
Efficient Error-tolerant Query Autocompletion

Chuan Xiao
Nagoya University, Japan

chuanx@nagoya-u.jp

Jianbin Qin
UNSW, Australia

jqin@cse.unsw.edu.au

Wei Wang
UNSW, Australia

weiw@cse.unsw.edu.au

Yoshiharu Ishikawa
Nagoya University, Japan

y-ishikawa@nagoya-u.jp

Koji Tsuda
AIST and JST ERATO, Japan

koji.tsuda@aist.go.jp

Kunihiko Sadakane
NII, Japan

sada@nii.ac.jp

ABSTRACT
Query autocompletion is an important feature saving users
many keystrokes from typing the entire query. In this paper
we study the problem of query autocompletion that tolerates
errors in users’ input using edit distance constraints. Previ-
ous approaches index data strings in a trie, and continuously
maintain all the prefixes of data strings whose edit distance
from the query are within the threshold. The major inher-
ent problem is that the number of such prefixes is huge for
the first few characters of the query and is exponential in
the alphabet size. This results in slow query response even
if the entire query approximately matches only few prefixes.

In this paper, we propose a novel neighborhood generation-
based algorithm, IncNGTrie, which can achieve up to two
orders of magnitude speedup over existing methods for the
error-tolerant query autocompletion problem. Our proposed
algorithm only maintains a small set of active nodes, thus
saving both space and time to process the query. We also
study efficient duplicate removal which is a core problem in
fetching query answers. In addition, we propose optimiza-
tion techniques to reduce our index size, as well as discus-
sions on several extensions to our method. The efficiency
of our method is demonstrated against existing methods
through extensive experiments on real datasets.

1. INTRODUCTION
Autocompletion guides users to type the query correctly

and efficiently. Due to the convenience it brings to the users
and the server, it has been adopted in many applications.
For example, search engines like Google dynamically sug-
gest keywords, and can optionally show top-ranked search
results while user is typing a query. Other applications in-
clude command shells, desktop search, software development
environments (IDE), and mobile applications. In some ap-
plications, especially for mobile devices, typing accurately

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 6
Copyright 2013 VLDB Endowment 2150-8097/13/04...$ 10.00.

is a tedious task and the user’s input tends to contain ty-
pographical errors. Consequently, a recent trend of query
autocompletion research is to tolerate errors when the user
types in a query. Among the various approaches to deal
with typographical errors, edit distance is a good measure
for text documents, and therefore has been widely adopted
and studied [8, 17, 20].

The existing state-of-the-art solutions to the query auto-
completion with edit distance constraints adopt the follow-
ing paradigm: indexing data strings in a trie, and traversing
the trie incrementally to compute edit distance between the
trie nodes and the current query, as each character of the
query comes. Only trie nodes that satisfy the edit distance
constraints are kept, and these nodes are called active nodes.
Its performance has been shown to be superior to alternative
paradigms (such as q-grams) [8]. Nevertheless, the efficiency
of this approach critically depends on the number of active
nodes. The number of active nodes is typically very large in
practice (in the order of 105), and linear in the database size
or exponential in the alphabet size in the worst case. Some
techniques have been proposed to alleviate the problem (e.g.,
maintaining only a chosen subset of active nodes [20], or
using buffered strategy and precomputation [8]), however,
the query time is still long as there are still a huge number
of active nodes to maintain when the first few characters
of the query are typed in. For example, if we allow three
edit errors, all the trie nodes on the highest four levels will
be active nodes. The situation will be even worse for the
applications where strings have large-sized alphabets; e.g.,
Unicode or CJK characters.

Previous approaches build a compact index (trie) and suf-
fer from the inherent issue of having to maintain a huge
set of active nodes in the query time. In this paper, we
explore the other direction: Can we drastically improve the
query performance by preprocessing the data and build a large
but affordable-sized index? We devise a novel solution by
indexing the deletion marked variants of the data strings in
a trie, and keeping a small set of active nodes during query
processing.

Rather than index the original data strings, we index their
τ -deletion marked variants (τ is the edit distance thresh-
old), which are generated by deleting at most τ characters
from the strings. When the user inputs a query, its deletion
marked variants are also (implicitly) generated and searched
in the trie; this process can be performed incrementally and
efficiently by maintaining a small set of active states whose
size is small – typically in the order of 102 – and insensitive
to the alphabet size. To intuitive understand why this can

373

be achieved by the deletion marked variants, consider this
example: Let the query string be ab. All the strings such
as aba, abb, . . . , abz can be represented as a single variant
ab#

1 which has a distance of 1 to the query.
In addition, we propose efficient duplicate removal tech-

niques when fetching query results – a problem existing in
previous approaches yet not fully investigated. When not
optimized, our index size is large due to the inclusion of
deletion marked variants. Hence we introduce two effective
techniques to reduce the size of the index by eliminating
different kinds of redundancy in the index. Finally, the su-
periority of our solution is demonstrated through extensive
experimental evaluation with previous methods.

Our contributions can be summarized as:

• We solve the error-tolerant query autocompletion prob-
lem with edit distance constraints by utilizing deletion
marked variants. We develop indexing, searching, and re-
sult fetching techniques for query processing, as well as
optimization techniques to reduce index size to an afford-
able level.

• We conduct extensive experiments on several real datasets.
The proposed method has been shown to outperform pre-
vious approaches by up to two orders of magnitude in
terms of query response time.

The rest of the paper is organized as follows: Section 2
defines the problem definition and introduces preliminaries.
Section 3 presents our neighborhood generation-based algo-
rithm and its indexing and query processing technique. Sec-
tion 4 elaborates how to fetch query results using our algo-
rithm. The techniques to reduce index size are presented
in Section 5. Section 6 discusses miscellaneous extensions
such as processing data updates. Experimental results and
analyses are covered by Section 7. Section 8 reviews related
work. Section 9 concludes the paper.

2. PROBLEM DEFINITION AND PRELIM-
INARIES

2.1 Problem Definition
Let Σ be a finite alphabet of symbols; each symbol is also

called a character. A string s is an ordered array of symbols
drawn from Σ. |s| denotes the length of s. s[i] is the i-th
character of s, starting from 1. s[i . . j] is the substring of s
between position i and j. Given two strings s and s′, “s′ � s”
denotes that s′ is a prefix of s; i.e., s′ = s[1 . . |s′|].

ed(s, t) returns the edit distance between two strings s and
t, which measures the minimum number of edit operations,
including insertion, deletion, and substitution of a character,
to transform s to t, or vice versa. It can be computed in
O(|s||t|) time and O(min(|s|, |t|)) space using the standard
dynamic programming [33]. An efficient thresholded edit
distance computation tests if ed(s, t) ≤ τ in O(τ ·min(|s|, |t|))
time [32].

Definition 1. Given a collection of data strings S, a query
string q, and an edit distance threshold τ , the error-tolerant
query autocompletion task is to return all the strings s ∈ S,
such that ∃s′ � s, ed(s′, q) ≤ τ . The results are computed
incrementally as the user types in characters.

1“#” means the corresponding character is deleted.

2.2 Analysis of Previous Approaches
[8] and [17] independently developed solutions to process-

ing error-tolerant query autocompletions with edit distance
constraints. The techniques proposed in the two papers were
similar. In the indexing phase, data strings are organized in
a trie. In the searching phase, they maintain the set of all
prefixes of the data strings that are within edit distance τ

from the query string. The corresponding nodes in the trie
are called active nodes or valid nodes. Whenever a charac-
ter is appended to the query, the set of new active nodes is
computed using current active ones. In the result fetching
phase, the data strings stored under the leaf nodes that can
be reached from active nodes are returned as the result. The
time complexity of processing a query is O(τ · (|A|+ |A′|)),
where A and A′ are the sizes of active nodes before and after
inputting a key stroke, respectively. The space complexity
is O(|A|+ |A′|). [20] further improved the method proposed
in [17], presenting the notion of pivotal active nodes, which
are composed of a subset of active nodes with last characters
being neither substituted nor deleted; in other words, the
last character reaching the node must be a match in an align-
ment that yields the edit distance between the query and the
prefix. By considering only pivotal active nodes, it improves
the time and the space complexity to O(τ · (|P |+ |P ′|)) and
O(|P |+ |P ′|), respectively, where P and P ′ are the sizes of
pivotal active nodes before and after inputting a key stroke.

