Formula 13 suggests that as w increases, it di-
minishes the effect of ∆1(Q)/ǫ and the error due to Laplace
noise decreases. Nevertheless, the larger the w, the stronger
the smoothing error, which greatly depends on the distribu-
tion of the counts in c. The above justifies our fine-tuning
mechanism in Section 3, which operates on the given dataset
without compromising privacy.
Compared to LPA, both GS and FPA introduce less Laplace

noise (tunable by w and ρ, respectively), but their total error
also depends on the reconstruction error (due to smoothing
and DFT approximation, respectively). The latter is data-
dependent, which essentially renders the mechanisms incom-
parable, unless the dataset under sanitization is thoroughly
studied. FPA works great for datasets where DFT approxi-
mation is effective, but it is expected to perform poorly in
case the counts in c have no natural ordering. On the con-
trary, GS groups similar counts and minimizes the pertur-
bation error, irrespectively of the ordering in c. Therefore,
we expect GS to generally outperform both FPA and LPA.
Our experiments in the next section confirm our claims.

5. EXPERIMENTAL EVALUATION
We first explain our experimental setup. Subsequently,

we provide a comparison between column and row sampling
in GS-S. Next, we assess the fine-tuning technique of GS.
Finally, we compare our schemes in terms of utility against
our competitors, namely LPA and FPA.

Setup We experimented with four real datasets, henceforth
referred to as Checkin, Document, Netflix, and Trajectory.
These datasets feature considerably different characteristics,
which are outlined in Table 2. Checkin contains user “check-
ins” from the Gowalla geo-social network1. We modeled
each user as a row, and each column as a location. A cell
value is non-zero if the user visited the respective location
at least once. Document is the PubMed2 dataset. Rows
stand for documents/abstracts on life sciences and biomed-
ical topics, columns represent vocabulary terms, and a non-
zero cell stores the frequency of the term in the respective
document. Netflix is the training dataset used in the Net-
flix Prize competition3. Rows are users, columns are movies,
and a non-zero cell contains the rating of the movie given by
the corresponding user. Trajectory consists of GPS traces
gathered by the GeoPKDD project4, mapped on a road net-
work. Rows correspond to trajectories, columns are road
network nodes, and a non-zero cell represents a transition
from the respective node.
For all datasets, the query under consideration is Q as

defined in our model in Section 2.1, i.e., the vector to be
privately published contains all the column counts (that is,
number of non-zero cells). We assume that ∆1(Q) is the
maximum number of non-zero values observed in a row.
Moreover, we use the optimal ρ for FPA without sacrific-
ing privacy budget, noting that this renders it non-private.
In this sense, we overestimate the performance of FPA.

1
http://snap.stanford.edu/data/loc-gowalla.html

2
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

3
http://www.netflixprize.com/

4
http://www.geopkdd.eu

Table 2: Dataset characteristics

Dataset Rows Columns ∆1(Q) Avg. count

Checkin 196,591 5,977,758 2,175 1.08
Document 8,200,000 141,043 436 5,175.72
Netflix 480,189 17,770 17,000 5,654.50

Trajectory 62,956 14,021 55 43.54

We implemented all mechanisms in Java. We conducted
the experiments on a machine equipped with a 2.53GHz In-
tel Core i5 CPU and 4GB RAM, running Windows 7. We
ran each experiment 200 times, and reported the average
error. The error metrics we used are the Mean Absolute Er-
ror (MAE) and the Mean Relative Error (MRE) with sanity
bound equal to 0.1% of the database size [25].

Column vs. row sampling in GS-S Figure 7 evaluates
the MAE of row and column sampling in GS-S, as well as
the case where no sampling was used at all, varying parame-
ter ǫ for the four datasets. In all datasets, column sampling
reduces the Laplace noise injected to cs. At the same time,
the resulting sample captures substantial information, yield-
ing a very representative cs. On the other hand, although
row sampling adds the same noise as column sampling, its
sample is much poorer. Consequently, column sampling out-
performs both row and no sampling at all.