We call the above algorithms direct trie-based approaches
as their indexing method is to construct a trie directly on
data strings. The main drawback of the direct trie-based
approaches is the large active node size. The problem is even
serious for the first few key strokes of the query, since the
set of active nodes includes the prefixes from an enormous
subset of data strings. Even for pivotal active nodes, the size
of P and P ′ can be up to O((|Q| − 1)τ |Σ|τ). For example,
considering a query “abc” and τ = 1, the pivotal active
nodes include all the prefixes in the pattern of “?bc” or
“a?c”. We call this problem early stage explosion.

2.3 FastSS

A category of approaches to edit distance queries is the
neighborhood generation based approaches [7], which gener-
ate a set of strings within a certain edit distance from a query.
Among this category, the FastSS [6] algorithm utilizes dele-
tion neighborhood [23] and achieves fast query performance
for short strings under a small τ . We briefly summarize
FastSS in order to best understand our proposed method.

We use ∆(s, p) to denote the transformation of string s by
deleting the character at position p. E.g., ∆(brisbane, 3) =
brsbane. The deletions can be applied recursively. For a
number of deletions k, we use ∆(∆(. . .∆(s, p1), p2), . . . , pk)
to denote the resulting string after k deletions, and call
[p1, p2, . . . , pk] the deletion list of the resulting string. E.g.,
∆(∆(brisbane, 2), 2) = bsbane, and the deletion list is [2, 2].
In order to avoid duplicate deletion lists, a deletion is re-
stricted to occur only after all previous deletions; i.e., pi+1 ≥
pi.

For a given string s and a number of deletions k, we call
x, a resulting string after deleting s by k characters at any
possible positions, a k-variant of s. The pair 〈x,Dx〉 is called
a variant-list pair, where Dx is the deletion list to transform
s to x. The union of s’ i-variant-list pair (0 ≤ i ≤ k) forms
the k-variant family of s, denoted V (s, k).

374

The following lemma enables us to convert the edit dis-
tance constraint to an equivalent condition on variant fami-
lies.

Lemma 1 (Variant Matching Principle [6]). Given two
strings s and t, ed(s, t) ≤ τ , if and only if there exist 〈x,Dx〉 ∈
V (s, τ) and 〈y,Dy〉 ∈ V (t, τ), such that x = y and |Dx ∪
Dy | ≤ τ .

Multiplicities are considered when computing the union
of two multisets. Let mul(e,Dx) denote the multiplicity
(number of occurrences) of an element e in the multiset
Dx. To take the union of two multisets, the multiplicity
of the element e in the result is the larger of mul(e,Dx) and
mul(e,Dy). E.g., [1, 1, 2] ∪ [1, 2, 2] = [1, 1, 2, 2]. We call
the size of their deletion lists’ union the incoordination of
two variants.

Example 1. Consider two strings s = brisbane and t =
brosbne, whose edit distance is 2. The two strings share a
common variant “brsbne”, and the corresponding deletion
lists are [3, 5] and [3], whose incoordination is 2.

For error-tolerant query autocompletion tasks, the variant
matching principle can be adapted to handle the case where
the edit distance does not exceed τ between a string’s prefix
and a whole string.

Lemma 2 (Variant Matching Principle for Prefix).
Given two strings s and t, ∃s′ � s and ed(s′, t) ≤ τ , if and
only if there exist 〈x,Dx〉 ∈ V (s, τ) and 〈y,Dy〉 ∈ V (t, τ),
such that y � x and |Dx ∪Dy | ≤ τ .

Proof. We first prove its necessity. Because ed(s′, t) ≤ τ ,
according to Lemma 1, there exists 〈x′, D′

x〉 ∈ V (s′, τ) s.t.
x′ = y and |D′

x ∪Dy| ≤ τ . Let Dx = D′
x. We delete from s

the characters at position pi ∈ Dx and obtain the variant x.
Because s′ � s, x′ � x. Therefore y � x and |Dx ∪Dy| ≤ τ .

Then we prove its sufficiency. Consider a string s′ and
its variant-list pair 〈x′, D′

x〉, where x′ = y, D′
x = { pi | pi ∈

Dx, pi ≤ |y| }. The deleted characters are s[pi + i − 1] for
any pi ∈ D′

x. Because D′
x ⊆ Dx, |D

′
x ∪ Dy | ≤ τ . Hence

ed(s′, t) ≤ τ , according to Lemma 1. Because D′
x contains

all the deletions in the first (|x′|+ |D′
x|) characters of s, and

x′ = y � x, we have s′ = s[1 . . |x′|+ |D′
x|]; i.e., s

′ � s.

3. NEIGHBORHOOD GENERATION-BASED
ALGORITHMS

Based on neighborhood generation, we introduce a new
algorithm for error-tolerant query autocompletion.

According to Lemma 2, one can design an algorithm to
process the query when characters are incrementally ap-
pended. The query’s new variants can be easily generated by
appending these characters and searching for their matches
in the prefixes of data strings’ variants. However, incremen-
tally computing incoordination is a challenging task. Vari-
ants and their corresponding deletion lists are separately pro-
cessed in the FastSS algorithm, rendering it difficult to com-
pare variants while computing incoordination at the same
time. Seeing this problem, we resort to deletion-marked vari-
ants, namely, to use a “#” to denote a character deleted from
a data string. E.g., “brsbne”, a 2-variant of “brisbane”,
will be represented as “br#sb#ne”. A deletion-marked vari-
ant combines the string content of a variant and its deletion

1

2

3

4

5
t

6
#

s
7

8
t

9
#

x
10

11
t

#

e
12

13

14
t

s
15

16
t

x

#

t
17

18

19

20
t

s
21

22
t

x

e

#

s1 s1 s2 s2 s1
s2

s1 s2 s1 s2

Figure 1: Example of IncNGTrie (s1 = test, s2 = text)

Table 1: Active States for q = tas

Key ∅ t a s

Active 〈 1, 1, 0 〉 〈 1, 2, 1 〉 〈 2, 3, 1 〉 〈 13, 4, 1 〉
States 〈 1, 2, 1 〉 〈 17, 2, 1 〉 〈 12, 3, 1 〉

〈 17, 1, 1 〉 〈 2, 2, 0 〉
〈 17, 2, 1 〉 〈 2, 3, 1 〉

〈 12, 2, 1 〉
〈 12, 3, 1 〉

list. As a result, by scanning the two deletion-marked vari-
ants from left to right, we are able to incrementally check if
the contents match as well as if their incoordination exceeds
the threshold at the same time. Now we design the index-
ing phase of our algorithm: The τ -variant families of all the
strings in S are generated and deletion-marked. In order
to efficiently process the prefix lookup, we choose to index
the deletion-marked variants in a trie. We name our algo-
rithm IncNGTrie, standing for “Incremental algorithm based
on Neighborhood Generation and a Trie index”.

Example 2. Consider S = { test, text }, and τ = 1.
Figure 1 shows the trie constructed using the IncNGTrie al-
gorithm. Each path in the trie represents a deletion-marked
variant of a data string.

By indexing deletion-marked variants, the positions of the
deletions on the data strings can be retrieved through the
traversal of the trie. They are compared with the deletions
enumerated on the query to get the incoordination. Before
presenting the searching phase of the algorithm, we define
an active state, as a triplet 〈n, u, δ 〉, where n is a node in
the trie, u is called cursor, indicating it is expecting the u-
th character of the query, and δ denotes the incoordination
that has been encountered. An active states specifies that
a variant of q[1 . . u − 1] matches a prefix of a data string’s
variant, represented by the path from the root to the node
n, with an incoordination of δ. When the user types the
u-th character of the query, the active state reads in the
character and propagates new active states. First, if n has
a child n′ through edge label q[u], 〈n′, u + 1, δ 〉 becomes
active. Second, we may impose a number of deletions at the
end of the query, and thus 〈n′, u+dq, δ+dq 〉 becomes active,
where dq ∈ [1, τ − δ]. Third, we may also impose deletions
on the data string, and thus 〈n′′, u + dq, δ + max(dq, ds) 〉
becomes active, where n′′ is a descendant of n′ through ds
#’s, and both dq and ds are in the range [1, τ − δ].

Following the above active state propagating strategy, we
design the searching phase of the IncNGTrie algorithm. The
pseudocode is provided in Algorithm 1.

375

• It first initializes a set of active states (Line 1). As we are
allowed to make at most τ deletions at the beginning of
either the query or a data string, the initial active states
involve the root of the trie and the nodes that can be
reached through no more than τ #’s. Algorithm 2 shows
how active states are generated on a node and its descen-
dants through a number of #’s.

• When the user types a key stroke q[v], the algorithm com-
putes new active states with current ones. For the current
active states with u > v, they will still be active (Line 6)
as the u-th character has not come yet. For the other cur-
rent active ones, we include their children through edge
label q[v] into the new active states. The children’s descen-
dants through edge label # are also included, like what we
have done to the root and its descendants through # in the
initialization step, but the number of available deletions
is τ − δ here.

• Finally, the string ids stored on the leaf nodes reachable
from the active states whose cursors are v + 1 will be
returned as the results of the query. We dedicate the
details of the result fetching phase in Section 4.

Example 3. Consider a query q = tas. Table 1 shows the
active states for each key stroke using the IncNGTrie algorithm.

3.1 Complexity Analysis
Now we analyze the worst-case time and space complexity

of processing a query using the IncNGTrie algorithm. 2

We divide active states into two groups: those with u =
|q| + 1 and those with u > |q| + 1. For the first group, the
search algorithm finds paths in the trie that match any vari-
ant of the query with an incoordination no more than τ . The
runtime cost can be measured as the number of results join-
ing the query’s τ -variant family and the variant universe on
the predicate that incoordination does not exceed τ . Hence
the cost is O(τ 2 · |q|τ). The space cost is the number of
variants in the universe that match a query’s variant with
an incoordination no more than τ ; i.e., O(τ · (|q| + τ)τ).
For the second group, as they are inserted into new active
state set without further actions, the runtime and the space
costs equal the number of second group active states; i.e.,
O((τ −u+ |q|+1) · (|q|+ τ−u+ |q|+1)τ−u+|q|+1) for each u.
Combining the costs on the two groups, the time complexity
is O(τ 2 · |q|τ), and the space complexity is O(τ · (|q|+ τ)τ).

Compared with direct trie-based methods, whose time
and space complexity are O(τ · |Σ|τ) and O(|Σ|τ), respec-
tively, the runtime and space costs of IncNGTrie are inde-
pendent of the alphabet size, and therefore the algorithm
does not suffer from the early stage explosion. The ratio-
nale behind is that all the paths whose edit distance are
within τ from the query share the same variants, and we do
not need to activate them respectively in consequence. For
the example of a query “abc” and τ = 1, the paths in the
pattern of “?bc” or “a?c”, which are inevitably active for di-
rect trie-based methods, will be found by IncNGTrie through
only two paths “#bc” and “a#c”.

4. FETCHING QUERY RESULTS
We return as results the strings stored on the leaf nodes

reachable from the active states whose cursors are equal to

2The worst case may happen for the first few key strokes,
when the prefixes of most data strings have their edit dis-
tances within τ from the query.

Algorithm 1: IncrementalSearch (q, τ , T)

Input :q is a query string input character by character; τ is
an edit distance threshold; T is a trie built on the
deletion-marked τ -variant family of the data strings
in S.

Output :s ∈ S, such that ∃s′ � s, ed(s′, q) ≤ τ .
1 A← ExpandActive(r, 1, 0, τ) ; /* r: the root of T */
2 for each key stroke q[v] do
3 A′ ← ∅ ; /* new active states */
4 for each 〈n, u, δ 〉 ∈ A do

5 if u > v then
6 A′ ← A′ ∪ { 〈n, u, δ 〉 };

7 if n has a child n′ through label q[v] then
8 A′ ← A′ ∪ ExpandActive(n′, u+ 1, δ, τ);

9 A← A′;

10 R← ∅;
11 for each 〈n, u, δ 〉 ∈ A such that u = v + 1 do

12 R← R∪ strings resident on leaf nodes reachable from n;

13 return R

Algorithm 2: ExpandActive (n, u, δ, τ)

1 A← ∅;
2 for dq = 0 to τ − δ do /* dq: deletions in query */
3 A← A ∪ { 〈n, u+ dq, δ + dq 〉 };

4 ds ← 1 ; /* ds: deletions in data string */
5 while δ + ds ≤ τ and n has a child n′ through label # do

6 for dq = 0 to τ − δ do

7 δ′ ← max(dq , ds);
8 A← A ∪ { 〈n′, u+ dq, δ + δ′ 〉 };

9 n← n′, ds ← ds + 1;

10 return A

|q| + 1. One may notice that duplicates may exist in the
string ids on leaves due to neighborhood generation. It is
noteworthy to mention that duplicate results also exist for
direct trie-based methods; e.g., an active node is an ancestor
of another and subsumes the string ids under the latter; but
none of previous work discusses the removal of them. In this
section, we investigate how to efficiently eliminate duplicates
in the results of error-tolerant query autocompletion, and
introduce the detailed result fetching phase of the IncNGTrie
algorithm.

The duplicates come from three sources. We use the ex-
ample in Figure 1 to illustrate them:

• Case 1 The associated string ids reachable from a node
contain duplicates. E.g., node 3 has five leaf descendants
yet they report only two results s1 and s2. They are
caused by neighborhood generation on the data strings.
The path from a node to its descendants may differ due
to the existence of deletions, but reach the same string
eventually.

• Case 2 The nodes of two active states are of ancestor-
descendant relationship. E.g., node 3 is an ancestor of
node 7, therefore subsuming the results from the latter.
They are caused by neighborhood generation on the query.
Two variants match a path and its prefix in the trie, re-
spectively.

• Case 3 The nodes of two active states are not of ancestor-
descendant relationship but still share common string ids.
E.g., node 4 and 19 reach the same result s1. They are
caused by neighborhood generation on both the query and
the data strings, which makes them share more than one

376

s1 s1 s2 s2 s1, s2 s1 s2 s1 s2

5 6 8 9 11 14 16 20 22

Figure 2: Example of String ID Array. Resident leaf
nodes are listed above entries. An arrow represent
the link to the next result. Entries without out-links
shown are linked to null.

s1 s2 s1 s2 s1, s2 s1 s2 s1 s2

5 68 9 11 14 16 20 22

Figure 3: Example of Rearranged String ID Array.
Resident leaf nodes are listed above entries.

variants.

Next we present our method to respectively deal with the
three cases of duplicates.

4.1 Eliminating Case 1 Duplicates
To report all the distinct string ids under a node, one fea-

sible solution is to store in an array the string ids resident
on leaf nodes, and equip each node with two pointers mark-
ing the range in the array containing the string ids under
its leaf descendants (we call result fetching range of a node).
For example, consider the strings ids in Figure 1 as an ar-
ray B. The result fetching range of node 7 is [3, 4]. Hence
the results from node 7 consist of the string ids in B[3 . . 4].
The problem is then equivalent to a colored range listing
problem [24] which returns distinct elements in an array. It
can be solved in O(1) time per distinct string, consuming
O(|B| log |B|) bits besides the string id array and the result
fetching ranges. Next we propose a solution specific to our
problem that needs no additional space but still reports each
distinct string in O(1) time.

Case 1 duplicates are caused by the existence of deletions
in the path from a node to its descendants. For a node and
the strings under its leaf descendants, the problem becomes
how to skip the string ids that follow paths containing a #

from the reporting node. Now we ask in a reverse way: given
a set of leaf nodes, for which node their associated string ids
are the results? The following observation gives the answer.

Observation 1. For a set of leaf nodes, if the path from
their least common ancestor (LCA) to each of them contains
no #, the associated string ids on these leaf nodes are distinct
and include all the results for the LCA.

Motivated by Observation 1, we link the entries in the
string id array using their least common ancestor. For each
entry B[i] in the array, we use a pointer linking it to B[j],
such that j is the smallest value j > i and the paths from
LCA(B[i], B[j]) to B[i] and B[j] contain no #; or “null” if
there is no such B[j]. Then the results for a node can be
found as follows: From the node’s result fetching range, we
locate the first result, and then go to the next result through
the link. The above process is repeated until we reach null
or go beyond the result fetching range.

Example 4. Figure 2 shows the example of string id array
with links. Consider node 3, whose result fetching range in
the string id array is [1, 5]. The first result is B[1] = s1, the
second result is B[3] = s2, and then we stop as B[3] links to
null.