 0

 2

 4

 6

 8

 10

 12

0.1 ln2 ln3

M
A

E

ε

No Sampling
Row

Column

(a) Checkin

0

1K

2K

3K

4K

5K

6K

7K

0.1 ln2 ln3

M
A

E

ε

No Sampling
Row

Column

(b) Document

0

2K

4K

6K

8K

10K

0.1 ln2 ln3

M
A

E

ε

No Sampling
Row

Column

(c) Netflix

 0

 10

 20

 30

 40

 50

0.1 ln2 ln3

M
A

E

ε

No Sampling
Row

Column

(d) Trajectory

Figure 7: Comparison of sampling methods

Interestingly, row sampling does not seem to have sig-
nificant gains over no sampling at all. It is noteworthy to
describe the considerably poor performance of row sampling
in Figure 7(b) for Document. When no sampling is used, cs
is equal to c. Moreover, the noise added due to sensitivity
∆1(Q) = 436 does not significantly alter the already large
counts of cs (note that the average count in Document is
5, 175.72). As such, the yielded ts leads to a quite effec-
tive g. In contrast, due to the small sample size in row
sampling, the quality of cs drastically decreases. The re-
sulting ineffective g produces very strong smoothing pertur-
bation especially in Document, because the counts feature
large variance.

310

In overall, column sampling is the best sampling method
in all scenarios. Its savings reach up to ∼ 56% in Document
in Figure 7(b) for ǫ = 0.1. Henceforth, we implement GS-S

and GS with column sampling.

Fine-tuning GS The choice of w by GS is based on the L1

norm of estimators c̃ and t̃w of c and t, respectively (Line
11 in Figure 6). Figure 8 assesses for all datasets and vary-
ing w the accuracy of this estimated L1 norm versus the real
L1 norm between c and t, in order to determine the quality
of the selection of w. We set ǫ = ln 2. What is of impor-
tance in this experiment is the similarity between the real
L1 error given by the estimated best w, and that yielded by
the real best w (i.e., the similarity between the values where
the two vertical lines intersect with the ‘Real’ curve). In
other words, we wish to test whether the w chosen by the
fine-tuning module of GS leads to similar performance to the
case GS uses the actual optimal w. In all scenarios, the rel-
ative difference between the two L1 errors ranges between
1%-3.4%. This suggests that our fine-tuning technique is
quite accurate. Moreover, observe that the best w greatly
depends on the dataset.

107

108

109

1 1000 2000 3000 4000 5000 6000

L 1
 N

or
m

w

w=6141
best for Real

w=6071
best for Estimate

Estimate
Real

(a) Checkin

107

108

 1 10 100 1000

L 1
 N

or
m

w

w=15
best for Real

w=32
best for Estimate

Estimate
Real

(b) Document

107

108

109

 1 10 100 1000 10000

L 1
 N

or
m

w

w=140
best for Real w=145

best for Estimate

Estimate
Real

(c) Netflix

104

105

106

1 25 50 75 100 125 150

L 1
 N

or
m

w

w=53
best for Real

w=141
best for Estimate

Estimate
Real

(d) Trajectory

Figure 8: L1 norm vs. group size w

Comparison of mechanisms Figures 9 and 10 display
the MAE and MRE, respectively, of all mechanisms for all
datasets and for ǫ ∈ {0.1, ln 2, ln 3}. GS outperforms LPA

and FPA in all scenarios. The gains against LPA are most
prominent in the Checkin dataset, where GS features up to
more than 3 orders of magnitude smaller MAE and MRE
than LPA. On the other hand, the largest advantage of GS
over FPA is observed in Document and Netflix, where GS

exhibits up to one order of magnitude better MAE and
MRE than FPA. In fact, FPA behaves like our GS-R (ran-
dom grouping) mechanism, because DFT is quite ineffective
in these datasets.
In addition, GS is always superior to GS-R. Observe that

GS-R becomes even worse than LPA in Document, due to

the strong smoothing perturbation stemming from the poor
grouping. Furthermore, GS is superior to GS-S mainly in
Netflix, where it achieves reduction up to a factor of 5 in
MAE and MRE when ǫ = ln 3. However, the two mecha-
nisms are comparable in Trajectory. The reason is that the
tuning of w does not induce a substantial reduction in MAE
and MRE compared to the fixed w = ∆1(Q) of GS-S. This
is actually apparent in Figure 8 for the L1 norm.

In overall, GS inflicts relative error of 0.7%, 2.4%, 73%,
and 27% for Checkin, Document, Netflix, and Trajectory,
respectively, when ǫ = ln 2. Observe that even in the case of
Netflix, where the sensitivity is extreme, GS still performs
decently considering the 3, 187% and 682% error of LPA and
FPA, respectively. Finally, our largest gains against LPA are
observed for smaller ǫ values, whereas against FPA for larger
ǫ values. To conclude GS is an ideal choice for any dataset
and privacy setting.

6. CONCLUSION
In this paper we introduced GS, a novel method that of-

fers ǫ-differential privacy in count query result publication.
Our mechanism groups the counts and smooths them via
averaging, prior to injecting Laplace noise. This diminishes
the sensitivity and, thus, drastically decreases the Laplace
noise scale. The grouping technique relies on a novel sam-
pling mechanism, which produces a grouping strategy that
minimizes the smoothing perturbation. We provided rigor-
ous proofs, optimizations, and a detailed experimental eval-
uation on four real datasets. Our results showed that GS

outperforms previous work, and proved its practicality in a
wide set of applications.

7. REFERENCES
[1] Foursquare. https://foursquare.com/.

[2] G. Cormode, C. M. Procopiuc, D. Srivastava, and T. T. L.
Tran. Differentially private publication of sparse data. In
ICDT, 2012.

[3] C. Dwork. Differential privacy. In ICALP, 2006.

[4] C. Dwork. A firm foundation for private data analysis. CACM,
54(1):86–95, 2011.

[5] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our data, ourselves: Privacy via distributed noise
generation. In EUROCRYPT, 2006.

[6] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In TCC, 2006.

[7] M. Götz, A. Machanavajjhala, G. Wang, X. Xiao, and
J. Gehrke. Publishing search logs: A comparative study of
privacy guarantees. TKDE, 24(3):520–532, 2012.

[8] M. Hardt and K. Talwar. On the geometry of differential
privacy. In STOC, 2010.

[9] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the
accuracy of differentially private histograms through
consistency. In PVLDB, 2010.

[10] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor.
Optimizing linear counting queries under differential privacy. In
PODS, 2010.

[11] N. Li, W. Qardaji, and D. Su. On sampling, anonymization,
and differential privacy: Or, k-anonymization meets differential
privacy. Arxiv preprint arXiv:1101.2604, 2011.

[12] Y. D. Li, Z. Zhang, M. Winslett, and Y. Yang. Compressive
mechanism: Utilizing sparse representation in differential
privacy. In WPES, 2011.

[13] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and
L. Vilhuber. Privacy: Theory meets practice on the map. In
ICDE, 2008.

[14] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Venkitasubramaniam. L-diversity: Privacy beyond
k-anonymity. TKDD, 1(1), 2007.

311

1

101

102

103

104

105

Checkin Document Netflix Trajectory

M
A

E

Datasets

LPA
FPA

GS-R
GS-S

GS

(a) ǫ = 0.1

1

101

102

103

104

105

Checkin Document Netflix Trajectory

M
A

E

Datasets

LPA
FPA

GS-R
GS-S

GS

(b) ǫ = ln 2

1

101

102

103

104

105

Checkin Document Netflix Trajectory

M
A

E

Datasets

LPA
FPA

GS-R
GS-S

GS

(c) ǫ = ln 3

Figure 9: MAE vs. datasets

10-3

10-2

10-1

1

101

102

Checkin Document Netflix Trajectory

M
R

E

Datasets

LPA
FPA

GS-R
GS-S

GS

(a) ǫ = 0.1

10-3

10-2

10-1

1

101

102

Checkin Document Netflix Trajectory

M
R

E

Datasets

LPA
FPA

GS-R
GS-S

GS

(b) ǫ = ln 2

10-3

10-2

10-1

1

101

102

Checkin Document Netflix Trajectory

M
R

E

Datasets

LPA
FPA

GS-R
GS-S

GS

(c) ǫ = ln 3

Figure 10: MRE vs. datasets

[15] F. McSherry and K. Talwar. Mechanism design via differential
privacy. In FOCS, 2007.