Algorithm 3: CreateStringIDArray (n,B, prev)

1 if n is a leaf node then

2 B.push(n’s associated string id);
3 L[prev]← B.length ; /* L[0] is a dummy link */
4 L[B.length]← null ; /* initialize a link */
5 return B.length

6 else

7 for each n’s child n′ do

8 if n′ is through label # then
9 CreateStringIDArray(n′, B, 0);

10 else

11 prev ← CreateStringIDArray(n′, B, prev);

12 return prev

Algorithm 4: CreateRearrangedStringIDArray (T)

1 B ← ∅, B′ ← ∅;
2 CreateStringIDArray (r,B, 0) ; /* r: the root of T */
3 for i = 1 to |B| do
4 if B[i] has not been accessed then

5 j = i, B′.push(B[j]);
6 while L[j] 6= null do /* go through the chain */
7 j ← L[j], B′.push(B[j]);

8 return B′

The link creation algorithm is shown in Algorithm 3 (in-
voked by Line 2 in Algorithm 4). It builds a string id array
B and creates the links L between entries in O(|T |) time
through a traversal of the trie. Each distinct string can be
returned in O(1) time for a given node. However, it still
needs additional space for the links. The remedy is to rear-
range the string id array in the order of the links. We start
with the first entry and put all the entries reachable from
it into a new array, and then continue with the next unpro-
cessed entry, and so on. Lines 3 – 7 in Algorithm 4 show
the rearrangement algorithm which passes all the chains in
O(|B|) time. After that we update the nodes in the trie for
their result fetching ranges in the rearranged array.

Example 5. Consider the string id array in Example 4.
The resulting array after rearrangement is given in Figure 3.
We update the nodes’ result fetching ranges in the rearranged
array. E.g., for node 3, within its current range [1, 5], B[1]
and B[3] are the first and last results for node 3. Since B[1]
and B[3] are moved to B′[1] and B′[2] in the new array, node
3’s range in the rearranged array becomes [1, 2].

4.2 Eliminating Case 2 Duplicates
For ease of exposition, we call a node in the trie a reporting

node, if it is in an active state with cursor equal to |q| + 1,
and none of its ancestors is in an active state with cursor
equal to |q| + 1. In other words, reporting nodes are those
whose leaf descendants are not subsumed by others among
the nodes that we use to fetch results. Case 2 duplicates can
be avoided by processing only reporting nodes. To check
if a node n is a reporting node, one solution is to assign
additional codes (e.g., the region codes widely used in XML
query processing [35]) to trie nodes and test the ancestor-
descendant relationship between n and every other node in
the active state set A. This method needs at most |A| − 1
ancestor-descendant relationship tests per node. Another
solution is to maintain the nodes in the active states with a
hash table, and test if none of n’s ancestors is in the table.
Due to the edit distance constraints, only its ancestors on

377

level |q| − τ or below need to be tested, thus taking at most
2τ hash table lookup. Rather than choose these methods,
we propose a method that runs in O(log |Nr|) per node check
by exploiting the order in which active states are generated.
Nr denotes the set of reporting nodes and its size is usually
very small.

Lemma 3. If a node n is an ancestor of a node n′, for a
fixed cursor u, IncNGTrie always inserts 〈n, u, δ 〉 into active
state set before 〈n′, u, δ′ 〉 for any incoordinations δ and δ′. 3

Assuming active states with a fixed cursor are accessed ac-
cording to the order in which they are generated, Lemma 3
asserts that a node n’s ancestor must appear before n in the
order. Accordingly, a reporting node verification algorithm
can be devised: The nodes in the active states are processed
one by one. A binary search tree (BST) is utilized to keep
reporting nodes based on their numbers in pre-order traver-
sal. (See Figure 1 for an example). To verify a reporting
node n, we search the BST for the node whose number is
smaller and closest to n. If the returned node is an ancestor
of n, n is not a reporting node; otherwise n is a reporting
node and will be added to the BST.

Algorithm 5 presents the pseudocode testing if a node
ni is a reporting node. We abuse ni to denote its node
number in pre-order traversal. The algorithm begins with
a search in the BST for the node whose number is just no
more than ni. If it returns ni, ni has been processed and
thus is skipped. Otherwise the returned node nj is checked
for ancestor-descendant relationship with ni. The node num-
bers of nj ’s descendants are in the range from nj+1 to nk−1,
where nk is nj ’s next sibling.

4 If ni is within this range, nj

is an ancestor of ni and hence the algorithm returns false,
otherwise ni is a reporting node and is inserted into the BST.
The search operation in the BST runs in O(log |Nr|) time,
and the ancestor-descendant check runs in O(1) time. The
overall time complexity of the algorithm is O(log |Nr|).

Proof Correctness of Algorithm 5. We assume nj ,
the node returned from the BST, is not an ancestor of ni,
but there exists another reporting node n′

j which is ni’s
ancestor. According to Lemma 3, n′

j must be accessed before
ni and thus n′

j < nj < ni. Because n′
j is ni’s ancestor,

its next sibling n′
k satisfies n′

k − 1 ≥ ni > nj . Therefore
n′
j + 1 ≤ nj < n′

k − 1, stating that n′
j is an ancestor of

nj . It contradicts that nj is a reporting node and hence the
correctness of the algorithm is proved.

Example 6. Consider the trie in Figure 1 and a query te.
The active states with cursors equal to |q| + 1 are 〈 2, 3, 1 〉,
〈 12, 3, 1 〉, 〈 18, 3, 1 〉, 〈 3, 3, 0 〉, and 〈 10, 3, 1 〉 in correct order.
First, node 2 is a reporting node and inserted to the BST. For
node 12, the search in BST returns 2 and it is an ancestor of
12. For node 18, since node 2 in the BST is not an ancestor
of 18, 18 is a reporting node and inserted to BST. Both nodes
3 and 10 can find their ancestor 2 in the BST. Finally, node
2 and 18 are returned as reporting nodes.

3In some subtle cases two active states may share the same
node and cursor. The lemma holds for the first occurrence
of the (node, cursor) pair.
4In case nj is the last child, we recursively go up the tree
until reaching an ancestor such that it has a next sibling,
and then use the next sibling as nk.

Algorithm 5: CheckReportingNode (ni, Tr)

Input :ni is a node in an active state. Tr is a binary search
tree maintaining the reporting nodes seen so far.

Output :true if ni is a reporting node and appears for the
first time, and false otherwise.

1 nj ← Tr .search(ni) ; /* nj ≤ ni */
2 if ni = nj then
3 return false

4 nk ← nj ’s next sibling;
5 if nj + 1 ≤ ni and nk − 1 ≥ ni then

6 return false
7 else

8 Tr .insert(ni);
9 return true

4.3 Eliminating Case 3 Duplicates
To handle Case 3 duplicates, we use a hash table to mem-

orize the string ids to be returned as results. Since a result
string can appear under at most |Nr | reporting nodes, the
worst-case time complexity of reporting all the results is
O(|R||Nr |), where R denotes the set of result strings.

5. INDEX SIZE OPTIMIZATIONS
Algorithms based on neighborhood generation, including

our IncNGTrie algorithm, often exhibit large index size due
to the enumeration of variants. In this section, we introduce
two new techniques specific to the IncNGTrie algorithm to
remove redundancy in the index and hence resulting in sub-
stantial size reduction. We note that there are other physical
compression methods such as double-array trie [2] that can
be applied to our method only, because direct trie-based
methods require traversing all child nodes in active node ex-
pansion, which is an expensive operation for a double-array
trie. Such discussion is omitted here in the interest of space.

5.1 Common Data String Merge
The first technique to reduce index size can be regarded

as a hybrid of neighborhood generation and edit distance
computation. We show the basic idea with an illustrative
example.

Example 7. Consider node 4 in Figure 1. All its descen-
dant paths reach the same string s1, meaning that these paths
are variants of the string s1 only. If node 4 is in an active state,
we may directly compute the remaining parts of the query and
s1 for edit distance, and add it to the current incoordination.
Since the neighborhood generation is not needed here, only the
path from node 4 that contains no deletions needs to be kept
for edit distance computation.

For any node whose leaf descendants share the same single
string id, we remove from the trie its descendant nodes on
paths containing any #. When the node appears in an active
state, the searching algorithm switches to edit distance com-
putation mode for the following key strokes of the query. It
computes the edit distance between the subsequent inputs
and the single remaining path, as do the direct trie-based
methods. But the difference is that we have only one path to
compute edit distance, so our algorithm is still insensitive to
the size of alphabet. The incoordination encountered before
reaching this node is added to the result of edit distance
computation to obtain an overall incoordination. Besides
the trie, when a leaf node is removed, the corresponding en-
try in the string id array is also removed to save space. The

378

correctness of the algorithm holds. The reason is that there
must be a # on the path reaching the removed leaf node, and
thus the corresponding removed string id is a result only for
the nodes after the #, which are also removed.

5.2 Common Subtree Merge
The second technique is based on the observation that if

the two subtrees rooted at two nodes are isomorphic to each
other (we treat string ids resident on leaf nodes as labels),
we can merge these two subtrees into one. An example is
the subtrees rooted at node 12 and node 18 in Figure 1.
This is reminiscent of the minimization of automata [1], and
the most efficient solution [10] is to traverse the trie while
converting the subtree under each node into a hash code.
Common subtrees are identified through hash table lookup
and merged. The total time complexity is O(|T |).

There are two subtle instances in merging common sub-
trees. The first one is that two common subtrees are literally
identical single paths but (1) one is produced by common
data string merge (e.g., the one formed by merging the paths
under node 4 in Figure 1), while (2) the other is not (e.g.,
the path under node 13 in Figure 1). Our solution is not to
distinguish the two types of subtrees but treat both of them
as the first type. Then the two paths can be merged, and we
switch to edit distance computation no matter what types
they are. It can be shown a second type subtree in this sce-
nario either contains only one node or has τ #’s before reach-
ing the subtree, and thus the efficiency of the algorithm will
not be impaired though its node expansion (Algorithm 2) is
replaced by a more expensive edit distance computation.

The second subtlety lies in reducing the size of the string
id array. Although nodes can be removed by common sub-
tree merge, we cannot simply remove the underlying string
ids from the string id array because they may be results for
some nodes outside the subtree. Nevertheless, if the incom-
ing edge to the root of the subtree is a #, the underlying
entries in the string id array can be safely discarded, be-
cause we are sure they will not become the results of any
nodes outside the subtree due to Observation 1. In order to
achieve maximum size reduction on the string id array, for
a series of identical subtrees, we reserve in the trie the first
one in terms of pre-order traversal whose root’s incoming
edge is not a #. In case of all incoming edges being #, we
keep the first one.

Example 8. Figure 4 shows the trie in Figure 1 after com-
mon data string merge and common subtree merge. For exam-
ple, since all the paths from node 4 reach s1, we merge them
into a single path and mark node 4 as where we start edit dis-
tance computation. Node 7 is processed similarly. The sub-
trees under node 12 and 18 are identical, with incoming edges
and e, respectively. Thus we remove the subtree rooted at
node 12 and divert the incoming edge to node 18. The subtrees
rooted at node 19 and 21 are removed likewise because they are
identical to those rooted at node 4 and 7, respectively. In the
rearranged string id array, B′[3], B′[4], B′[6], and B′[7] (See
Figure 3) are removed.

Due to the redundancy caused by variant enumeration,
which generates a number of similar strings, merging com-
mon subtrees may achieve remarkable reduction rate on in-
dex size. Apart from the index size reduction that can be
applied to any tries, what is specific to our algorithm is that
merging common subtrees facilitates the query processing

1

2

3

4

5
t

s
7

8
t

x
10

11
t

#

e

t
17

18
e

#

#

s

x

s1 s2 s1
s2

Figure 4: Index after size reduction. Gray nodes
indicate edit distance computation is invoked for de-
scending paths. New edges formed by common sub-
tree merge are colored in red.

performance because the number of active states can be re-
duced as well. We formally state the property that leads to
the optimization on query processing:

Lemma 4. Consider two nodes n1 and n2 which share com-
mon subtrees rooted at them. Given two active states in the
same cursor 〈n1, u, δ 〉 and 〈n2, u, δ

′ 〉. If δ ≤ δ′, 〈n2, u, δ
′ 〉

can be discarded from the active state set.

Proof. As the subtrees rooted at n1 and n2 are the same,
the two active states share the same string ids as results.
Moreover, any future active states expanded from 〈n2, u, δ

′ 〉
will be subsumed by those expanded from 〈n1, u, δ 〉, because
they read in the same key stroke and δ ≤ δ′, which implies a
more margin of incoordination. In all, the correctness of the
algorithm holds in spite of 〈n2, u, δ

′ 〉 being discarded from
the active state set.

6. DISCUSSIONS
In this section we briefly comment on the techniques by

which the IncNGTrie algorithm tackles long strings and up-
dates in data strings.

6.1 Long Strings
Since the number of variants of a data string is |s|τ , long

strings may bring about considerable performance issues in
the indexing construction. Our remedy is to truncate data
strings at a length lp, and only use the truncated prefix
to generate variants. Hence the number of variants of data
string is at most |lp|

τ . As the truncation may introduce false
positives to query processing, edit distance computation is
invoked for the remaining length when the query’s and the
data string’s lengths exceed lp.

6.2 Updates in Data Strings
Updates may occur in data strings by inserting, deleting,

or modifying a string. We discuss how to update the index
when a data string is inserted or deleted. The case of mod-
ifying a string can be handled by first deleting it and then
inserting a new one.

Insertion. We choose to use an auxiliary index to keep
a trie built on the variants of new strings, with no index
reduction technique applied on it. Whenever a data string
is inserted, its deletion-marked τ -variant family is generated
and inserted into the auxiliary index, and its id is inserted
into the string id array of the auxiliary index. In order
not to rebuild the rearranged string id array from scratch,

379

we choose to implement the rearranged string id array of
the auxiliary index in a linked list so that the insertion of
the string id is done in O(1) time. The auxiliary index is
merged with the main index through an offline logarithmic
merging [22], which is also adopted by many IR solutions.
We can also periodically reconstruct the index from scratch.
Similar strategies have been adopted by most search engines
to handle updates in their indexes.

Deletion. If a data string in the main index is deleted,
we do not modify the index but record its string id in a
table so that it won’t be returned for future queries. If a
data string in the auxiliary index is deleted, the variants of
the string are removed from the trie, and its entries in the
string id array are removed as well. In case multiple strings
can produce the same variants, we fetch the string ids under
the variant and see if there is only one result. If so, the
variant can be safely deleted from the auxiliary index.

7. EXPERIMENTS
We report experiment results and our analyses.

7.1 Experiment Setup
The following algorithms are compared in the experiment.

• ICAN and ICPAN are two state-of-the-art, direct trie-
based algorithms for error-tolerent autocompletion [20].
The ICAN algorithm is very similar to the method with
the full strategy in [8], while ICPAN improves ICAN by
further reducing the size of active node set by keeping
only pivotal active nodes. [20] has experimentally showed
that ICAN has similar performance as the algorithm in [8],
and both are inferior to the ICPAN algorithm.

• IncNGTrie is our proposed algorithm that indexes in a trie
the deletion-marked variants of data strings and incremen-
tally computes active states during query processing.

All the experiments were carried out on a PC with an
AMD Opteron 2.4GHz Processor and 96GB RAM, running
Ubuntu 4.4.3. We implemented all the algorithms in C++
and in a main memory fashion.

We select three publicly available datasets. The first two
were used in prior studies [8, 20].

• DBLP contains about 1.1 million bibliography records in
Computer Science.

• MEDLINE is a set of about 4 million journal citations
and abstracts of biomedical literature.

• UNIREF is the UniRef90 protein sequence data from the
UniProt project.

For DBLP andMEDLINE datasets, we tokenize the dataset
into terms with white spaces and punctuations. For UNIREF,
we take the first 12 characters of each sequence as a term.
Each term is then regarded as a data string. Statistics about
the preprocessed datasets are provided in Table 2.

We follow [8] to randomly sampled 1,000 strings from each
dataset as queries.

We measure (1) the active state size, which is the num-
ber of active nodes for ICAN, or the number of pivotal ac-
tive nodes for ICPAN, or the number of active states for Inc-
NGTrie; (2) the query time, which consists of the search-
ing time and the result fetching time. The former is to
maintain active states/nodes, and the latter is to fetch query
results. (3) the index size, which consists of the trie and all
the auxiliary data structures. All the measures are averaged
over 1,000 queries.