[16] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity
and sampling in private data analysis. In STOC, 2007.

[17] V. Rastogi and S. Nath. Differentially private aggregation of
distributed time-series with transformation and encryption.
Technical Report MSR-TR-2009-186, Microsoft Research, 2009.

[18] V. Rastogi and S. Nath. Differentially private aggregation of
distributed time-series with transformation and encryption. In
SIGMOD, 2010.

[19] A. Roth and T. Roughgarden. Interactive privacy via the
median mechanism. In STOC, 2010.

[20] P. Samarati and L. Sweeney. Generalizing data to provide
anonymity when disclosing information. In PODS, 1998.

[21] R. Sarathy and K. Muralidhar. Evaluating Laplace noise
addition to satisfy differential privacy for numeric data. TDP,
4(1):1–17, 2011.

[22] K. Wang and B. C. M. Fung. Anonymizing sequential releases.
In KDD, 2006.

[23] X. Xiao, G. Bender, M. Hay, and J. Gehrke. iReduct:
Differential privacy with reduced relative errors. In SIGMOD,
2011.

[24] X. Xiao and Y. Tao. Personalized privacy preservation. In
SIGMOD, 2006.

[25] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via
wavelet transforms. TKDE, 23(8):1200–1214, 2011.

[26] Y. Xiao, L. Xiong, and C. Yuan. Differentially private data
release through multidimensional partitioning. In SDM, 2010.

[27] J. Xu, Z. Zhang, X. Xiao, Y. Yang, and Y. Ge. Differentially
private histogram publication. In ICDE, 2012.

[28] G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and Z. Hao.
LowRank mechanism: Optimizing batch queries under
differential privacy. PVLDB, 2012.

APPENDIX

A. PROOF OF THEOREM 2
Let F denote the DFT coefficients of vector Q(D), and

Fρ the first ρ coefficients of F. For the sake of simplic-
ity, we abuse notation and write ∆p(F) and ∆p(F

ρ) to de-
note the Lp sensitivity of a query that outputs F and Fρ,
respectively. Then, ∆1(F

ρ) is essentially the L1 sensitiv-
ity of our query in FPA. From Parseval’s Theorem in the
discrete domain, it holds that 1

d
· L2(F)

2 = L2(Q(D))2,

which is equivalent to ∆2(F) =
√
d · ∆2(Q). Since ρ ≤ d,

∆2(F
ρ) ≤ ∆2(F). Moreover, due to a standard inequality

between L1 and L2 norms [18], ∆1(F
ρ) ≤ √

ρ·∆2(F
ρ). In ad-

dition, ∆2(Q) =
√

∆1(Q) in our setting; for every i it holds
that |Q(D)i−Q(D′)i| = (Q(D)i−Q(D′)i)

2, because Q(D)i
and Q(D′)i are either equal or differ by exactly 1. Combin-

ing all the above, we derive that ∆1(F
ρ) ≤

√

ρ · d ·∆1(Q).
Consequently, from Theorem 1, FPA satisfies ǫ-differential

privacy when λ =

√
ρ·d·∆1(Q)

ǫ
.

Let t be the published transcript in FPA. To calculate
the error for each t[i], we follow an identical procedure to
[17] (the long version of [18]), and derive that error iFPA ≤
RE i

FPA(ρ)+
√

Var(t[i]). Next, we calculate
√

Var(t[i]) sim-
ilarly to [17] using the λ we computed above, i.e, Var(t[i]) =
ρ·2·(λ)2

d2
= 2 · ρ2·∆1(Q)

ǫ2·d . Thus, the error becomes error iFPA ≤
RE i

FPA(ρ) +
√
2 · ρ·

√
∆1(Q)

ǫ·
√
d

, which concludes our proof.

312