Table 2: Dataset Statistics
Dataset |S| avg. |s| |Σ|

DBLP 351,207 8 27
MEDLINE 1,782,517 10 27
UNIREF 356,585 12 26

7.2 Query Processing Performance

7.2.1 Query Response Time
We plot the average query response times of the three al-

gorithms under query lengths of 4 and 7 and varying τ in
Figures 5(a) –5(f). Note the the response times are not ac-
cumulated for previous characters but measured only when
the 4-th or 7-th character is typed. Response times are de-
composed into searching time (top) and result fetching time
(bottom). NG, IC, and IP denote IncNGTrie, ICAN, and IC-

PAN, respectively.
We observe that our method has the best response time

among the three. The advantage is more substantial when τ

or query length is large. For example, we can achieve up to
308x speedup against ICAN and up to 150x speedup against
ICPAN. The major reason for the much longer response time
of direct trie-based method is the lengthy searching time,
which will be analyzed in detail later. The response time
for short queries (len = 4) are longer than long queries (len
= 7), mainly because there are much more results under a
fixed threshold when the query is short.

The runtime performances on short queries (query length
≤ 3) are also evaluated. We show the result on MEDLINE
in Figures 5(g) –5(i). When the query length is no larger
than τ , all the data strings become query results. Hence in
this case, we replace the result fetching phase with a scan
over the set of data strings. IncNGTrie is the fastest under
most settings and the gap increases rapidly for larger τ , be-
cause it consumes less searching time. There are exceptional
cases where IncNGTrie is slower than direct trie-based algo-
rithms by a very small margin (e.g., when |q| = 2, τ = 1),
because result fetching time dominates under these settings
and IncNGTrie spends a little more time in this phase.

In the following, we analyze searching and result fetching
times of the algorithms separately. In interest of space, we
only show the results when τ = 3.

7.2.2 Searching Time
We measure the active state numbers of the three algo-

rithms on the three datasets when the i-th character of the
query is input to the system (called prefix length [20]), and
show the result in Figures 6(a) – 6(c). We observe that

• The active state numbers of the algorithms first increase
with prefix length, and then decrease. For direct trie-
based algorithms, the peak is reached when prefix length
is 3 or 4 (note that τ = 3), while the peak of IncNGTrie is
reached when prefix length is 6 or 7.

• The maximum active state numbers of direct trie-based
methods are much larger than that of IncNGTrie. The
numbers on MEDLINE are 97k and 12k for ICAN and
ICPAN respectively, but only 468 for IncNGTrie.

The active state size reduces under larger prefix lengths,
because the query becomes more selective when characters
are appended. In this case, IncNGTrie may have slightly
larger active states than direct trie-based approaches due to
neighborhood generation; e.g., when prefix length is 9.

380

 0.01

 0.1

 1

 10

 100

 1000

NG IC IP NG IC IP NG IC IP

τ=1 τ=2 τ=3

T
im

e
(m

s)
Searching Time

Result Fetching Time

(a) DBLP, Query Response Time (|q| = 4)

 0.01

 0.1

 1

 10

 100

 1000

NG IC IP NG IC IP NG IC IP

τ=1 τ=2 τ=3

T
im

e
(m

s)

Searching Time
Result Fetching Time

(b) MEDLINE, Query Response Time (|q| = 4)

 0.01

 0.1

 1

 10

 100

 1000

NG IC IP NG IC IP NG IC IP

τ=1 τ=2 τ=3

T
im

e
(m

s)

Searching Time
Result Fetching Time

(c) UNIREF, Query Response Time (|q| = 4)

 0.01

 0.1

 1

 10

 100

 1000

NG IC IP NG IC IP NG IC IP

τ=1 τ=2 τ=3

T
im

e
(m

s)

Searching Time
Result Fetching Time

(d) DBLP, Query Response Time (|q| = 7)

 0.01

 0.1

 1

 10

 100

 1000

NG IC IP NG IC IP NG IC IP

τ=1 τ=2 τ=3

T
im

e
(m

s)

Searching Time
Result Fetching Time

(e) MEDLINE, Query Response Time (|q| = 7)

 0.01

 0.1

 1

 10

 100

 1000

NG IC IP NG IC IP NG IC IP

τ=1 τ=2 τ=3

T
im

e
(m

s)

Searching Time
Result Fetching Time

(f) UNIREF, Query Response Time (|q| = 7)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

NG IC IP NG IC IP NG IC IP

τ=1 τ=2 τ=3

T
im

e
(m

s)

Searching Time
Result Fetching Time

(g) MEDLINE, Query Response Time (|q| = 1)

 0.01

 0.1

 1

 10

 100

 1000

NG IC IP NG IC IP NG IC IP

τ=1 τ=2 τ=3

T
im

e
(m

s)

Searching Time
Result Fetching Time

(h) MEDLINE, Query Response Time (|q| = 2)

 0.01

 0.1

 1

 10

 100

 1000

NG IC IP NG IC IP NG IC IP

τ=1 τ=2 τ=3

T
im

e
(m

s)

Searching Time
Result Fetching Time

(i) MEDLINE, Query Response Time (|q| = 3)

Figure 5: Overall Query Processing Performance

We also observe the early stage explosion of direct trie-
based methods and the benefit of reducing active states by
the use of deletion marked variants. On DBLP, IncNGTrie
reduces the active state number by 78.2 times from ICPAN.
On UNIREF and MEDLINE, the reduction rate over ICPAN
can be up to 80.9 times and 196.8 times.

The huge difference in active state numbers is also re-
flected in the searching time, as it is proportional to the
number of active states (See Section 2.2). Figures 6(d) –
6(f) show the times of the searching phase of the three al-
gorithms with varying prefix length. IncNGTrie can be up
to 1613.4 times faster than the runner up ICPAN on DBLP,
1338.1 times on UNIREF, and 3175.1 times on MEDLINE.
All the maximum speed-ups are achieved when query length
is 1. One may notice that IncNGTrie has more active states
when query length is 9, but faster searching time. This is be-
cause among its active states, the cursors of some states are
over current query length, and hence are directly included
into new active state set without further expansions; while
all the active nodes of direct trie-based approaches are used
to expand new active nodes.

Finally, we note that no nodes in the first τ levels of the di-
rect trie can be pruned, yet all of them have to be computed
to enable the computation of the following input characters.
This will inevitably lead to slow response time for the first
few character entered by the user. This is the inherent limi-
tation of direct trie-based method, and part of the technical
reasons why buffered strategy and precomputing results via
alphabet reduction are used in [8] to alleviate this problem.

7.2.3 Result Fetching Time
We then evaluate the result fetching time with a straight-

forward and the optimized duplicate elimination techniques

described in Section 4, and compare the result fetching time
with ICPAN. Results on ICAN are not shown, as it has even
more duplicates than ICPAN. We consider the following two
strategies to remove duplicates when fetching query result:

• HashTable. The algorithm uses a hash table to return
distinct strings from the set of string IDs associated with
the leaf nodes reachable from active states.

• Dedup. The algorithm employs duplicate removal tech-
niques. For IncNGTrie, we use the techniques proposed in
Section 4 to deal with the three types of duplicates. For IC-
PAN, we use the following optimization. As the duplicates
of ICPAN are caused by ancestor-descendant relationship
among pivotal active nodes, we first index all pivotal ac-
tive nodes in a hash table, and then test for each pivotal
active node if one of their ancestors on level |q| − τ or
below is in the hash table. The algorithm takes O(τ · |P |)
time, where |P | is the number of pivotal active nodes.

These two strategies can be combined with either algorithm
and hence we have four resulting algorithms. Figures 6(g)–
6(i) compare the string ids accessed by the different combi-
nations for respective query length when τ = 3. We also
show the number of distinct result strings (denoted Results).
As can be seen, HashTable strategy (denoted -H) accesses a
number of string ids up to 2M for IncNGTrie. When we use
Dedup strategy (denoted -D), it can be reduced by one order
of magnitude, and is very close to the distinct results. For
ICPAN, the number of accessed string ids using HashTable is
slightly larger than the distinct results, and the duplicates
are removed when Dedup strategy is applied.

Figures 6(j)– 6(l) show corresponding result fetching time.
After applying Dedup on IncNGTrie, it reduces the result
fetching time from HashTable by up to almost two orders
of magnitude. Another interesting observation is that the

381

 10

 100

 1000

 10000

 100000

 1e+06

1 2 3 4 5 6 7 8 9

A
ct

iv
e

S
ta

te
 S

iz
e

Prefix Length

IncNGTrie
ICAN

ICPAN

(a) DBLP, Active State Size (τ = 3)

 10

 100

 1000

 10000

 100000

 1e+06

1 2 3 4 5 6 7 8 9

A
ct

iv
e

S
ta

te
 S

iz
e

Prefix Length

IncNGTrie
ICAN

ICPAN

(b) MEDLINE, Active State Size (τ = 3)

 10

 100

 1000

 10000

 100000

 1e+06

1 2 3 4 5 6 7 8 9

A
ct

iv
e

S
ta

te
 S

iz
e

Prefix Length

IncNGTrie
ICAN

ICPAN

(c) UNIREF, Active State Size (τ = 3)

 0.01

 0.1

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9

T
im

e
(m

s)

Prefix Length

IncNGTrie
ICAN

ICPAN

(d) DBLP, Searching Time (τ = 3)

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9

T
im

e
(m

s)
Prefix Length

IncNGTrie
ICAN

ICPAN

(e) MEDLINE, Searching Time (τ = 3)

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9

T
im

e
(m

s)

Prefix Length

IncNGTrie
ICAN

ICPAN

(f) UNIREF, Searching Time (τ = 3)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

1 2 3 4 5 6 7 8 9 10

S
tr

in
g

ID
s

Prefix Length

IncNGTrie-H
IncNGTrie-D

ICPAN-H

ICPAN-D
Results

(g) DBLP, String IDs Accessed (τ = 3)

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

1 2 3 4 5 6 7 8 9 10

S
tr

in
g

ID
s

Prefix Length

IncNGTrie-H
IncNGTrie-D

ICPAN-H

ICPAN-D
Results

(h) MEDLINE, String IDs Accessed (τ = 3)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

1 2 3 4 5 6 7 8 9 10

S
tr

in
g

ID
s

Prefix Length

IncNGTrie-H
IncNGTrie-D

ICPAN-H

ICPAN-D
Results

(i) UNIREF, String IDs Accessed (τ = 3)

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s)

Prefix Length

IncNGTrie-H
IncNGTrie-D

ICPAN-H
ICPAN-D

(j) DBLP, Result Fetching Time (τ = 3)

 1

 10

 100

 1000

 10000

 100000

 1e+06

1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s)

Prefix Length

IncNGTrie-H
IncNGTrie-D

ICPAN-H
ICPAN-D

(k) MEDLINE, Result Fetching Time (τ = 3)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s)

Prefix Length

IncNGTrie-H
IncNGTrie-D

ICPAN-H
ICPAN-D

(l) UNIREF, Result Fetching Time (τ = 3)

Figure 6: Searching and Result Fetching Performance

fastest combination is ICPAN + Dedup under small query
length, but becomes either IncNGTrie + Dedup (on MED-
LINE) or ICPAN + HashTable (on DBLP and UNIREF)
when the length increases. This is because there are more
duplicate results caused by ancestor-descendant relationship
under small query length, where the equipped Dedup strat-
egy is very effective at removing them. As query length in-
creases, duplicates caused by ancestor-descendant relation-
ship are reduced, and thus the ancestor lookup hardly re-
turns any results but leads to more runtime overhead.

7.3 Scalability

7.3.1 Varying Alphabet Size
We study the searching time of the three algorithms with

varying alphabet size. Synthetic datasets are generated with
|Σ| = 4, 8, 16, 32 and 64, each containing 50k data strings.
Figure 7(a) shows the accumulated searching times when
query length reaches 8 at a τ of 3. The searching times of
direct trie-base approaches rapidly grow with alphabet size,
though ICPAN has a smaller growth rate. On the contrary,
the searching time of IncNGTrie decreases when we move al-
phabet size towards larger values, because its active state

size is insensitive to the alphabet size, and the query be-
comes more selective. When the alphabet contains 4 charac-
ters, IncNGTrie is 26.1 times faster than ICPAN. When there
are 64 characters, the gap enlarges to 967.8 times.

7.3.2 Varying Dataset Size
We study the scalability of the algorithms by varying

dataset size. We randomly sampled 20% to 100% data
strings from MEDLINE so that the data and result distribu-
tions remain approximately the same as the whole corpus.
Figure 7(b) shows the ratio of accumulated searching times
against that on 20%, when query length reaches 8 and τ is
3. The general trend is that the searching times of the three
algorithms all grows with larger dataset size. IncNGTrie ex-
hibits the slowest growth rate, followed by ICPAN. When the
dataset size jumps from 20% to 100%, the searching time in-
creases by 2.6 times for ICAN, 2 times for ICPAN, and 1.6
times for IncNGTrie, showcasing the less sensitiveness of In-

cNGTrie to dataset size than direct trie-based approaches.

7.4 Index Size Reduction
The two techniques proposed in Section 5 for index size

reduction are evaluated. We use the term “NoReduction” to

382

 1

 10

 100

 1000

 10000

 4 8 16 32 64

T
im

e
(m

s)

Alphabet Set Size

IncNGTrie
ICAN

ICPAN

(a) Varying Alphabet Size

 1

 1.5

 2

 2.5

 3

20% 40% 60% 80% 100%

T
im

e
R

at
io

Percentage

IncNGTrie
ICAN

ICPAN

(b) Varying Dataset Size

 0.1

 1

 10

 100

 1000

 10000

1 2 3

In
de

x
S

iz
e

(M
B

)

Edit Distance

DirectTrie
NoReduction

StringMerge
SubtreeMerge

(c) DBLP, Index Size

 1

 10

 100

 1000

 10000

 100000

1 2 3

In
de

x
S

iz
e

(M
B

)

Edit Distance

DirectTrie
NoReduction

StringMerge
SubtreeMerge

(d) MEDLINE, Index Size

 1

 10

 100

 1000

 10000

 100000

1 2 3

In
de

x
S

iz
e

(M
B

)
Edit Distance

DirectTrie
NoReduction

StringMerge
SubtreeMerge

(e) UNIREF, Index Size

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9

T
im

e
(m

s)

Prefix Length

SubtreeMerge
NoReduction

ICPAN

(f) DBLP, Searching Time (τ = 3)

Figure 7: Scalability & Index Size Reduction

Table 3: Index Construction Time (DBLP)
τ ICPAN NoReduction SubtreeMerge

1 2.9s 7.4s 24.5s
2 2.9s 33.7s 95.2s
3 2.9s 116.0s 266.8s

denote the IncNGTrie algorithm without any index size re-
duction. “StringMerge” denotes that we apply the common
data string merge. “SubtreeMerge” denotes that the com-
mon subtree merge is further applied.

7.4.1 Effect on Index Size
Figures 7(c) – 7(e) show the index sizes of the algorithms

on the three datasets varying τ . Both optimizations are
effective at reducing index size, and the reduction is more
substantial with an increasing threshold. For example, on
UNIREF and τ = 3, StringMerge reduces index size by 5.6
times, and SubtreeMerge further reduces it by 2.0 times.

Our algorithm has larger index sizes than direct trie-based
approaches (denoted DirectTrie in the figures), and the gap
increases for larger τ . This is expected as the number of
variants is exponential in τ . On UNIREF, our index sizes are
1.3 times that of direct trie-based approaches when τ = 1,
4.4 times when τ = 2, and 12.3 times when τ = 3.

7.4.2 Effect on Runtime Performance
Figure 7(f) shows the searching time before and after ap-

plying the two index reduction techniques on DBLP when
τ = 3. With index reduction, the searching time exhibits al-
most no change except a slight increase (up to 1.6 times) at a
prefix length of 4 or 5. The increase results from the common
data string merge that replaces node expansion with edit dis-
tance computation and hence imposes more overhead.

We also compare the index construction time and show
the result on DBLP in Table 3. Direct trie-based approach
spends the least time on index construction as it simply
builds a trie from the data strings. The index construction
times of neighborhood generation-based approaches grow
with τ due to more variants generated. With index re-
duction, the time spent on index construction increases by
around 3 times, but is still in an affordable manner under
the largest threshold setting.

8. RELATED WORK
Query autocompletion has been adopted in many appli-

cations such as Web search engines, command shells in op-
erating systems, etc. They either rely on query logs or a
predefined dictionary to process the autocompletion.

There has also been considerable interest in query au-
tocompletion in research community. The Reactive Key-
board [11] is a device that accelerates typewritten communi-
cation by predicting what the user is going to type. Grabski
and Scheffer [14] studied the query prediction using index-
based information retrieval techniques to complete a sen-
tence given an initial fragment. Bast andWeber [5] proposed
to use a succinct index built on underlying document corpus
to provide answers to word-level autocompletions. Nandi
and Jagadish [26] studied the problem of autocompletion at
the level of a phrase containing multiple words.

The autocompletions with edit distance to tolerate errors
were first studied in [17] and [8]. Li et al. [20] improved the
method proposed in [17] to reduce memory consumption
and query response time, both included in the TASTIER
project [21], targeting type-ahead search in which the sys-
tem returns answers on-the-fly as users type in the query.
Apart from edit distance, cosine similarity [4] and Markov
n-gram transformation model [13] are also adopted for error
tolerance in the autocompletion task.

Another line of work aims at query recommendations, tak-
ing a full query and making arbitrary reformulations to assist
users. The proposed solutions are mainly based on query
clustering [3, 28], session analysis [16], or search behavior
models [31], just to name a few recent studies.

Edit distance is a common distance function for approx-
imate string matching. We refer readers to [7] for related
work. Neighborhood generation is a category amid the vari-
ous approaches. It computes a set of strings obtainable from
the query or data strings by at most τ edit operations. The
size of the neighborhood is O(|s|τΣτ) for the full neighbor-
hood method [25]. To reduce its size, deletion neighborhood
was proposed for τ = 1 [23] and extended to general case [6].
k-errata trie [9] was proposed to process dictionary match-
ing with edit distance constraints and was later improved
by [30]. Unlike our algorithm, [30] generates full neighbor-
hood, not only deletion, but also insertion and substitution,

383

though a letter inserted or substituted is represented in a
wildcard like our #. Subtree are also merged in [30]. How-
ever, as their main purpose is to speed up query process-
ing, subtrees are merged so that searching the merged tree
is equivalent to searching multiple individual trees. In our
work, only identical subtrees are merged as our main pur-
pose is to reduce space usage. Edit distance is also adopted
in similarity search and join [15, 27, 19] and membership
checking [34, 12].

Our index reduction techniques are similar to condensed
data cube and its indexing based on prefix and suffix shar-
ing [29] or equivalence classes on identical aggregate val-
ues [18]. Our deletion mark # can be regarded as “ALL” in
data cube queries, the string ids are the measure attribute,
and the aggregate function is a UNION. We briefly discuss
the differences: (1) The fact table records are of the same
dimensionality, whereas the data strings in our problem may
vary in length. (2) It is unknown how to support our query
using the index structure proposed in [29] or [18]. (3) We
consider duplicate removal in our index, whereas it is unclear
how to efficiently deal with it using the two techniques.

9. CONCLUSION
We investigate new solutions to error-tolerant query auto-

completion using edit distance as constraints. Unlike exist-
ing approaches that directly index data strings in a trie, we
devise an algorithm to organize the trie index on the basis of
deletion neighborhood of data strings. The new algorithm
achieves a very small and alphabet-insensitive active state
size to speed up query processing. Additional optimization
techniques are developed to remove duplicates in query re-
sults and reduce index size. Extensive experimental eval-
uation over large-scale real datasets demonstrates that the
proposed algorithm outperforms existing solutions by up to
two orders of magnitude in terms of query response time.

Acknowledgements. Chuan Xiao, Yoshiharu Ishikawa,
Koji Tsuda, and Kunihiko Sadakane are supported by FIRST
Program, Japan. Jianbin Qin and Wei Wang are supported
by ARCDiscovery Projects DP130103401 and DP130103405.

10. REFERENCES
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and

Analysis of Computer Algorithms. Addison-Wesley, 1974.
[2] J.-I. Aoe. An efficient digital search algorithm by using a

double-array structure. IEEE Trans. Software Eng.,
15(9):1066–1077, 1989.

[3] R. A. Baeza-Yates, C. A. Hurtado, and M. Mendoza.
Improving search engines by query clustering. JASIST,
58(12):1793–1804, 2007.

[4] Z. Bar-Yossef and N. Kraus. Context-sensitive query
auto-completion. In WWW, pages 107–116, 2011.

[5] H. Bast and I. Weber. Type less, find more: fast
autocompletion search with a succinct index. In SIGIR,
pages 364–371, 2006.

[6] T. Bocek, E. Hunt, and B. Stiller. Fast Similarity Search in
Large Dictionaries. Technical Report ifi-2007.02,
Department of Informatics, University of Zurich, April 2007.

[7] L. Boytsov. Indexing methods for approximate dictionary
searching: Comparative analysis. ACM Journal of
Experimental Algorithmics, 16(1), 2011.

[8] S. Chaudhuri and R. Kaushik. Extending autocompletion to
tolerate errors. In SIGMOD Conference, pages 707–718,
2009.

[9] R. Cole, L.-A. Gottlieb, and M. Lewenstein. Dictionary
matching and indexing with errors and don’t cares. In
STOC, pages 91–100, 2004.

[10] J. Daciuk. Comparison of construction algorithms for
minimal, acyclic, deterministic, finite-state automata from
sets of strings. In CIAA, pages 255–261, 2002.

[11] J. J. Darragh, I. H. Witten, and M. L. James. The reactive
keyboard: A predicive typing aid. IEEE Computer,
23(11):41–49, 1990.

[12] D. Deng, G. Li, and J. Feng. An efficient trie-based method
for approximate entity extraction with edit-distance
constraints. In ICDE, pages 762–773, 2012.

[13] H. Duan and B.-J. P. Hsu. Online spelling correction for
query completion. In WWW, pages 117–126, 2011.

[14] K. Grabski and T. Scheffer. Sentence completion. In SIGIR,
pages 433–439, 2004.

[15] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. In VLDB, pages
491–500, 2001.

[16] Q. He, D. Jiang, Z. Liao, S. C. H. Hoi, K. Chang, E.-P. Lim,
and H. Li. Web query recommendation via sequential query
prediction. In ICDE, pages 1443–1454, 2009.

[17] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive fuzzy
keyword search. In WWW, pages 371–380, 2009.

[18] L. V. S. Lakshmanan, J. Pei, and Y. Zhao. Socqet: Semantic
olap with compressed cube and summarization. In SIGMOD
Conference, page 658, 2003.

[19] G. Li, D. Deng, J. Wang, and J. Feng. Pass-Join: A
partition-based method for similarity joins. PVLDB,
5(1):253–264, 2012.

[20] G. Li, S. Ji, C. Li, and J. Feng. Efficient fuzzy full-text
type-ahead search. VLDB J., 20(4):617–640, 2011.

[21] G. Li, S. Ji, C. Li, J. Wang, and J. Feng. Efficient fuzzy
type-ahead search in tastier. In ICDE, 2010.

[22] C. D. Manning, P. Raghavan, and H. Schütze. Introduction
to information retrieval. Cambridge University Press, 2008.

[23] M. Mor and A. S. Fraenkel. A hash code method for
detecting and correcting spelling errors. Commun. ACM,
25(12):935–938, 1982.

[24] S. Muthukrishnan. Efficient algorithms for document
retrieval problems. In SODA, pages 657–666, 2002.

[25] E. W. Myers. A sublinear algorithm for approximate
keyword searching. Algorithmica, 12(4/5):345–374, 1994.

[26] A. Nandi and H. V. Jagadish. Effective phrase prediction. In
VLDB, pages 219–230, 2007.

[27] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin. Efficient exact
edit similarity query processing with the asymmetric
signature scheme. In SIGMOD Conference, pages
1033–1044, 2011.

[28] E. Sadikov, J. Madhavan, L. Wang, and A. Y. Halevy.
Clustering query refinements by user intent. In WWW,
pages 841–850, 2010.

[29] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and
Y. Kotidis. Dwarf: shrinking the petacube. In SIGMOD
Conference, pages 464–475, 2002.

[30] D. Tsur. Fast index for approximate string matching. J.
Discrete Algorithms, 8(4):339–345, 2010.

[31] S. K. Tyler and J. Teevan. Large scale query log analysis of
re-finding. In WSDM, pages 191–200, 2010.

[32] E. Ukkonen. Algorithms for approximate string matching.
Information and Control, 64(1-3):100–118, 1985.

[33] R. A. Wagner and M. J. Fischer. The string-to-string
correction problem. J. ACM, 21(1):168–173, 1974.

[34] W. Wang, C. Xiao, X. Lin, and C. Zhang. Efficient
approximate entity extraction with edit constraints. In
SIMGOD, pages 759–770, 2009.

[35] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M.
Lohman. On supporting containment queries in relational
database management systems. In SIGMOD Conference,
pages 425–436, 2001.

384

